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ABSTRACT 

The Dirichlet integral provides a formula for the volume over the k-dimensional 
simplexw=(r, ,..., rk: xii>, i=l,..., k, s < Zfx, < T}. This integral was extended by 
Liouville. The present paper provides a matrix analog where now the region becomes 
Q={V,,..., V,: V,>O, i-1 ,..., k, O<Zy<t}, where now each V, is a pXp 

symmetric matrix and A > B means that A - B is positive semidefinite. 

1. INTRODUCTION 

The well-known Dirichlet integral provides a formula for the volume 
over the k-dimensional simplex 

w= x { I)..., Xk:Xi>o(i=l )..., k),s<Cxp3}. 

This integral was extended by Liouville: 

where f(x) is continuous and aj>O, j=l....,k. The case f(X)=1 is the 
Dir&let integral. For a general discussion of such integrals see [l]. 

The integral (1.1) has been generalized in several directions. Sivazlian [4] 
provides the following extension: Let f(x) be continuous, ai 
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b,>O (i=l,...,Z), and 

Then 

l$uJ@(b,) 
=r($+(++1)~ tf(~)~““-‘(t-z)“bif(z)ds. (1.2) 

Klamkin [2] and Sivazlian [5] offer several extensions of (1.2). The following 
is the simplest of these: if f(r) and g(r) are continuous, ai >0 (i= 1,. . ., k), 
I+>0 (j=l,...,Z), then 

A different type of generalization of (1.1) was obtained by Olkin [3], 
where now the integrand is extended to scalar functions of matrices. Such 
integrals arise quite naturally in statistical multivariate analysis. 

In the matrix version the matrices are symmetric of dimension p. We 
write A > B and A >B to mean that A - I? is positive semidefinite and 
positive definite, respectively, and denote the determinant of A by ]A]. 

If f(X) is a continuous scalar function of the p X p symmetric matrix X, 
o*>(p-1)/2 (i=l,...,k), and 

9= { v,,..., V,:x>O(i=l,..., k),A<ZV$B}, 
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where 

Bp(m 
, 

g = rP(m)rP(b) 

ll,(m+n) ’ 

rP(m)=aP(P-w4 fir+ y). 
1 

The result (1.4) is proved in [3]. In the present note we obtain matrix 
analogs, in the spirit of (1.4), of the integrals (1.2) and (1.3). 

2. MATRIX ANALOGS OF LIOUVILLE-DIRICHLET TYPE 
INTEGRALS 

The extension of (1.2) is given in the following 

THEOREM 1. Zf V,,..., V, are pXp symmetric matrices, f(V) i.9 a 
continuous scalar function of the symmetric matrix V, a, > ( p - 1)/2 (i = 
1 ,..., n), $>(p-1)/2 (j=l,..., I), and 

SZ2,= V, ,,.., V,,W, ,..., W,:x>O(i=l,..., k), Wi>O(j=l ,..., I), 

then 

=jt2~p(ul+.-- +ql,aj) fi B,(b,+..* 
j-2 

+ bj-l’bj) 
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Proof, The proof is based on using (1.4) twice. First integrating 
V 1 ,..., V, over the regionVi>O (i=l,..., k), 0<$~<T-2~Wi, we obtain 

where c1 = I14=2Bp(a, + . * * i- uj_ 1, ai). Thus, the left-hand side of (2.1) be- 
comes 

Cl 
/ 

f(Z)IZ,~:4-(p+1)/2~,Wi,h.--(P+1)/2~dWidZ. (2.3) 
O<Z+ZWi<T 1 1 

Again invoking (1.4), (2.3) becomes 

ClC2 / o<z+s<P)‘z’ ~~ol-(p+1)/21s’x:b,-(p+1)/2dsdz, 
(2.4 

where c,=II~,~B~(~~+. * * +bi_l,bi). 
We now make a sequence of transformations in order to evaluate the 

integral 

First, let 2 + S = H be a transformation from S to H, yielding 

=: I ‘Q3-r(p+W’z -1453 -1/2_z’xb,-(P+1)/2dH. (2.6) 
ZtH<T 

Now let Z -l12HZ - ‘I2 = G. Then dH = (Z j(P+ ‘)I2 dG, and we obtain 
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Let U- G - I, and write B = Z - 1?C4 -I/’ - I. Then (2.7) becomes 

Finally, let B -‘&JB -‘I2 = Y, so that dU= IBJ(P+‘)/‘dY, and (2.8) becomes 

The integral in (2.9) is a matrix analog of the Beta function and was 

evaluated by Olkin [3]: 

J o<y<~Y~c-(p+1)/2~z- Yld-(P+‘)/2dY=Bp(c,d), (2.10) 

so that (2.9) is equal to IZIz~IB IxhBp(Cbi, (p + 1)/2). Combining (2.4) with 
(2.9) then yields the result. n 

A matrix extension of (1.3) can be obtained in a similar manner, namely, 
by a repeated application of (2.1). We state this result without proof. 

THEOREM 2. If f and g are continuous scalar functions Of a SpmtriC 

matrix, then 

i<v. j($ q)g( $ W,)~l~l~-(p+1)/2~,~l~-(P+1)~2~d~~d~ 

o<w, 
o<zv,+w,<T 

X 
J 

f(Wg 1x1 
Zq-(p+13/2~l~i,4--(p+1)/2dX~ dWi 

o<w, 1 
O<X+CW<T 

=$Bp(al+*-, 
1 

X 
s 

f(x)g(y)IxI~“-(P+‘)/2(y(C4-(‘+1)/2dXdY. 
O<X+Y<T 

(2.11) 
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Note that (2.11) is equivalent to (1.3) when p = 1. 

Matrix extensions of other integrals in [2] can be obtained in a similar 
manner. 
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