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The voltage-dependent anion channels (VDACs), VDAC1, VDAC2, and VDAC3, are pore-forming proteins that
control metabolite flux between mitochondria and cytoplasm. VDAC1 and VDAC2 have voltage-dependent gat-
ing activity, whereas VDAC3 is thought to have weak activity. The aim of this study was to analyze the channel
properties of all three human VDAC isoforms and to clarify the channel function of VDAC3. Bacterially expressed
recombinant human VDAC proteins were reconstituted into artificial planar lipid bilayers and their gating activ-
ities were evaluated. VDAC1 and VDAC2 had typical voltage-dependent gating activity, whereas the gating of
VDAC3 was weak, as reported. However, gating of VDAC3 was evoked by dithiothreitol (DTT) and S-
nitrosoglutathione (GSNO), which are thought to suppress disulfide-bond formation. Several cysteine mutants
of VDAC3 also exhibited typical voltage-gating. Our results indicate that channel gatingwas induced by reduction
of a disulfide-bond linking the N-terminal region to the bottom of the pore. Thus, channel gating of VDAC3might
be controlled by redox sensing under physiological conditions.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The voltage-dependent anion channels (VDACs),which are localized
in the mitochondrial outer membrane, are pore-forming proteins that
control the flux of metabolites between mitochondria and cytoplasm
(reviewed in [1]). Their conformational states are voltage-dependent
and exhibit different selectivities and permeabilities for small ions,
showing a preference for anions in the open state and for cations in
the closed state [2]. VDACs also play crucial roles in various cellular pro-
cesses, including the transfer of ADP and ATP [3], reactive oxygen spe-
cies (ROS) signaling [4], anchoring of hexokinases [5], and apoptosis
mediated by release of cytochrome c [6] or interactionwith Bcl-2 family
members [7]. In mammals, the VDAC protein family consists of three
isoforms: VDAC1, VDAC2, and VDAC3. All VDAC isoforms are highly
expressed in heart, kidney, brain and skeletal muscle, but only VDAC2
and VDAC3 are expressed in testes, especially in outer dense fibers [8].
VDACs exist in mitochondrial outer membrane [9]. VDAC1 and VDAC2
are co-localized predominantly within the same restricted area in the
annel; LDAO, n-dodecyl-N,N-
iothreitol; IAA, iodoacetamide;
es; MMP, mitochondrial mem-
acrylamide gel electrophoresis;

. This is an open access article under
outer membrane, while VDAC3 is broadly distributed over the surface
of the mitochondrion [10]. The amino acid sequences of the three
human VDAC isoforms show approximately 70% identity. Phylogenetic
analysis indicated that VDAC3 might be evolutionarily distinct, and
thus might have a different physiological function from the others
[11]. VDAC3 plays roles in sperm motility by microtubule doublet
formation [12] and in ciliary disassembly in cycling cells by targeting
Mps1 protein kinase to centrosomes [13,14]. Overexpression of
human VDAC isoforms in yeast strains lacking endogenous porin 1
gene revealed that VDAC3 has a very weak protective activity against
ROS, unlike the other isoforms [4]. Moreover, channel gating of VDAC3
was rarely observed in an artificial planar lipid bilayer [15,16], suggest-
ing this isoform did not exhibit typical voltage-dependent channel
gating.

On the other hand, it was reported that VDAC3-deficient cancer cells
showed reduced permeability for ADP/ATP, as well as dramatically
decreased mitochondrial membrane potential (MMP) [17,18]. It was
unclear how VDAC3 could exhibit such behavior if it has poor channel
gating activity. One possibility is that VDAC3 is activated by post-
translational modification for proper functioning. Indeed, many post-
translational modifications of VDACs, such as phosphorylation [19],
acetylation [20], tyrosine nitration [21], S-nitrosylation [22,23], and
ubiquitination [24] have been reported. Recently, it was also reported
that swapping of the N-terminal region of VDAC3 with that of VDAC1
greatly increased the channel activity [16,25]. This suggested that
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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cysteine residues at the N-terminal regionmight be important, because
VDAC3 has two cysteines but VDAC1 has no cysteine in this region.
Based on these results, we hypothesized that VDAC3 is activated by
cysteine modification.

