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a b s t r a c t

Models for Markov processes indexed by a branching process are presented. The new class
of models is referred to as the branching Markov process (BMP). The law of large numbers
and a central limit theorem for the BMP are established. Bifurcating autoregressive
processes (BAR) are special cases of the general BMP model discussed in the paper.
Applications to parameter estimation are also presented.
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1. Introduction

Branching processes have served as useful models for population growth. Galton–Watson (G–W) branching processes,
in particular, have generated a vast literature on the theory and applications of models for population dynamics. See [1,2]
for the classical theory and limit theorems for G–W branching processes. Guttorp [3] presents a comprehensive review of
inference for branching processes.
If Zt denotes the generation size of the tth generation, t = 0, 1, . . ., with Z0 = 1, the G–W branching process {Zt} has the

representation

Zt =
Zt−1∑
j=1

ξtj (1.1)

for Zt−1 ≥ 1, where {ξtj, t = 1, 2, . . . , j = 1, 2, . . .} are independent and identically distributed (iid) non-negative
integer-valued random variables with E(ξtj) = m and Var(ξtj) = σ 2, where m and σ 2 are the offspring mean and variance
respectively. The representation (1.1) shows that {Zt} is a Markov chain. Extensive literature is now available on the limiting
behavior of {Zt} [2] and on estimation ofm and σ 2 [3].
In many situations dealing with population biology, epidemiology, physics and chemistry, one may be interested in

measuring some characteristics of interest on each individual of a G–W branching process such as life-time of a cell,
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presence (or absence) of a certain chemical of a protein, radio-activity level and severity of an epidemic (e.g. specific stage
of AIDS), etc. Suppose Xt(j) denotes the observation on the j-th individual of the t-th generation. We then have a tree-
indexed process {Zt , Xt(j)}, j = 1, 2, . . . , Zt , t = 0, 1, 2, . . . , assuming Zt ≥ 1. The main goal of this paper is to introduce
models for the tree-indexed process whichwe shall refer to as a branchingMarkov process (BMP). For processes where each
individual splits exactly into two offspring, we have Zt = 2t , and the process indexed by the deterministic binary tree, viz.,
{Xt(j)}, j = 1, 2, . . . , 2t , t = 0, 1, 2, . . ., is known as a bifurcating process. Bifurcating autoregressive processes (BAR) for
continuous data have been studied by various authors including [4–8], among others. Basawa and Zhou [9] discussed some
preliminary examples of non-Gaussian bifurcating processes including models for count data.
In this paper, we present new models for the general branching–tree indexed processes which accommodate both

continuous and count data for the observable characteristics {Xt(j)}. The branching Markov processes (BMP) are introduced
in Section 2. Results on ergodicity and the law of large numbers are presented in Section 3. Section 4 is concerned with a
central limit theorem. Some applications to parameter estimation are discussed in Section 5.
As to the statistical importance of the limit theorems derived in this paper, we note that the law of large numbers and

the central limit theorem are useful in studying the asymptotic properties of the least squares, quasilikelihood, and the
maximum likelihood estimators and related large sample tests. See Section 5 for details. See [10,5] for real data examples
of BMP models indexed by a binary tree. For examples of the general BMP model see Section 2. Finally, it is to be noted that
the branching Markov processes (BMP) discussed in this paper are quite different from (and unrelated to) the well known
Markov branching processes (MBP) discussed extensively in the literature. The MBP are continuous time Markov processes
with a countable state space (0, 1, 2, . . .). See [11] and the references therein for MBP and their various generalizations.
On the other hand, the BMP model discussed in this paper is a tree indexed process possessing a certain type of Markov
property. The state space of a BMP can be discrete or continuous.

2. Model specification and examples

Let {Zt , t = 0, 1, 2, . . .} be a Galton–Watson branching process with Z0 = 1. Assume that E(Z1) = m > 1 and
Var(Z1) = σ 2 so that {Zt} is super-critical. It is further assumed that P(Z1 = 0) = 0, i.e., the process {Zt} does not become
extinct. We collect some well-documented results on {Zt}which will be needed later.

Proposition 2.1. Suppose {Zt} is a G–W branching process specified above.

(i) Let Wn = Zn/mn. Then there exists a random variable W such that

Wn
a.s.
−→ W , as n→∞

where ‘
a.s.
−→’ denotes almost sure convergence.

(ii) P(W > 0) = 1
(iii) E(W ) = 1 and Var(W ) = σ 2/m(m− 1).

See, for instance, [3, p. 13]. Throughout, we will write an ∼ bn for denoting ‘asymptotic equivalence’ of the two strictly positive
real sequences {an} and {bn}, i.e., an ∼ bn if an/bn converges to one as n→∞. It then follows from (i) and (ii) of Proposition 2.1
that

Zn ∼ mnW (a.s.) (2.1)

where and in what follows (a.s.) is used for representing ‘with probability one’.

