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Abstract

We present a trace semantics for a language of parallel programs which share access to mutable data. We introduce a resource-
sensitive logic for partial correctness, based on a recent proposal of O’Hearn, adapting separation logic to the concurrent setting.
The logic allows proofs of parallel programs in which “ownership” of critical data, such as the right to access, update or deallocate
a pointer, is transferred dynamically between concurrent processes. We prove soundness of the logic, using a novel “local”
interpretation of traces which allows accurate reasoning about ownership. We show that every provable program is race-free.
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1. Introduction

Parallel programs typically involve the concurrent execution of processes which share state and are intended to
cooperate to achieve a collective goal. It is notoriously difficult to ensure that process interactions are sufficiently
disciplined to preclude undesirable phenomena such as races, in which one process changes a piece of state that is
simultaneously being used by another process. Races can result in unpredictable, possibly irreproducible, behaviour.
In addition to goals expressible as partial correctness or total correctness properties, we often need to be able to
establish safety properties, of the form that something bad never happens, and liveness properties, of the form that
something good happens eventually [35]. Rather than relying on possibly unrealistic assumptions about the granularity
of hardware primitives, we would prefer to use proof techniques that guarantee both race-freedom and correctness.

Program design rules based on resource separation [22,24,36,37] and the use of synchronization constructs such as
conditional critical regions [7,9,8,24] offer the programmer a means to impose discipline. For example, building on an
earlier proposal of Hoare [22,24], Owicki and Gries [36,37] introduced a syntax-directed logic for partial correctness
of simple shared-memory parallel programs. A key notion behind the success of this approach is its focus on the
critical variables of a program, characterized as identifiers which may be concurrently written by one process and
read or written by another. The programmer is required to partition the critical variables among a fixed collection of
resources, and to obey a simple syntactic constraint on program structure: each occurrence of a critical variable must be
inside a conditional critical region naming the relevant resource. Assuming that resource management is implemented
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using a suitable low-level synchronization primitive, such as semaphores [19,20], so that at all stages during program
execution each resource is held by at most one process, these statically enforceable design rules guarantee mutually
exclusive access to the critical variables and therefore freedom from races. The Owicki–Gries inference rules support
a modular methodology based on resource invariants, in which each process relies on its environment to ensure that
whenever a resource is available the corresponding resource invariant holds, and guarantees that whenever a process
releases the resource the invariant will hold again. This usage of invariants also serves to simplify the task of program
proving, since it abstracts away from what happens “inside” a critical region and focuses instead only on the places
where synchronization occurs.

This methodology works well for simple (pointer-free) shared-memory programs, but breaks down when the shared
state can contain pointers. The Owicki–Gries rule for parallel composition is unsound for parallel programs that
manipulate pointers (“pointer-programs”), because of the possibility of race conditions involving concurrent attempts
to deallocate or update a pointer being used by another process. The problems are exacerbated by the possibility
of aliasing: syntactically distinct expressions may denote the same pointer value. It is not possible to use purely
syntactic constraints to rule out races (and restore soundness) for pointer-programs, because aliasing cannot be
detected adequately by static analysis alone.

Pointers require a more sophisticated model of state: a store mapping identifiers to values, which may be data val-
ues such as integers, or pointer values such as addresses; and a heap mapping addresses to values, which again can be
data or pointers. For sequential pointer-programs one can give a straightforward denotational or operational semantics
based on state transformations, and separation logic has been developed as an extension of Hoare-style partial correct-
ness logic to allow reasoning about the store and the heap [41,25]. The key feature of separation logic is a separating
conjunction, used to specify disjointness constraints. Separation logic has been applied successfully to a range of sig-
nificant examples [2,4,33,40,44]. The approach suggests a style of local reasoning in which one focusses on the “foot-
print” of a command, i.e. the minimal portion of state actually relevant to the command’s execution, and one appeals
to a “Frame Rule” whenever necessary to deduce that the command has no effect outside of its footprint [4,25,33,44].

Recently, O’Hearn has proposed using separation logic, together with an adaptation of the Owicki–Gries resource-
based methodology, for reasoning about partial correctness of parallel pointer-programs [30,31]. Again the shared
state is viewed as being partitioned among named resources, each equipped with a resource invariant and a protection
list. O’Hearn proposed a methodology based on the following separation hypothesis: at all times the state can be
partitioned to yield a separate portion for each process, and a separate portion, satisfying the relevant resource
invariant, for each available resource. It then becomes possible to give a natural ownership interpretation of program
execution. In particular, the heap portions associated with each process, and with each available resource, are always
mutually disjoint. When a process acquires a resource it claims ownership of the state associated with that resource;
when releasing the resource it must ensure that the invariant holds again, and returns ownership of the corresponding
piece of state. Although the heap portion associated with a resource may vary dynamically, at all stages the Separation
Hypothesis ensures that each piece of heap is accessed by at most one process. It thus becomes possible to reason
safely about parallel programs in which “ownership” of a pointer, or some fragment of shared state, can be deemed to
transfer dynamically between processes, or between a process and a resource: the partitioning of state among resources
is not required to stay fixed throughout execution, but may adjust itself dynamically.