In this work, we expressed the human VDAC isoforms in bacterial
systems and examined their electrophysiological properties and gating
activity in artificial planar lipid bilayers. We further investigated the
molecular mechanism of activity regulation by examining the effects
of dithiothreitol (DTT) and S-nitrosoglutathione (GSNO), which are ex-
pected to suppress disulfide-bond formation, aswell as the effect ofmu-
tation of N-terminal cysteine residues, on the channel gating properties
of VDAC3.

2. Materials and methods

2.1. Expression, purification, and refolding of recombinant human VDAC
proteins

cDNAs for human voltage-dependent anion channels 1, 2, and 3, cor-
responding to GeneBank accession numbers BC008482.1, BC012883.1,
and BC056870.1, were cloned into multiple cloning sites of the
pET21d vector (Novagen) with a C-terminal His6-tag. The deduced
amino acid sequences of VDAC-His6 proteins are shown in Fig. 1. After
DNA sequencing, each VDAC protein was expressed in Escherichia coli
BL21 (DE3) cells in the presence of 1 mM IPTG and 0.2% L-arabinose
at 37 °C overnight. The bacterial cells were suspended in suspension
buffer (20% sucrose, 0.6% Triton-X 100, 5 μg/mL lysozyme, 1 μM
phenylmethylsulfonyl fluoride, 3.8 nM aprotinin, and 50 nM leupeptin)
and lysed by sonication on ice. Inclusion bodies containing VDAC were
dissolved in a resuspension buffer (50 mM Tris (pH 8.0), 100 mM
NaCl, 6 M guanidine-HCl) and sonicated. After centrifugation, a quarter
amount of a dilution buffer (50 mM Tris–HCl (pH 8.0), 100 mM NaCl)
was added to the supernatant, followed by His-tag affinity purification
and on-column refolding according to the reported method [26,27]. A
denatured sample was loaded onto a Ni-NTA agarose (QIAGEN) packed
column pre-equilibrated with 5 column volumes (CVs) of a wash buffer
(50mMTris (pH 8.0), 100mMNaCl, 4.5M guanidine-HCl). The column
was washed with 5 CVs of a wash buffer followed by 5 CVs of a low-
imidazole wash buffer (50 mM Tris (pH 8.0), 100 mM NaCl, 4.5 M
guanidine-HCl, 25 mM imidazole). VDAC proteins were refolded on a
column in 5 CVs of a refolding buffer (50 mM Tris (pH 8.0), 100 mM
NaCl, 0.4% n-dodecyl-N,N-dimethylamine-N-oxide (LDAO, Affymetrix)
provided as powder) and eluted with an elution buffer (50 mM Tris
(pH 8.0), 100 mM NaCl, 0.4% LDAO, 500 mM imidazole). The eluate
was dialyzed against 100 volumes of a dialysis buffer (25 mM NaPO4

(pH 7.0), 1 mM EDTA, 1 mM dithiothreitol (DTT), 0.1% LDAO) with a
Fig. 1.Deduced amino acid sequences of VDAC-His6 proteins. The underlined characters show ad
cysteine residues, which were mutated to alanine in mutation analysis.
8000 MWCO dialysis membrane two times for 1 h and additional one
for 1 day. Cation-exchange chromatography was performed for further
purification. The samples were loaded onto a 1 mL RESOURCE™ S col-
umn (GE Healthcare) equilibrated with a wash buffer (25 mM NaPO4

(pH 7.0), 5 mM DTT, 0.1% LDAO) using ÄKTA explorer 10S (GE
Healthcare). VDAC proteinswere elutedwith a 10–16% gradient formed
with an elution buffer (25 mM NaPO4 (pH 7.0), 5 mM DTT, 0.1% LDAO,
1 M NaCl) and the concentration was determined using absorption at
280 nm. The purified proteins were also analyzed by SDS-PAGE and im-
munoblotting using commercially available antibodies against VDAC1
(SantaCruz Biotechnology, sc8828) and VDAC2 (Proteintech, 11663-
AP), and an anti-VDAC3 antibody (SCRUM Inc.) directed against a
synthetic VDAC3-specific amino acid sequence (SVFNKGYGFM) [8].