Consider the process {Xt(j), t = 0, 1, 2, . . . , j = 1, 2, 3, . . .} for which Xt(j) denotes observation on the j-th individual
in generation t . It will be assumed that {Xt(j)} and {Zt} are independent of each other. The observable process {Zt , Xt(j)}
consists of

{(Zt , Xt(j)) ; t = 0, 1, 2, . . . , j = 1, 2, . . . , Zt} . (2.2)

We will refer to the process (2.2) as a branching Markov process (BMP). The subscript t will be used for denoting ‘tth
generation’ unless indicated otherwise. Let Xt−1(t(j)) be an observation on the immediate parent of the j-th individual of
generation t . Let Ft denote the σ -field generated by observations up to generation t , i.e.,

Ft = σ {(Zs, Xs(1), . . . , Xs(Zs)), s = 0, 1, 2, . . . , t}, t ≥ 1 (2.3)

and F0 is a trivial σ -field. Notice that Xt−1(t(j)) ∈ Ft−1. An illustrative realization of BMP model is given in Fig. 1.
Notice that x2(2) produces three offsprings in the next generation and x2(3) gives rise to x3(5) and x3(6), i.e., x2(3(5)) =

x2(3) and x2(3(6)) = x2(3). In particular when {Zt} is deterministic in such a way that Zt = mt wherem is an integer larger
than 1, BMP reduces to am-splittingmodel for tree-structured data where each individual in one generation gives rise tom-
offsprings in the next generation. For the special case whenm = 2 and Zt = 2t , t = 0, 1, 2, . . ., BMP becomes a bifurcating
(binary-splitting) model. See Fig. 2. Refer to [4,10,9] for a review of bifurcating models.
In order to formulate the BMP model, it will be assumed that
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Fig. 1. A realization of BMP model.

Fig. 2. Bifurcating data.

(A.1) Markovity

p(xt(j) | Ft−1) = p(xt(j) | xt−1(t(j)))

where p(· | ·) denotes a conditional density. Markovian Assumption (A.1) implies that conditional distribution of any x in
tth generation given Ft−1 depends only on a x in (t − 1)th generation on the same path, and thus p(· | ·) can be viewed as
a transition density from one generation to the next generation.
The conditional mean and conditional variance of the transition density p(· | ·) will be denoted by µt(j) and vt(j)

respectively, each defined by

µt(j) = E[Xt(j) | Xt−1(t(j))] (2.4)

and

vt(j) = Var[Xt(j) | Xt−1(t(j))]. (2.5)

It is noted that both µt(j) and vt(j) are Ft−1-measurable as functions of Xt−1(t(j)).
(A.2) Conditional independence: Conditionally on Ft−1, {Xt(j), j = 1, 2, . . . , Zt} are independent.
We present some examples, as special cases of BMP models which will be discussed in Section 5. These examples satisfy

(A.1) and (A.2).
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Ex.1 Branching autoregressive processes (B-AR(1))
Branching AR(1) process is defined by

Xt(j) = β0 + β1Xt−1(t(j))+ εt(j), | β1 |< 1 (2.6)

where {εt(j); t = 0, 1, 2, . . . , j = 1, 2, . . .} is iid with mean zero and variance σ 2ε > 0. As a special case, see [4] for a
standard bifurcating AR(1) (BAR(1)) model.
Ex.2 Branching conditionally linear autoregressive processes (B-CLAR(1))
This class of models is formulated by

µt(j) = E(Xt(j) | Xt−1(t(j))) = β0 + β1Xt−1(t(j)), | β1 |< 1. (2.7)

This class is rich enough to accommodate count data and non-negative data. These models do not require autoregression
(AR)-structure (2.6). Refer to [12] for comprehensive discussions on CLAR(1) models. A random coefficient AR(1) model is
defined by

Xt(j) = β0 + βtXt−1(t(j))+ εt(j) (2.8)

where {βt} represents a sequence of random variables (with mean β1) which is assumed to be independent of {εt(j)}. See
[13]. A binomial thinning model is specified by

Xt(j) =
Xt−1(t(j))∑
i=1

Bi + εt(j) (2.9)

where {Bi} denotes iid Bernoulli random variables and {εt(j)} is an iid non-negative integer-valued random variables which
are independent of {Bi}. Models (2.8) and (2.9) are examples of B-CLAR(1) class.
Ex.3 Branching-conditional exponential family
A branching-conditional exponential family is a class of models with transition densities of the form

p(xt(j) | xt−1(t(j))) = c(xt(j)) exp[xt(j)ηt(j)− k(ηt(j))] (2.10)

where ηt(j) is a function of xt−1(t(j)) via ηt(j) = g(µt(j))whereµt(j) is the conditional mean in (2.4) and g(·) is referred to
as a link function. Notice that ηt(j) and k(·) belong to Ft−1. For illustration, consider the following conditional exponential
model with conditional mean µt(j).

p(xt(j) | xt−1(t(j))) = exp[−xt(j)/µt(j)− logµt(j)], xt(j) > 0 (2.11)