The main novelty in O’Hearn’s adaptation involves the judicious use of the separating form of conjunction in key
places in the pre- and post-conditions of the inference rules which deal with resources. Although this might appear
superficially to produce “obvious” variants of the traditional rules, the soundness of the new rules is far from obvious.
Indeed, to indicate the difficulties, Reynolds has shown that similar rules (even for sequential programs) are unsound
if used without restrictions on the formulas allowed as resource invariants [42,31]. Moreover the traditional rules are
unsound for pointer-programs, so soundness of the new rules cannot be deduced merely by analogy. O’Hearn provides
a series of compelling examples of concurrent programs and informal correctness proofs [31], but (as he remarks) the
logic cannot properly be assessed without a suitable semantic model [30].

However, it is not at all obvious how to provide a semantics that permits a formalization of the notions of ownership
transfer and race-freedom, and such a semantics is crucial in establishing soundness. Traditional semantic models for
shared-memory concurrent languages do not include pointers, and semantic models for pointer-manipulating programs
do not typically incorporate concurrency. Most models of shared-memory concurrency do not deal explicitly with
race-detection. Furthermore, earlier state-based models of concurrency such as transition traces [16,13,38] work with
global states, which lump together the state shared by all processes, and it is not easy to adapt such models for the
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kind of local reasoning that is required to track ownership. On the one hand, race-freedom should lead to a semantics
in which program behaviour has a sequential flavour modulo synchronization through shared resources, but on the
other hand we need to properly account for concurrent execution.

In this paper we give a denotational semantics, based on sets of action traces [12], that solves these problems.
The semantics involves a form of parallel composition that detects race conditions: every parallel program whose
components may concurrently read and write the same variable or the same heap cell will produce a runtime error.
Our semantics models a potential race condition as catastrophic, since we want to prove the absence of races. This
semantic model is worthy of attention in its own right, although our main emphasis here is to demonstrate its utility in
proving the soundness of O’Hearn’s methodology. We also stress that the semantics applies to all concurrent shared-
memory programs, both to race-free programs and to racy programs. The crucial feature of the semantics is that it
permits a natural, rigorous and simple characterization of race-freedom.

Our treatment of race conditions leads to a semantic model embodying one of the classic principles of concurrent
program design, as originally articulated by Dijkstra [20] and reflected in the design of Owicki–Gries logic and
O’Hearn’s logic:

. . . processes should be loosely connected, by which we mean that, apart from the (rare) moments of explicit
intercommunication, the individual processes are to be regarded as completely independent of each other.

In other words, concurrent processes do not interfere (or cooperate) except through explicit synchronization. Our
semantics reflects this idea in a novel manner, through the interplay between action traces, which describe interleaved
behaviour of processes, and an enabling relation that implements the “no interference from outside” notion. This
interplay is crucial in permitting a formalization of O’Hearn’s intuitive concept of “processes that mind their own
business”. To the best of the author’s knowledge ours is the first semantics in which such a formalization is possible.

O’Hearn, following Owicki and Gries, focused on programs containing a single resource declaration whose scope
includes a single parallel composition of sequential commands. We reformulate O’Hearn’s rules in a more general
manner, allowing nested resource declarations and nested parallel compositions. We introduce a formal definition of
resource contexts, subject to some natural disjointedness requirements which facilitate modular reasoning, and a class
of resource-sensitive partial correctness formulas that pins down the syntactic constraints on programs and logical
formulas necessary for enforcing the intended resource discipline. Using the trace semantics we give a suitably general
(and compositional) notion of validity, and we prove that the proof rules are sound. Our soundness proof demonstrates
that a verified program has no race conditions.

A key ingredient in our soundness proof, and another illustration of the benefits of our approach, is a parallel
decomposition lemma, again with connections back to early intuitions of Dijkstra. We can summarize this result
informally as follows. When c1‖c2 is a race-free program, every interleaved computation of c1‖c2 can be decomposed
into “local” computations of the constituent processes c1 and c2 which are interference-free except for interactions
with protected resources. This clearly reflects the “loosely connected” assumption for processes and shows how this
assumption is crucial in permitting syntax-directed proofs for concurrent programs.