2.2. Electrophysiological monitoring

Electrophysiological properties of VDACs were monitored using an
Ionovation Compact (Ionovation), which is a bench-top bilayer forma-
tion system based on the painting method [28]. An artificial planar
lipid bilayer was formed on an aperture of about 50 μm diameter in a
25 μm thick Teflon foil separating the cis- and trans-chambers filled
with the buffer (250 mM KCl, 2 mM CaCl2, 10 mM MOPS-Tris (pH
7.0)). The chambers were connected to the amplifier via Ag/AgCl-
electrodes with 1 M KCl salt bridges. Bilayer formation was carried out
by addition of 5 mg/mL of Ionovation bilayer lipid II: POPE/POPC = 8/
2 (Ionovation), which was dissolved in n-decane, to the trans-chamber
(ground electrode), monitored optically by a CCD camera. Ionovation
Compact monitors the capacitance change in real-time during the
membrane formation process, and use it as an indicator for membrane
formation. More than 50 pF of membrane capacitance was accepted
for proper lipid bilayers. After bilayer formation, VDAC proteins were
applied to the cis-chamber (signal electrode). The currents were ac-
quired with a sampling frequency of 10 kHz after low-pass-filter at
3 kHz, and digitized using an EPC 10 Patch Clamp Amplifier and
Patchmaster software (HEKA). Electrophysiological channel properties
were monitored under a symmetrical 0.5 kHz triangular voltage wave
of ±50 mV. Conductance was calculated by the use of the following
equation: conductance (G) = current (I)/voltage (V).

2.3. Electrophysiological monitoring of VDAC3 in reducing conditions

Firstly, channel gating of VDAC3 was monitored in the presence of
5 mM DTT (Sigma-Aldrich) to see whether reducing conditions affect
the channel properties. Secondly, to determine whether disulfide-
bond formation is involved, cysteine residues of VDAC3 were alkylated
with 1 μM iodoacetamide (IAA, Wako) at 30 °C for 30 min and the
ditional sequence tags derived frompET21d. Bold characters in theVDAC3 sequence show
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electrophysiological channel properties were monitored in the absence
of DTT. Finally, channel gating of VDAC3wasmonitored in the presence
of 1 mM GSNO (Merck) to examine the possible physiological function
of VDAC3.

2.4. SDS-PAGE analysis of the oxidized VDAC3 proteins

The reduced and oxidized forms of VDAC3 were analyzed by non-
reducing SDS-PAGE. To prevent the oxidation of free cysteine residues
during the SDS-PAGE operations, cysteine residues of VDAC3 were
alkylated before loading to the gel. After dilution or addition of H2O2,
the recombinant VDAC3-His6 solution (final concentration was
40 nM) was incubated with 100 μM IAA at RT for 10 min. The protein
samples were precipitated using 20% ice-cold trichloroacetic acid
(TCA), washed with ice-cold acetone, and solubilized in a phosphate
buffer (pH 7.0). Solubilized samples were subjected to non-reducing
SDS-PAGE and analyzed by immunoblot using generated anti-VDAC3
antibody.

2.5. Site-directed mutagenesis

Cysteine residues of VDAC3 in the expression vector pET21d were
mutated to alanine using a QuikChange Site-Directed Mutagenesis Kit
(Agilent Technologies) according to the manufacturer's protocol. Point
mutations at Cys2, Cys8, Cys36, Cys65, Cys122, Cys229, and at both
Cys2 andCys8 (cysteine residues of VDAC3 are shown in bold characters
in Fig. 1) were designated as C2A, C8A, C36A, C65A, C122A, C229A, and
C2A/C8A, respectively.

2.6. Homology modeling

A homology model of VDAC3 was constructed by MODELLER 9v1
[29] using the reported crystal structure of VDAC1 (PDB ID: 3EMN
[30]). The images were drawn by PyMOL software.

3. Results

3.1. Purification of bacterially expressed human VDAC proteins

Expressed human VDAC proteins were solubilized from inclusion
bodies under denaturing conditions and refolded by means of the on-
Fig. 2. Purification of bacterially expressed VDAC-His6 proteins. (A) SDS-PAGE of recombinant p
(B) Immunodetection of the recombinant purified VDAC proteins using anti-VDAC antibodies
column refolding method. The final concentrations of purified VDAC
proteins were as follows: VDAC1, 1.2 mg/mL; VDAC2, 0.7 mg/mL; and
VDAC3, 0.6 mg/mL. SDS-PAGE analysis showed that the three isoforms,
VDAC1-His6, VDAC2-His6, and VDAC3-His6, each gave a single major
band (Fig. 2A). Their estimated molecular weights were 31,838,
34,388, and 31,837, respectively, although the migration of VDAC3-
His6 was slightly faster than that of VDAC1-His6. Nevertheless,
immunodetection by anti-VDAC antibodies directed against each
VDAC isoform confirmed that the detected bands reacted with the spe-
cific antibodies (Fig. 2B). Hence, all recombinant human VDAC proteins
were successfully purified.