Conditional Poisson with µt(j) is defined by

p(xt(j) | xt−1(t(j))) = [xt(j)!]−1 exp[xt(j) logµt(j)− µt(j)], xt(j) = 0, 1, 2, . . . (2.12)

In order to identify the ancestral path of the observation xt(j), we use the notation

{xt−i(t(j)), i = 0, 1, 2, . . . , t} (2.13)

where xt−i(t(j)) represents i-th ancestor of xt(j) with the understanding that xt(t(j)) = xt(j). Note that x0(t(j)) = x0(1)
for any t(j), i.e., for any t and j. It follows from Markovity Assumption (A.1) that {xt−i(t(j)), i = 0, 1, 2, . . . , t} constitutes a
Markov process with transition density appearing in (A.1). It will be assumed that
(C.1) The Markov process {xt−i(t(j)), i = 0, 1, 2, . . . , t} is strictly stationary and ergodic.
For sufficient conditions ensuring (C.1), refer to, among others, [14–16]. In particular, see [12] for simple but readily

applicable conditions for (C.1) in the context of CLAR(1) class. Notice that the ergodic(stationary) distribution remains the
same for all ancestral paths.

Lemma 2.1. Under (C.1), for any fixed k = 0, 1, 2, . . . , and for any t, s, j, and u

(Xt(t(j)), Xt−1(t(j)), . . . , Xt−k(t(j)))
d
= (Xs(s(u)), Xs−1(s(u)), . . . , Xs−k(s(u))) . (2.14)

Here ‘ d=’ is used for ‘equality in distribution’.

Proof. The lemma follows from the strict stationarity along with any ancestral paths with starting value X0(1). �

In particular, for k = 0, we have Xt(j)
d
= Xs(u), for any t, s, j and u. Taking k = 1, (2.14) reduces to

(Xt(t(j)), Xt−1(t(j)))
d
= (Xs(s(u)), Xs−1(s(u))) . (2.15)

Consequently, Eq. (2.14) can be viewed as a joint-distributional property of the pathwise stationarity of the BMPmodel along
with any particular ancestral path. It is however stressed that BMP may not be stationary in the usual sense. From now on,
probabilistic statements such as E(·) and Var(·) will be made under the pathwise stationary distribution. The covariance
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between the two generations t and t − k, k ≥ 0, is denoted by γk given by γk = Cov(Xt(j), Xt−k(t(j))). Accordingly, the
correlation coefficient ρ1 between adjacent generations is obtained by

ρ1 = γ1/γ0 (2.16)
where γ0 = Var(Xt(j)).
In the next two sections, we will derive a strong law of large numbers (SLLN) and a central limit theorem (CLT) which

will be of use in statistical inference for the BMP models.

3. A law of large numbers for BMPmodels

Consider a real-valued random function f (Xt(j), Xt−1(t(j))) of Xt(j) and its immediate parent Xt−1(t(j)). It will be shown
that (

n∑
t=1

Zt

)−1 n∑
t=1

Zt∑
j=1

f (Xt(j), Xt−1(t(j)))
a.s.
−→ µf (3.1)

where
µf = E [f (Xt(j), Xt−1(t(j)))] (3.2)

In what follow, the double (random) summation
∑∑

will be used for denoting
∑n
t=1
∑Zt
j=1 unless indicated otherwise.

Denote for simplicity
ft(j) = f (Xt(j), Xt−1(t(j))) (3.3)

and therefore µf = Eft(j). Consider first the sample average over the n-th generation defined by

An = (Zn)−1
Zn∑
j=1

fn(j) (3.4)

consisting of the random sum of Zn-variates ; fn(1), . . . , fn(Zn). Consider an arbitrary realization of Z1 = c1, Z2 =
c2, . . . , Zn = cn, . . . . It follows from (2.1) that cn/mn converges to a positive constant as n → ∞. We will approximate
An by Ãn obtained by replacing Zn by cn, i.e.,

Ãn = c−1n
cn∑
j=1

fn(j) (3.5)

To proceed, we are willing to rule out the case where a single individual dominates the next generation by imposing the
condition below.
(C.2) Among c2n -possible pairs of (Xn(u), Xn(v)) , u, v = 1, . . . , cn, let τn be the number of pairs sharing the same immediate
parent belonging to (n− 1)-th generation. Assume that

τn = O
(
c2−δn

)
for some δ > 0 (3.6)

where O(·) denotes standard ‘big O’ notation, i.e., an = O(bn)when {an} is at most of order {bn}.

Remarks. Bifurcating model for which cn = 2n identifies τn = cn + cn−1. For m-splitting case where cn = mn for which m
is an integer greater than of equal to 2, one may obtain

τn = cn +
(m
2

)
cn−1

and thus one can choose δ = 1 in (C.2).

