Matrix Extensions of Liouville-Dirichlet-Type Integrals

Ingram Olkin

Department of Statistics
Stanford University
Stanford, California 94305
To A. S. Householder on his seventy-fifth birthday.

Submitted by Emeric Deutsch

Abstract

The Dirichlet integral provides a formula for the volume over the k-dimensional simplex $\omega=\left\{x_{1}, \ldots, x_{k}: x_{i} \geqslant 0, i=1, \ldots, k, s \leqslant \Sigma_{1}^{k} x_{i} \leqslant T\right\}$. This integral was extended by Liouville. The present paper provides a matrix analog where now the region becomes $\Omega=\left\{V_{1}, \ldots, V_{k}: V_{i}>0, i=1, \ldots, k, 0 \leqslant \Sigma V_{i} \leqslant t\right\}$, where now each V_{i} is a $p \times p$ symmetric matrix and $A \geqslant B$ means that $A-B$ is positive semidefinite.

1. INTRODUCTION

The well-known Dirichlet integral provides a formula for the volume over the k-dimensional simplex

$$
\omega=\left\{x_{1}, \ldots, x_{k}: x_{i} \geqslant 0(i=1, \ldots, k), s \leqslant \sum x_{i} \leqslant t\right\} .
$$

This integral was extended by Liouville:

$$
\begin{equation*}
\int_{\omega} f\left(\sum_{1}^{k} x_{i}\right) \prod_{1}^{k} x_{i}^{a_{i}-1} \Pi d x_{i}=\frac{\prod_{1}^{k} \Gamma\left(a_{i}\right)}{\Gamma\left(\sum a_{i}\right)} \int_{s}^{t} f(z) z^{\sum a_{i}-1} d z \tag{1.1}
\end{equation*}
$$

where $f(x)$ is continuous and $a_{j}>0, j=1, \ldots, k$. The case $f(x) \equiv 1$ is the Dirichlet integral. For a general discussion of such integrals see [1].

The integral (1.1) has been generalized in several directions. Sivazlian [4] provides the following extension: Let $f(x)$ be continuous, a_{i}
$b_{i}>0(j=1, \ldots, l)$, and
$\omega_{1}=\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{l}: 0<x_{i}(i=1, \ldots, k), 0<y_{i}(j=1, \ldots, l), \Sigma x_{i}+\Sigma y_{i} \leqslant t\right\}$.
Then

$$
\begin{align*}
& \int_{\omega_{1}} f\left(\sum_{1}^{k} x_{i}\right) \prod_{1}^{k} x_{i}^{a_{i}-1} \prod_{1}^{l} y_{i}^{b_{i}-1} \prod_{1}^{k} d x_{i} \prod_{1}^{l} d y_{i} \\
&=\frac{\prod_{1}^{k} \Gamma\left(a_{i}\right) \prod_{1}^{l} \Gamma\left(b_{i}\right)}{\Gamma\left(\sum_{1}^{k} a_{i}\right) \Gamma\left(\sum_{1}^{l} b_{i}+1\right)} \int_{0}^{t} f(z) z^{\Sigma a_{i}-1}(t-z)^{\Sigma b_{i}} f(z) d z \tag{1.2}
\end{align*}
$$

Klamkin [2] and Sivazlian [5] offer several extensions of (1.2). The following is the simplest of these: if $f(x)$ and $g(x)$ are continuous, $a_{i}>0(i=1, \ldots, k)$, $b_{i}>0(j=1, \ldots, l)$, then

$$
\begin{align*}
& \int_{\omega_{1}} f\left(\sum_{1}^{k} x\right) g\left(\sum_{1}^{l} y\right) \prod_{1}^{k} x_{i}^{a_{i}} \prod_{1}^{l} y_{i}^{b_{i}-1} \prod_{1}^{k} d x_{i} \prod_{1}^{l} d y_{i} \\
& \quad=\frac{\prod_{1}^{k} \Gamma\left(a_{i}\right)}{\Gamma\left(\sum_{1}^{k} a_{i}\right) \Gamma\left(\sum_{1}^{l} b_{i}\right)} \int_{0<v<w<t} f(v) g(w) v^{\Sigma a_{i}-1}(t-w)^{\Sigma b_{i}-1} d v d w . \tag{1.3}
\end{align*}
$$

A different type of generalization of (1.1) was obtained by Olkin [3], where now the integrand is extended to scalar functions of matrices. Such integrals arise quite naturally in statistical multivariate analysis.

In the matrix version the matrices are symmetric of dimension p. We write $A \geqslant B$ and $A>B$ to mean that $A-B$ is positive semidefinite and positive definite, respectively, and denote the determinant of A by $|A|$.