3.2. Electrophysiological properties of VDAC isoforms

Detergent-solubilized VDAC1-His6, VDAC2-His6, and VDAC3-His6
were incorporated into planar lipid bilayers and current traces under
applied voltage were recorded to monitor their gating activities.
Single-channel monitoring showed that VDAC1 and VDAC2 gated in re-
sponse to linearly changing voltage, while VDAC3 did not respond well
(Fig. 3A). The ratio of the conductance at applied voltage (G) to maxi-
mum conductance (Gmax) showed a symmetrical, bell-shaped distribu-
tion for VDAC1 and VDAC2, though voltage dependency of VDAC2 was
weaker than VDAC1 (Fig. 3B). In the case of VDAC3, the slope was
very shallow, indicating the channel rarely gate depending on voltage.
Histogram of maximum conductances indicated that open state con-
ductances of VDAC1 and VDAC2 were in a range between 1.25–1.5 nS
(at 250 mM KCl) (Fig. 3C). On the other hand, VDAC3 showed lower
conductance states.

3.3. Activation of channel gating of VDAC3 in reducing conditions

Poor voltage-dependent gating activity of VDAC3 has already
been reported, but the reason for the low activity, in spite of high se-
quence similarity of VDAC3 with VDAC1 and VDAC2, remains un-
clear. Since the regular buffer solution for electrophysiological
experiments does not contain DTT, we suspected that cysteine resi-
dues in VDAC3 might be in oxidized form under the experimental
conditions. Since VDAC3 contains as many as 6 cysteines, we specu-
lated that disulfide-bond formation might account for the low activity.
To examine this possibility, the voltage-gating properties of VDAC3
were monitored in the presence of 5 mM DTT. As we anticipated,
urified VDAC1-His6, VDAC2-His6, and VDAC3-His6. Lane M showsmolecular size markers.
against VDAC1, VDAC2, and VDAC3.



Fig. 3. Difference of voltage-gating processes between VDAC channels. (A) Representative current traces of VDAC channels under triangular voltage waves (±50mV, 0.5 kHz). Final con-
centrations of VDAC-His6 proteins were in a range of 0.1–10 ng/each chamber. Steep slopes indicate an open state, while low slopes indicate a closed state. Other recordings are shown in
Supplementary Figs. 1–3. (B) The average ratios of the conductance at applied voltage (G) / maximum conductance (Gmax). Current records were collected in response to more than 5
periods of triangular voltage waves. Data are means of more than 10 experiments (Supplementary Figs. 1–3) ± S.E. for each group. (C) Distribution of open state conductance of VDAC
channels. Conductances were measured for 12 s under constant voltages at−50, −40, −30, −20, −10, +10, +20, +30, +40, +50 mV, respectively. The maximum conductance of
each experiment was defined as the open state conductance. Histograms were constructed based on 52, 23, and 51 experiments for VDAC1, VDAC2, and VDAC3, respectively.
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channel gating was activated in the presence of DTT (Fig. 4A upper
panel). Clear open state and closed state were observed as in
the cases of VDAC1 and VDAC2. The voltage-dependency also
changed, becoming similar to those of VDAC1 and VDAC2 (Fig. 4B
left panel). VDAC3 was closed at higher voltage in DTT-treated so-
lution, suggesting that disulfide-bond formation blocks VDAC3
channel-gating.

To examine this hypothesis, we alkylated cysteine residues of
VDAC3 with IAA to block disulfide-bond formation, and the activity
of the alkylated VDAC3 was monitored in the absence of DTT. As ex-
pected, alkylation of thiols in VDAC3 caused activation of the gating
(lower panel of Fig. 4A and right panel of Fig. 4B). These results indi-
cate that disulfide-bond formation inactivated the gating of VDAC3,
and suggest that VDAC3 function might be regulated by cysteine
modification.