Lemma 3.1. Under (C.1) and (C.2) plus Ef 2n (j) <∞, we have as n→∞,

Ãn
a.s.
−→ µf (3.7)

Proof. Write

Ãn = ˜An1 + ˜An2
where

˜An1 = c−1n
cn∑
j=1

{fn(j)− E(fn(j) | Fn−1)}

and

˜An2 = c−1n
cn∑
j=1

E (fn(j) | Fn−1) .
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For ˜An1, notice that {fn(j)− E(fn(j) | Fn−1), j = 1, . . . , cn} constitutes a sequence of martingale differences for each fixed n.
Thus E ˜An1 = 0 and

Var
(
˜An1
)
= c−2n

cn∑
j=1

Var{fn(j)− E (fn(j) | Fn−1)}. (3.8)

Observe also that

Var{fn(j)− E(fn(j) | Fn−1)} = E [Var(fn(j) | Fn−1)]
≤ Var(fn(j)) <∞, due to Ef 2n (j) <∞.

Accordingly, Var( ˜An1) = c−1n Var{fn(1)− E(fn(1) | Fn−1)} = O(c
−1
n ) and in turn implies via Borel–Cantelli’s lemma that

˜An1
a.s.
−→ 0 (3.9)

since cn = ωmn for some ω > 0 andm > 1. It then suffices to verify that

˜An2
a.s.
−→ µf . (3.10)

Consider

˜An2 − µf = c−1n
cn∑
j=1

[E(fn(j) | Fn−1)− µf ]

= c−1n
cn∑
j=1

∆n(j), ∆n(j) = E(fn(j) | Fn−1)− µf . (3.11)

Note that∆n(j) ∈ Fn−1 and E(∆n(j)) = 0. Now,

Var

(
cn∑
j=1

∆n(j)

)
=

cn∑
u=1

cn∑
v=1

E (∆n(u)∆n(v)) . (3.12)

Let

e(u, v) = E(∆n(u)∆n(v) | Fn−2), u, v = 1, . . . , cn. (3.13)

It then follows from the conditional independence assumption (A.2) that e(u, v) reduces to zero unless u and v shares the
same immediate parent in Fn−1. It then follows from (C.2) that

Var

((
cn∑
j=1

∆n(j)

))
= O(cn2−δ)

and in turn

Var( ˜An2) = O(c−δn )

= O(m−δn), δ > 0.

Thus, by notingm > 1, this implies (3.10) due to Borel–Cantelli’s lemma, completing the proof. �

We are now in a position to present a strong law of large numbers for BMP models.

Theorem 3.1. Under the same conditions as for Lemma 3.1, we have as n→∞,

(i) An
a.s
−→ µf

(ii) The SLLN specified in (3.1) holds.

Proof. Let

Z = {Z1 = c1, Z2 = c2, . . . , Zn = cn, . . .}

where the sequence {cn} of constants is an arbitrary realization of Z ’s appearing in Ãn. Consider the conditional probability

P
(
An → µf | Z

)
which is equivalent to

P
(
Ãn → µf | Z

)
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which in turn reduces to P
(
Ãn → µf

)
due to the independence between {Zt} and {Xt(j)}. Consequently, Lemma 3.1 gives

P
(
An → µf | Z

)
= 1 (3.14)

for any arbitrary realization of Z ’s. By taking expectation on both sides of (3.14), we obtain the assertion (i). For verifying
(ii), write(

n∑
t=1

Zt

)−1∑∑
ft(j) =

(
n∑
t=1

Zt

)−1 n∑
t=1

ZtAt (3.15)

where At = (Zt)−1
∑Zt
j=1 ft(j) is a sample average over the t-th generation. Since Zt

a.s
−→∞, as t →∞, employing Toeplitz

lemma (cf. [17]), (i) implies that the term in (3.15) converges to µf (a.s.). This concludes (ii). �

Due to Theorem 3.1, the stationary mean(µX ) and variance(σ 2X ) of the BMPmodel can be consistently estimated by their
sample counterparts. The sample mean X̄ and sample variance S2X are defined respectively by

X̄ =

(
n∑
t=1

Zt

)−1∑∑
Xt(j) (3.16)

and

S2X =

(
n∑
t=1

Zt

)−1∑∑(
Xt(j)− X̄

)2
. (3.17)

It then readily follows fromTheorem3.1 that X̄
a.s
−→ µX and S2X

a.s
−→ σ 2X . In addition, the correlationρ1 between two adjacent

generations (see (2.16)) can be consistently estimated by the sample correlation coefficient ρ̂1 defined by

ρ̂1 =
∑∑(

Xt(j)− X̄
) (
Xt−1(t(j))− X̄

)
/S2X .

In the next sectionwewill establish a CLTwhichwill be useful in deriving asymptotic distributions of parameter estimators.