If $f(X)$ is a continuous scalar function of the $p \times p$ symmetric matrix X, $a_{i}>(p-1) / 2(i=1, \ldots, k)$, and

$$
\Omega=\left\{V_{1}, \ldots, V_{k}: V_{i}>0(i=1, \ldots, k), A \leqslant \Sigma V_{i} \leqslant B\right\},
$$

then

$$
\begin{align*}
\int_{\Omega} f\left(\sum_{1}^{k} V_{i}\right) & \prod_{1}^{k}\left|V_{i}\right|^{a_{i}-(p+1) / 2} \prod_{1}^{k} d V_{i} \\
& =\prod_{j=2}^{k} B_{p}\left(a_{1}+\cdots+a_{i-1}, a_{j}\right) \int_{A<Z<B} f(Z)|Z|^{\Sigma a_{i}-(p+1) / 2} d Z \tag{1.4}
\end{align*}
$$

where

$$
B_{p}(m, n)=\frac{\Gamma_{p}(m) \Gamma_{p}(b)}{\Gamma_{p}(m+n)}, \quad \Gamma_{p}(m)=\pi^{p(p-1) / 4} \prod_{1}^{p} \Gamma\left(m-\frac{i-1}{2}\right)
$$

The result (1.4) is proved in [3]. In the present note we obtain matrix analogs, in the spirit of (1.4), of the integrals (1.2) and (1.3).

2. MATRIX ANALOGS OF LIOUVILLE-DIRICHLET TYPE INTEGRALS

The extension of (1.2) is given in the following

Theorem 1. If V_{1}, \ldots, V_{k} are $p \times p$ symmetric matrices, $f(V)$ is a continuous scalar function of the symmetric matrix $V, a_{i}>(p-1) / 2(i=$ $1, \ldots, n), b_{i}>(p-1) / 2(j=1, \ldots, l)$, and

$$
\begin{aligned}
\Omega_{1}= & \left\{V_{1}, \ldots, V_{k}, W_{1}, \ldots, W_{l}: V_{i}>0(i=1, \ldots, k), W_{i}>0(j=1, \ldots, l),\right. \\
& \left.0 \leqslant \sum_{1}^{k} V_{i}+\sum_{1}^{l} W_{i} \leqslant T\right\},
\end{aligned}
$$

then

$$
\begin{align*}
& \int_{\Omega_{1}} f\left(\sum_{1}^{k} V_{i}\right) \prod_{1}^{k}\left|V_{i}\right|^{a_{i}-(p+1) / 2} \prod_{1}^{l}\left|W_{i}\right|^{b_{i}-(p+1) / 2} \prod_{1}^{k} d V_{i} \prod_{1}^{l} d W_{i} \\
&=\prod_{i=2}^{k} B_{p}\left(a_{1}+\cdots+a_{i-1}, a_{i}\right) \prod_{i=2}^{l} B_{p}\left(b_{1}+\cdots+b_{j-1}, b_{i}\right) \\
& B_{p}\left(\sum_{1}^{l} b_{1}, \frac{p+1}{2}\right) \int_{0<Z<T} f(Z)|Z|^{\Sigma a_{i}-(p+1) / 2}|T-Z|^{\Sigma b_{i}} d Z \tag{2.1}
\end{align*}
$$

Proof. The proof is based on using (1.4) twice. First integrating V_{1}, \ldots, V_{k} over the region $V_{i}>0(i=1, \ldots, k), 0 \leqslant \Sigma_{1}^{k} V_{i} \leqslant T-\Sigma_{1}^{l} W_{i}$, we obtain $\int f\left(\sum_{1}^{k} V_{i}\right) \prod_{1}^{k}\left|V_{i}\right|^{a_{i}-(p+1) / 2} \prod_{1}^{k} d V_{i}=c_{1} \int_{0<Z<T-\Sigma_{1}^{\prime} W_{i}} f(Z)|Z|^{\Sigma_{1}^{k} a_{i}-(p+1) / 2} d Z$,
where $c_{1}=\prod_{i-2}^{k} B_{p}\left(a_{1}+\cdots+a_{i-1}, a_{i}\right)$. Thus, the left-hand side of (2.1) becomes

$$
\begin{equation*}
c_{1} \int_{0<Z+\Sigma W_{i}<T} f(Z)|Z|^{\Sigma_{1}^{k} a_{i}-(p+1) / 2} \prod_{1}^{l}\left|W_{i}\right|^{b_{i}-(p+1) / 2} \prod_{1}^{l} d W_{i} d Z \tag{2.3}
\end{equation*}
$$

Again invoking (1.4), (2.3) becomes

$$
\begin{equation*}
c_{1} c_{2} \int_{0<Z+S<T} f(Z)|Z|^{\Sigma_{1}^{2} a_{1}-(p+1) / 2}|S|^{\Sigma_{1}^{\prime} b_{1}-(p+1) / 2} d S d Z \tag{2.4}
\end{equation*}
$$

where $c_{2}=\prod_{i=2}^{l} B_{p}\left(b_{1}+\cdots+b_{i-1}, b_{j}\right)$.
We now make a sequence of transformations in order to evaluate the integral

$$
\begin{equation*}
\int_{0<Z+S<T}|S|^{\Sigma b_{i}(p+1) / 2} d S . \tag{2.5}
\end{equation*}
$$