Since S-nitrosylation has been implicated in the regulation of the
physiological functions of VDAC3,we nextmonitored the channel prop-
erties in the presence of GSNO, a direct nitric oxide (NO) donor for cys-
teine. As a result, clear channel gating of VDAC3 was observed in the
presence of GSNO (Fig. 5). This further supports the idea that cysteine
modification regulates VDAC3 functions.
3.4. Oxidation of recombinant VDAC3

To further confirm the disulfide-bond formation of VDAC3 under the
conditions for the electrophysiological experiments, non-reducing SDS-
PAGE analysis of the diluted VDAC3 samples containing various concen-
trations of DTTwas performed after alkylation of thiols. A faster migrat-
ing band was observed for the VDAC3 in a solution with low
concentration of DTT (Fig. 6A).With 0.01mMof DTT, only fastermigrat-
ing bandwas observed. A similar band was observed for VDAC3 treated
with high concentration of H2O2 (Fig. 6B). Furthermore, the band shift
was not observed when the H2O2-oxidized VDAC3 was treated with
DTT before alkylation, indicating that the oxidation is reversible
(Fig. 6C). These facts suggest that the faster migrating band would be
the oxidized VDAC3 with intramolecular disulfide-bond, and the
disulfide-bond would be easily formed by simple dilution of DTT.



Fig. 4. Activation of VDAC3 by cysteinemodification. (A) Current traces under triangular voltage waves (±50mV, 0.5 kHz). Voltage-gating of VDAC3 in the presence of DTT (upper panel)
wasmonitored. Voltage-gating of alkylatedVDAC3 after pre-incubationwith 1 μM IAAwasmonitored (lower panel). Final concentrations of VDAC-His6 proteins were in a range of 0.1–
10 ng/each chamber. (B) The ratios of the conductance at applied voltage (G) / maximum conductance (Gmax). Current records were collected in response to more than 2 periods of tri-
angular voltage waves. Data are means of more than 5 experiments ± S.E. for each group.
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3.5. Analysis of VDAC3 cysteine mutants

The next question is,which cysteine residues are involved in the crit-
ical disulfide-bond formation? To address this question, we examined
the channel gating properties of cysteine mutants of VDAC3. C122A
and double cysteine mutant C2A/C8A clearly responded to linearly
changing voltages, and showed clear open and closed conductance
states (Fig. 7A). In contrast, the other single cysteine mutants C2A,
C8A, C36A, C65A, and C229A showed weak responses, like VDAC3. Dis-
tinct bell-shaped voltage dependency was observed only for the C122A
and C2A/C8A mutants (Fig. 7B). These results indicate that disulfide-
bond formation of Cys122 with either Cys2 or Cys8 is critical for
blocking voltage-dependent gating.

The homology model of VDAC3 constructed based on the reported
crystal structure of VDAC1 indicated that Cys2 and Cys8 at the N-
terminal region are positioned in close proximity to Cys122 at the
bottom of the β-barrel (Fig. 8). This model suggests that the N-
terminal region would be fixed at the bottom of the pore by disulfide-
bond formation, causing inactivation of channel gating.
4. Discussion

The objective of this study was to clarify the molecular basis of the
unique gating properties of VDAC3 by analyzing and comparing the
channel properties of VDAC isoforms. Recombinant VDAC proteins cor-
responding to all three human isoforms were successfully expressed,
purified, and refolded. The migration patterns of VDAC1 and VDAC3 in
SDS-PAGE analysis were different, though the estimated molecular
weights of VDAC1 and VDAC3 are almost the same. Yamamoto and col-
leagues also observed similar migration differences, although VDAC1
and VDAC2 have the same migration pattern [31]. Recombinant
VDAC2-His6 sequence in our study has extra-large N-terminal tag
(2.5 kDa larger than native VDAC2), so the migration pattern of
VDAC2 was slower than VDAC1. We speculated that structural modifi-
cations might exist in VDAC3 and indeed we found that disulfide-
bond formation between N-terminal cysteine(s) and Cys122 occurred,
as described above. It was also reported that artificial cross-linking of
the N-terminal region and inner wall of VDAC1 by double cysteine mu-
tation resulted in faster migration on SDS-PAGE [32]. We could observe
the slower migrating band corresponding to the linearized form of
VDAC3 only when thiols were alkylated to prevent disulfide formation,
but not under commonly used electrophoresis conditions. It suggested
that reduced form of VDAC3 is not stable and easily oxidized in the ab-
sence of high concentration of DTT.Hence, the observation that oxidized
VDAC3migrated faster than VDAC1 is consistent with the occurrence of
disulfide-bond formation.