4. A central limit theorem for BMPmodels

Consider the random sum defined by

Sn =

(
n∑
t=1

Zt

)−1/2 n∑
t=1

Zt∑
j=1

Dt(j) (4.1)

where
Dt(j) = ft(j)− E (ft(j) | Ft−1) , t = 1, 2, . . . , n

with
ft(j) = f (Xt(j), Xt−1(t(j)))

defined in (3.3). To begin with, we will deal with a non-random sum version of Sn. Specifically, consider again a sequence of
constants {cn} such that Z1 = c1, Z2 = c2, . . . , Zn = cn. Define

S̃n =

(
n∑
t=1

ct

)−1 n∑
t=1

ct∑
j=1

Dt(j) (4.2)

where cn/mn converges to a positive constant. Notice that {Sn} is regarded as a sequence of randomly selected partial sums
associated with {S̃n}. Billingsley [18, p. 143] discussed conditions under which randomly selected partial sum Sn converges
in distribution to the same limiting distribution as for the non-random sum S̃n. It is then natural to expect that Sn and S̃n
are asymptotically equivalent (in distribution) as addressed in the following lemma. It is remarked that the case of only one
random selection is discussed in [18, p. 143] whereas n random selections Z1, . . . , Zn are involved with Sn in (4.1).

Lemma 4.1. If S̃n
d
−→ N(0,Var(Dt(j))), as n→∞, then

Sn
d
−→ N(0,Var(Dt(j))) (4.3)

where Var(Dt(j)) <∞ is assumed.
Proof. Notice that for each fixed−∞ < x <∞

P(Sn ≤ x | Z1 = c1, . . . , Zn = cn) = P(S̃n ≤ x | Z1 = c1, . . . , Zn = cn)

= P(S̃n ≤ x)
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which is due to the independence between {Zt} and {Xt(j)}. Since P(S̃n ≤ x) converges to Φ(x) where Φ(x) denotes the
distribution function of normal random variate with mean zero and variance given by Var(Dt(j))we have as n→∞

P(Sn ≤ x | Z1 = c1, . . . , Zn = cn)→ Φ(x), −∞ < x <∞. (4.4)

Employing bounded convergence theorem, taking expectation on both sides of (4.4), we conclude (4.3), completing the
proof. �

For analyzing S̃n, we first relabel the data in a linear fashion in such a way that
X1(1) = U1, X1(2) = U2, . . . , X1(c1) = Uc1
X2(1) = Uc1+1, . . . , . . . , X2(c2) = Uc1+c2
Xn(1) = Uc1+···+cn−1+1, . . . , . . . , Xn(cn) = Uc1+···+cn .

Notice that
Ul = Xt(j) (4.5)

for which

l =
t−1∑
i=1

ci + j, t = 1, . . . , n, j = 1, . . . , ct . (4.6)

Denote N = c1 + . . . + cn so that total N observations {U1, . . . ,UN} are available. Define σ -field Bl associated with
{Ul, l = 1, . . . ,N} as

Bl = σ(U1, . . . ,Ul).

Now, S̃n in (4.2) can be written in terms of U ’s as

S̃n = N−1/2
N∑
l=1

Dl

where
Dl = Dt(j) = ft(j)− E (ft(j) | Ft−1) (4.7)

with l given by (4.6). Here Dt(j) is treated as a function of U ’s and notice that Bl−1 = Ft−1 due to Markovity Assumption
(A.1). Accordingly, {Dl} is a martingale difference sequence with respect to {Bl}. We now present the asymptotic normality
of Sn defined in (4.1).

Theorem 4.1. Under the same conditions as for Theorem 3.1, we have

Sn
d
−→ N(0,Var(Dt(j))), n→∞.

Proof. If suffices to verify (due to Lemma 4.1) that

S̃n
d
−→ N(0,Var(Dt(j))). (4.8)

Since n → ∞ is equivalent to N → ∞, we write S̃N = S̃n. The sum of conditional variances associated with S̃N can be
written as follows.

N−1
n∑
l=1

Var(Dl | Bl−1) =

(
n∑
t=1

ct

)−1 n∑
t=1

ct∑
j=1

Var(Dt(j) | Ft−1)

a.s.
−→ E [Var(Dt(j)) | Ft−1] = Var[Dt(j)] (4.9)

where ‘
a.s.
−→’ holds due to Theorem 3.1 (SLLN). Also, the relevant Lindeberg condition is satisfied. To see this, consider, for a

given ε > 0

N−1
N∑
l=1

E
(
|Dl|2I[

|Dl|>ε
√
N
]) . (4.10)

Since D1, . . . ,DN are identically distributed and ED2l < ∞, we conclude that (4.10) goes to zero. Thus, together with (4.9),
key conditions for a martingale CLT due to [19] are satisfied, yielding (4.8). This completes the proof. �

The random norm in Sn enables us to obtain asymptotic normality of Sn. If Zt is replaced by its expectation E(Zt) = mt ,
we obtain instead a variance mixture of normals. Consider S∗n defined by

S∗n =

(
n∑
t=1

mt
)−1/2 n∑

t=1

Zt∑
j=1

Dt(j).
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Corollary 4.1. Under the same conditions as for Theorem 4.1, as n→∞,

S∗n
d
−→ W 1/2 · N(0,Var(Dt(j))) (4.11)

where W denotes the almost sure limit of Zn/mn defined in Proposition 2.1.