First, let $Z+S=H$ be a transformation from S to H, yielding

$$
\begin{align*}
\int_{Z<H<T} \mid H & -\left.Z\right|^{\Sigma b_{i}-(p+1) / 2} d H \\
& =\int_{Z<H<T}|Z|^{\Sigma b_{i}-(p+1) / 2}\left|Z^{-1 / 2} H Z^{-1 / 2}-I\right|^{\Sigma b_{i}-(p+1) / 2} d H \tag{2.6}
\end{align*}
$$

Now let $Z^{-1 / 2} H Z^{-1 / 2}=G$. Then $d H=|Z|^{(p+1) / 2} d G$, and we obtain

$$
\begin{equation*}
\int_{I<G<Z^{-1 / 2} T Z^{-1 / 2}}|Z|^{\Sigma b_{\|}}|G-I|^{\Sigma b_{i}-(p+1) / 2} d G \tag{2.7}
\end{equation*}
$$

Let $U=G-I$, and write $B=Z^{-1 / 2} T Z^{-1 / 2}-I$. Then (2.7) becomes

$$
\begin{equation*}
|Z|^{\Sigma b_{1}} \int_{0<U<B}|U|^{\Sigma b_{i}-(p+1) / 2} d U \tag{2.8}
\end{equation*}
$$

Finally, let $B^{-1 / 2} U B^{-1 / 2}=Y$, so that $d U=|B|^{(p+1) / 2} d Y$, and (2.8) becomes

$$
\begin{equation*}
|Z|^{\Sigma b_{i}|B|^{\Sigma b_{i}}} \int_{0<Y<I}|Y|^{\Sigma b_{i}-(p+1) / 2} d Y \tag{2.9}
\end{equation*}
$$

The integral in (2.9) is a matrix analog of the Beta function and was evaluated by Olkin [3]:

$$
\begin{equation*}
\int_{0<Y<I}|Y|^{c-(p+1) / 2}|I-Y|^{d-(p+1) / 2} d Y=B_{p}(c, d), \tag{2.10}
\end{equation*}
$$

so that (2.9) is equal to $|Z|^{\Sigma b_{i}|B|^{\Sigma b_{i}} B_{p}\left(\sum b_{i},(p+1) / 2\right) \text {. Combining (2.4) with }}$ (2.9) then yields the result.

A matrix extension of (1.3) can be obtained in a similar manner, namely, by a repeated application of (2.1). We state this result without proof.

Theorem 2. If f and g are continuous scalar functions of a symmetric matrix, then

$$
\begin{align*}
& \int_{\substack{0<V_{i} \\
0<W_{i} \\
0<\Sigma V_{i}+W_{i}<T}} f\left(\sum_{1}^{k} V_{i}\right) g\left(\sum_{1}^{l} W_{i}\right) \prod_{1}^{k}\left|V_{i}\right|^{a_{i}-(p+1) / 2} \prod_{1}^{l}\left|W_{i}\right|^{b_{i}-(p+1) / 2} \prod_{1}^{k} d V_{i} \prod_{1}^{l} d W \\
& =\prod_{1}^{k} B_{p}\left(a_{1}+\cdots+a_{i-1}, a_{i}\right) \\
& \quad \times \int_{\substack{0<W_{i} \\
0<X+\Sigma W_{i}<T}} f(X) g\left(\sum_{1}^{l} W_{i}\right)|X|^{\Sigma a_{i}-(p+1) / 2} \Pi\left|W_{i}\right|^{b_{i}-(p+1) / 2} d X \prod_{1}^{l} d W_{i} \\
& =\prod_{1}^{k} B_{p}\left(a_{1}+\cdots+a_{f-1}, a_{i}\right) \prod_{1}^{l} B_{p}\left(b_{1}+\cdots+b_{i-1}, h_{i}\right) \\
& \times \int_{0<X+Y<T} f(X) g(Y)|X|^{\Sigma a_{i}-(p+1) / 2}|Y|^{\Sigma b_{i}-(p+1) / 2} d X d Y . \tag{2.11}
\end{align*}
$$

Note that (2.11) is equivalent to (1.3) when $p=1$.
Matrix extensions of other integrals in [2] can be obtained in a similar manner.

REFERENCES

1 J. Edwards, A Treatise on the Integral Calculus, Vol. 2, Macmillan, New York, 1922.

2 M. S. Klamkin, Extensions of Dirichlet's multiple integral, SIAM J. Math. Anal. 2:467-469 (1971).
3 I. Olkin, A class of integral identities with matrix argument, Duke Math. J. 26:207-214 (1959).
4 B. D. Sivazlian, The generalized Dirichlet's multiple integral, SLAM Rev. 11:285288 (1969).
5 B. D. Sivazlian, A class of multiple integrals, SIAM J. Math. Anal. 2:72-75 (1971).
Received 9 September 1978; revised 10 October 1978