Electrophysiological study demonstrated that VDAC1 and VDAC2
had typical voltage-dependent gating activities. The voltage-response
of VDAC2 was not as consistent as VDAC1 (Supplementary Figs. 1 and



Fig. 5. Activation of VDAC3 by S-nitrosylation. (A) Current traces under triangular voltage waves (±50 mV, 0.5 kHz). Voltage-gating of VDAC3 in the presence of GSNO was monitored.
Final concentrations of VDAC-His6 proteins were in a range of 0.1–10 ng/each chamber. (B) The ratios of the conductance at applied voltage (G) / maximum conductance (Gmax). Current
records were collected in response to more than 9 periods of triangular voltage waves. Data are means of more than 4 experiments ± S.E. for each group.
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2). Our recombinant VDAC2-His6 protein has extra amino acid residues
at N-terminal (Fig. 1), and this longer N-terminal might occasionally
inhibit normal gating. Indeed, inflexible VDAC1 N-terminal region was
reported to cause less response to voltage change [33].

VDAC1 contains 2 cysteines, and the cysteine functions on channel
gating have been studied. It was reported that VDAC1 could exist in ox-
idized and reduced forms due to the cysteine modification status [34],
although conductances of the oxidized and reduced forms of bovine
VDAC1 reconstituted in planar bilayer membrane were similar. More
recently, cysteine-less VDAC1 mutant was generated and investigated
whether the cysteine residues are involved in its oligomerization and
apoptosis [35]. No difference in the channel gating properties between
native VDAC1 and the cysteine-lessmutant was observed, and oligomer
Fig. 6. Oxidation of VDAC3. (A) Oxidation by dilution of DTT to the indicated concentra-
tions. The recombinant VDAC3-His6 solution containing 5 mMDTT was diluted by an elu-
tion buffer without DTT (25 mM NaPO4 (pH 7.0), 0.1 % LDAO, 1 M NaCl) and incubated at
room temperature (RT) for 60min. Then the remaining thiols were alkylated by the treat-
ment with 100 μM IAA at RT for 10min. The bands corresponding to the reduced state and
the oxidized state are shown as “red” and “ox”, respectively. (B) Oxidation by incubation
with indicated concentrations of H2O2. The recombinant VDAC3-His6 solution containing
0.1 mM DTT was incubated with the indicated final concentration of H2O2 at 30 °C for
30min. (C) Reversible oxidation of VDAC3. Recombinant VDAC3-His6 solution containing
0.1 mMDTT was treatedwith 1 mMH2O2 for 30min (middle lane), or treatedwith 1mM
H2O2 for 30 min then with 5 mM DTT for 30 min (right lane). The left lane is the control
sample stored in the solution containing 5 mM DTT.
formation was also not affected by the cysteine mutation. By now, cys-
teine function of VDAC1 has not been revealed.

VDAC2 contains as many as 9 cysteine residues and 2 of them posi-
tioned at the N-terminal region. The channel function and barrel stabil-
ity of cysteine-less mutant of VDAC2were studied [36,37]. The cysteine
residues of VDAC2 were reported to mainly exist as free-thiol form and
contributed barrel-lipid interaction. Channel gatingpropertywas slight-
ly affected by the cysteine mutation. However, it was not yet known
how the gating of VDAC2 regulates. It is interesting to evaluate its selec-
tivity of the open and closed states by the response of reduced or
oxidized condition.

On the other hand, the gating activity of VDAC3 was very weak, as
previously reported for the human VDAC3 [38]. We found that channel
gating of VDAC3 was activated by suppression of disulfide-bond forma-
tion, becoming similar to that of VDAC1 andVDAC2. Several proteins are
known to form inter/intramolecular disulfide-bonds in response to
redox signals, which thereby modulate their activities. For example,
the tumor suppressor PTEN is reversibly inactivated by H2O2 and acti-
vated byDTT [39]. Cardiac calcium release channel (RyR1) and transient
receptor potential cation channel (TRPA1) are activated by thiol oxida-
tion and inactivated by DTT [40,41]. Channel gating of VDAC3 might be
also controlled by redox signals, through disulfide-bond formation. It is
well known that the cell cycle is regulated by cellular redox homeostasis
[42,43]. By sensing such environmental change, VDAC3 might regulate
physiological processes such as microtubule doublet formation in cy-
cling cells and sperm. It was also reported that oxidative modification
of thiol groups of VDAC caused loss of MMP [44]. Because VDAC3 was
reported to be quantitatively the most important VDAC to sustain
MMP in cancer cells [18], loss ofMMPmight be the result of inactivation
of VDAC3. All of these findings are consistent with the idea that VDAC3
provides a redox-sensitive control mechanism for cellular activities, in
contrast to the other VDAC isoforms.