Proof. Note that

Z1 + · · · + Zn ∼

(
n∑
t=1

mt
)
W (a.s.) (4.12)

Corollary follows by combining Theorem 4.1 and Eq. (4.12). �

In particular, for bifurcating model, note that Zt = 2t andW = 1 (a.s.) and thus (4.11) reduces to

(
2n+1

)−1/2 n∑
t=1

2t∑
j=1

Dt(j)
d
−→ N(0,Var(Dt(j))). (4.13)

As an application of Theorem 4.1, consider the following innovation process {et(j); t = 1, . . . , n, j = 1, . . . , Zt} defined
by

et(j) = [Xt(j)− µt(j)] /
√
vt(j) (4.14)

where µt(j) and vt(j) are respectively conditional mean and variance of Xt(j). B-AR(1) model in Ex.1 gives µt(j) =
β0 + β1Xt−1(t(j)) and vt(j) = σ 2ε . For a conditional exponential model with µt(j) in (2.11), it is seen that vt(j) = [µt(j)]

2.
It can be readily shown that E(et(j) | Ft−1) = 0 and Var(et(j) | Ft−1) = 1 and thus E(et(j)) = 0 and Var(et(j)) = 1. In
addition, it follows from (A.2) that Cov(et(j), es(u)) vanishes unless t = s and j = u. Consequently {et(j)} is a white noise
process with mean zero and variance unity.
By setting et(j) = Dt(j) in (4.1), Theorem 4.1 reduces to(

n∑
t=1

Zt

)−1/2∑∑
et(j)

d
−→ N(0, 1) (4.15)

which facilitates the usage of the standard normal distribution for approximating the distribution of
∑∑

et(j). One may
expect with confidence level 0.95 that

∑∑
et(j) lies in the random interval−1.96

√√√√ n∑
t=1

Zt , 1.96

√√√√ n∑
t=1

Zt

 (4.16)

for large n. Accordingly it will be inappropriate to use a BMP model when
∑∑

et(j) falls outside of the interval (4.16).

5. Applications to parameter estimation

We now consider some examples to illustrate the models and limit theorems addressed in previous sections. Least
squares, quasilikelihood and maximum likelihood estimation for model parameters are discussed.

5.1. Least squares estimation

Recall the branching-AR(1) process defined in Ex.1 by

Xt(j) = β0 + β1Xt−1(t(j))+ εt(j), |β1| < 1. (5.1)

Repeated application of the recursive equation (5.1) leads to the stationary solution

Xt(j) =
∞∑
k=0

βk1(β0 + εt−k(t(j))) (5.2)

where εt−k(t(j)) represents iid errors corresponding to Xt−k(t(j)) for k < t , and we set εt−k(t(j)) = εt−k(1) for all k ≥ t
with the understanding that ε0(1), ε−1(1), ε−2(1), . . . , are iid. It is easy to verify from (5.2) that the stationary moments
are given by

µX = β0(1− β1)−1, σ 2X = σ
2
ε /(1− β

2
1 )



1164 S.Y. Hwang, I.V. Basawa / Journal of Multivariate Analysis 100 (2009) 1155–1167

and

γk = Cov(Xt(j), Xt−k(t(j))) = βk1σ
2
X , k ≥ 0 (5.3)

It can further be verified that the sequence of random variables along any ancestral path {Xt−k(t(j)), k = 0, 1, 2, . . . , t}
with X0(t(j)) = X0(1) satisfies (C.1) of Section 2. As a direct consequence of Theorem 3.1, we have as n → ∞, X̄

a.s.
−→ µ

and S2X
a.s.
−→ σ 2X where X̄ and S

2
X are respectively sample mean and variance defined (3.16) and (3.17). Furthermore, it can be

shown that γ̂k
a.s.
−→ γk where γ̂k denotes sample autocovariance of generation-lag k, defined by

γ̂k =

(
n∑
t=1

Zt

)−1 n∑
t=k+1

Zt∑
j=1

(Xt(j)− X̄)(Xt−k(t(j))− X̄), k ≥ 0.

Denote by (β̂0, β̂1) the least squares (LS) estimates of (β0, β1) based on the sample

{Zt , Xt(j); t = 0, 1, . . . , n, j = 1, . . . , Zt}.

Define

An =

( ∑
Zt

∑∑
Xt−1(t(j))∑∑

Xt−1(t(j))
∑∑

X2t−1(t(j))

)
,

Bn =

( ∑∑
εt(j)∑∑

εt(j)Xt−1(t(j))

) (5.4)

where εt(j) = Xt(j)− β0 − β1Xt−1(t(j)). Here and in what follow
∑
is used for

∑n
t=1 for simplicity of notation. Also

∑∑
denotes

∑n
t=1
∑Zt
j=1 unless stated otherwise. It is seen that(

β̂0

β̂1

)
= A−1n

( ∑∑
Xt(j)∑∑

Xt(j)Xt−1(t(j))

)
. (5.5)

Limiting distribution of LS estimators (β̂0, β̂1) is identified in the next theorem.