It was reported that mouse VDAC3 did not insert easily into lipid
membranes, but DTT aided its insertion [15]. In the case of human
VDAC3, insertion was also hard to detect without addition of large
amounts of DTT to the buffer solution. Detergent-solubilized VDAC
could be spontaneously inserted [45] but its stability affected the inser-
tion efficiency [46]. DTT may increase the structural stability of VDAC3



Fig. 7. Effect of mutation of various cysteine residues on voltage-gating of VDAC3. Voltage-gating of VDAC3 cysteine mutants was analyzed. Final concentrations of VDAC3-His6 proteins
were in a range of 0.1–10 ng/each chamber. (A) Current traces under triangular voltage waves (±50 mV, 0.5 kHz). (B) The ratios of the conductance at applied voltage (G) / maximum
conductance (Gmax). Current records were collected in response to more than 3 periods of triangular voltage waves. Data are means of more than 3 experiments ± S.E. for each group.
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by preventing disulfide-bond formation, leading to an increase of inser-
tion events.

Molecular structure of VDAC1 was solved by several researchers to
be 19 β-barrel with an α-helix located within the pore [30,47,48].
Analysis of VDAC3 cysteine mutants revealed that disulfide-bond for-
mation occurred between cysteine residues at the N-terminal region
and at the bottom of the pore. It is established that the N-terminal re-
gion of VDAC3 is important for the channel properties [25], although



Fig. 8. Positions of cysteine residues of VDAC3, as predicted by homologymodeling. Cysteine residues are shown in red. Cys2 and Cys8 are positioned at the N-terminal region and Cys36,
Cys65, Cys122, and Cys229 are positioned at the bottom of the pore.
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the reason for this was not determined. Further, the N-terminal region
of VDAC1 is important for channel gating; voltage-gating of VDAC1
was not observed when the N-terminal region was removed [49–51]
and cross-linking of the N-terminal region with the inner wall resulted
in a constitutively open or closed state [32]. These findings are consis-
tent with the idea that decreased channel gating of VDAC3 was due to
fixation of the N-terminal region at the bottom of the pore. But the
mechanism for open–closed transition by the translocation of the N-
terminal region in the pore is still not clear. The closed state might be
caused by the α-helix movement to inside of the pore, because the
lower conductance statewas often observed in normal VDAC3 channels,
in whichα-helix is likely to be fixed in the pore by disulfide bond. How-
ever, recent works using N-terminal deletion and double-cysteine mu-
tants of VDAC1 suggested that α-helix would be located in the pore at
the open state [32,51]. Further detailed researches of each VDAC sub-
type would be required to clarify how the N-terminal region regulates
the gating of native VDACs.

Channel gating of VDAC3 was also activated by S-nitrosylation.
Protein S-nitrosylation by NO has emerged as an important mecha-
nism of cellular signal transduction and post-translational regula-
tion. For example, protein kinase Bα (PKBα) is regulated by S-
nitrosylation, which blocks disulfide-bond formation [52]. S-
Nitrosylation of VDAC3 might also block disulfide-bond formation.
Physiologically, VDAC3 is actually S-nitrosylated in spermatozoa
[22]. S-Nitrosylation of VDAC3 may be important for sperm motility,
because motility required both VDAC3 and NO signals [12,53]. In ad-
dition, S-nitrosylation of mitochondrial proteins potentiated VDAC-
mediated Ca2+-induced mitochondrial swelling and cytochrome c
release [23]. S-Nitrosylated VDAC3 might function in such processes
as the active form.

In conclusion, we examined the channel properties of the three
human VDAC isoforms and found that the activity of VDAC3 is depen-
dent upon the redox state of its cysteine residues. Our results indicate
that VDAC3 activity may be regulated by redox sensing under physio-
logical conditions — specifically by reversible disulfide-bond formation
between cysteine residues located in the N-terminal region and at the
bottom of the pore. It is noteworthy that VDAC3 has different functions
in different muscle types, even though its expression levels are almost
the same; VDAC3-deficient mice showed decreased affinity for ADP in
heart but not in gastrocnemius muscle [54]. Thus, VDAC3 appears to
have tissue-specific physiological roles. It would be interesting to exam-
ine whether redox sensing, post-translational modification or some
other mechanism controls the activity of VDAC3 in specific cell types,
tissues, or organs.
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