Theorem 5.1. As n→∞, we have

(i)
(∑
Zt
)−1 An a.s.

−→ A =
(
1 µX

µX γ (0)+ µ2X

)
(ii)

(∑
Zt
)−1/2 Bn d

−→ N(0, σ 2ε A)

and hence

(iii) (∑
Zt
)1/2 (β̂0 − β0

β̂1 − β1

)
d
−→ N(0, σ 2ε A

−1). (5.6)

Proof. Assertion (i) is immediate from the SLLN of Theorem 3.1. To verify (ii), let a = (a1, a2)T denote non-zero vector of
constants. Consider

aTBn =
∑∑

εt(j)[a1 + a2Xt−1(t(j))].

Choose Dt(j) = εt(j)[a1 + a2Xt−1(t(j))] in Theorem 4.1 (CLT) to get(∑
Zt
)−1/2

aTBn
d
−→ N(0,Var(Dt(j))) (5.7)

where

Var(Dt(j)) = σ 2ε (a
TAa). (5.8)

Thus, via the Cramer–Wold device, (ii) follows from (5.7) and (5.8). Write(∑
Zt
)1/2 (β̂0 − β0

β̂1 − β1

)
=

[(∑
Zt
)−1
An

]−1 [(∑
Zt
)−1/2

Bn

]
which implies (iii) using (i) and (ii). �
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Since
∑
Zt ∼

(
mn+1
m−1

)
W , we also have

(
mn+1

m− 1

)1/2 (
β̂0 − β0

β̂1 − β1

)
d
−→ W−1/2N(0, σ 2ε A

−1). (5.9)

Note that the limit distribution in (5.9) is a mixture of bivariate normals. The results in (5.6) and (5.9) give the limit
distribution of the least squares estimators using a random and a non-random norm, respectively.

5.2. Quasilikelihood estimation

Consider a process {Xt(j)} specified only by its conditional mean and conditional variance, viz.,

µtj(β) = E (Xt(j) | Xt−1(t(j))) = β0 + β1Xt−1(t(j))

and

vtj(β) = Var (Xt(j) | Xt−1(t(j)))

whereµtj(β) and vtj(β) are used instead ofµt(j) and vt(j) respectively, in order to emphasize dependency on the parameter
vector β . Grunwald et al. [12] have discussed several examples of models of this kind for standard Markov processes. These
examples can be readily extended to the BMP models. Note that the AR-structure (5.1) is not required for this class of
models. The class includes random coefficient AR(1) and binomial thinning process. See (2.8) and (2.9). In many interesting
applications, the conditional variance vtj(β) is a quadratic function of the conditional mean µtj(β). See [12] for further
details. Here we illustrate the application of our results to quasilikelihood estimation of β for the special case of the first-
order B-CLAR(1) process with µtj(β) = β0 + β1Xt−1(t(j)). The quasilikelihood estimating equation for β is given by∑∑

v−1tj (β)

(
∂µtj(β)

∂β

) (
Xt(j)− µtj(β)

)
= 0. (5.10)

See, for instance, [20] for background on quasilikelihood estimation. The least squares estimating equation for β is given by∑∑(
∂µtj(β)

∂β

) (
Xt(j)− µtj(β)

)
= 0. (5.11)

For the B-CLAR(1) model, the least squares estimates of β0 and β1 are given by (5.5).
Consider a modified quasilikelihood estimating equation defined by∑∑

v−1tj (β̂)

(
∂µtj(β)

∂β

) (
Xt(j)− µtj(β)

)
= 0 (5.12)

where β̂ denotes the least squares estimate of β given by (5.5). Then, for B-CLAR(1) class, (5.12) gives the (modified)
quasilikeilhood estimates(

β̃0

β̃1

)
=

(∑∑
v−1tj (β̂)

∑∑
v−1tj (β̂)Xt−1(t(j))∑∑

v−1tj (β̂)Xt−1(t(j))
∑∑

v−1tj (β̂)X
2
t−1(t(j))

)( ∑∑
v−1tj (β̂)Xt(j)∑∑

v−1tj (β̂)Xt(j)Xt−1(t(j))

)
. (5.13)

Following similar arguments as for Section 5.1, one can derive the limit distribution of the (modified) quasilikelihood
estimates given by

Theorem 5.2. As n→∞, we conclude(∑
Zt
)1/2 (β̃0 − β0

β̃1 − β1

)
d
−→ N(0, B−1) (5.14)

where the elements b11, b12 and b22 are determined by(∑
Zt
)−1∑∑

v−1tj (β)
a.s.
−→ b11(∑

Zt
)−1∑∑

v−1tj (β)Xt−1(t(j))
a.s.
−→ b12(∑

Zt
)−1∑∑

v−1tj (β)X
2
t−1(t(j))

a.s.
−→ b22.
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It will be useful to identify b’s for a specific example, say, random coefficient AR(1) process defined in (2.8) for which
E(βt) = β1 and Var(βt) = σ 2β . Then, vtj(β) = σ

2
βX
2
t−1(t(j))+ σ

2
ε and in turn b11 = E

[
v−1tj (β)

]
, b12 = E

[
v−1tj (β)Xt−1(t(j))

]
and b22 = E

[
v−1tj (β)X

2
t−1(t(j))

]
. In particular when βt degenerates at β1, i.e., σ 2β = 0, note that B reduces to σ

−2
ε A appearing

in Theorem 5.1. For the binomial thinning model presented in (2.9), one can use for obtaining B,

vtj(β) = β1(1− β1)X2t−1(t(j))+ σ
2
ε , 0 < β1 < 1

where β1 represents the success probability associated with the sequence of iid Bernoulli random variables.
Note that one can replace the random norm in (5.14) by the non-random norm as in (5.9) to get a mixture of bivariate

normals as the limit distribution.

5.3. Maximum likelihood estimation

First, consider the general branching Markov process {Zt , Xt(j)} defined by (A.1) and (A.2) in Section 2. Suppose the
transition density p(xt(j) | xt−1(t(j))) depends on a parameter vector β . It follows from (A.1) and (A.2) that the likelihood
function based on the sample {Zt , Xt(j); t = 1, . . . , n, j = 1, . . . , Zt} is given by

Ln(β) = p(x0(1))
n∏
t=1

[
p(zt | zt−1)

zt∏
j=1

pβ(xt(j) | xt−1(t(j)))

]
. (5.15)

The likelihood score function ln(β) is given by

ln(β) = ∂ log Ln(β)/∂β =
∑∑

∂ log pβ(xt(j) | xt−1(t(j)))/∂β (5.16)

since p(zt | zt−1) does not depend on β . We now suppose that the transition density belongs to a conditional exponential
family having density specified in (2.10) of Ex.3. It is noted thatµt(j) and vt(j) can be obtained by successive differentiation
of k(·), viz.,

µt(j) = ∂k/∂ηt(j) and vt(j) = ∂2k/∂η2t (j) = ∂µt(j)/∂ηt(j).

The conditional exponential family includes a large number of examples such as conditional Poisson, gamma, beta, normal,
etc. Refer to [21] for a background on conditional exponential families. The likelihood score function reduces to

ln(β) =
∑∑

v−1t (j)
(
∂µt(j)
∂β

)
(Xt(j)− µt(j)). (5.17)

Note that the likelihood score here has the same form as the quasilikelihood score given in (5.10), due to the special structure
of the conditional exponential family. It is assumed that µt(j) (and hence vt(j)) is a function of a parameter vector β and
then use the notationµtj(β) and vtj(β) forµt(j) and vt(j). The conditional information matrix Fn(β) corresponding to ln(β)
in (5.17) is given by

Fn(β) =
∑∑(

∂µtj(β)

∂β

)(
∂µtj(β)

∂β

)T
v−1tj (β). (5.18)

One can readily show that by Theorem 3.1, as n→∞(∑
Zt
)−1
Fn(β)

a.s.
−→ F(β) (5.19)

where F(β) = E
[(

∂µtj(β)

∂β

) (
∂µtj(β)

∂β

)T
v−1tj (β)

]
which is assumed to be positive definite. Furthermore, by Theorem 4.1, it

can be verified that(∑
Zt
)−1/2

ln(β)
d
−→ N(0, F(β)). (5.20)

Under regularity conditions similar to those in [22], Theorem 2.1), one can establish that with probability tending to one,
there exists a consistent solution β̂ML of the likelihood equation ln(β) = 0.Weare now in aposition to address the asymptotic
distribution of β̂ML.

Theorem 5.3. As n→∞, we have

(i)
(∑
Zt
)1/2

(β̂ML − β)
d
−→ N(0, F−1(β))

(ii)
(
mn+1
m−1

)1/2
(β̂ML − β)

d
−→ W−1/2N(0, F−1(β)).
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Proof. Using Taylor’s expansion of ln(β) about β = β̂ML, one can obtain(∑
Zt
)1/2

(β̂ML − β) =

[(∑
Zt
)−1
Fn(β)

]−1 [(∑
Zt
)−1/2

ln(β)
]
+ op(1)

where op(1) denotes a term converging to zero in probability. The result (i) follows by (5.19) and (5.20). Note that
∑
Zt ∼(

mn+1
m−1

)
W (a.s.), leading to (ii). �

It is worth mentioning that the BMPmodel possesses the local asymptotic mixed normality (LAMN) in the sense that the
asymptotic distribution of the maximum likelihood estimator is a mixture of normals as in (ii) of Theorem 5.3 and therefore
BMPmodel belong to the non-ergodic class of stochastic processes due to [23]. Statistical applications on this aspect is now
under investigation and will be addressed elsewhere.
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