We assume that each resource invariant is precise, so that every time a program acquires or releases a resource
there is a uniquely determined portion of the heap whose ownership can be deemed to transfer. This does not seem
to be a major limitation, since all of O’Hearn’s examples involve precise invariants, and a methodology based on
precision seems very natural [31]. Moreover, this limitation is sufficient to ensure soundness, and it suffices to avoid
the Reynolds counterexample that shows unsoundness when resource invariants are allowed to be arbitrary separation
logic formulas.

Since our semantics is trace-based it can be used to support reasoning about safety and liveness properties of
concurrent programs, in addition to partial correctness and absence of races. We discuss how to adapt the proof
system to deal with total correctness and freedom from deadlock.

We conclude with some comments on related work, a discussion of the limitations of our semantics and the logic,
and some suggestions for future research. An Appendix contains some technical details behind some of the key results.

2. Syntax

We use a programming language that combines shared-memory parallelism, resource declarations and conditional
critical regions with constructs for manipulating heap pointers.
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We use the following meta-variables: r ranges over resource names, i over identifiers, e over integer expressions, b
over boolean expressions, E over list expressions, and c over commands. We omit the syntax for integer expressions
and boolean expressions, but we assume that the language includes the usual arithmetic and boolean constructs. The
abstract grammar for list expressions is:

E ::= (e0, . . . , en) (n ≥ 0)

We assume that expressions are pure: that is, expressions do not contain notations, such as cons and [−], whose
semantics refers to the heap, and they do not cause side-effects. The value of an expression therefore depends only on
the store.

The syntax for commands is defined by the following abstract grammar:

c ::= skip | i :=e | c1; c2 | c1‖c2 |

i :=[e] | [e]:=e′
| i :=cons E | dispose e |

if b then c1 else c2 | while b do c | local i = e in c |

resource r in c | with r when b do c

There are four assignment-like command constructs, which we distinguish syntactically from each other because
of their different semantics. Three have an effect on the store: a traditional assignment i :=e, a lookup i :=[e], and
an allocation i :=cons(E). To emphasize this fact we will use the term assignment collectively for these forms
of command. An allocation also affects the heap. An update [e]:=e′ changes only the heap, as does a disposal
dispose(e). We will use the term mutation to refer to an allocation, update or disposal. Thus assignments affect the
store, and mutations affect the heap.

The syntax for commands also includes sequential composition, written c1; c2, conditional commands, while-loops
and parallel composition, which is denoted c1‖c2.

A block of the form local i = e in c introduces a local variable named i , initialized to the value of e, whose scope
is the block body c. Similarly a resource block resource r in c introduces a local resource named r , assumed to be
initially available, with scope c.

A command of form with r when b do c is called a conditional critical region for r , or just a “region” for short. A
process attempting to enter a region must wait until the resource r is available, whereupon it may acquire the resource
and evaluate the test b: if b is true the process executes c then releases the resource; on the other hand, if b is false
the process releases the resource and waits to try again. Program execution is constrained to ensure that resources are
mutually exclusive: a resource can only be acquired when it is available, and can only be held by one process at a
time; hence at all stages at most one concurrent process is “inside” a region for r . We impose the natural syntactic
constraint that the body c of a region for r must not contain another region for the same resource name r . This decision
is made for pragmatic reasons: the only commands ruled out by this constraint would cause deadlock anyway, so their
omission is no great cause for concern.

3. Static semantics

We assume given the standard structurally inductive definitions of the sets free(e), free(b),free(E) of identifiers
which occur free in an expression. In addition we will define reads(c), the set of identifiers having a free read
occurrence in c; writes(c), the set of identifiers having a free write occurrence in c; and res(c), the set of resource
names occurring free in c. We only provide the details for a few key cases.

Definition 1. Let reads(c) be the set of identifiers with a free read occurrence in c, given by structural induction. In
particular,

reads(i :=e) = free(e)
reads(i :=[e]) = free(e)
reads(i :=cons E) = free(E)

reads([e]:=e′) = free(e) ∪ free(e′)

reads(dispose(e)) = free(e)
reads(c1‖c2) = reads(c1) ∪ reads(c2)

reads(local i = e in c) = free(e) ∪ (reads(c) − {i})
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Definition 2. Let writes(c) be the set of identifiers with a free write occurrence in c, defined by structural induction.
In particular:

writes(i :=e) = {i}
writes(i :=[e]) = {i}
writes(i :=cons E) = {i}
writes([e]:=e′) = {}

writes(dispose(e)) = {}

writes(c1‖c2) = writes(c1) ∪ writes(c2)

writes(local i = e in c) = writes(c) − {i}

For all commands c we then define free(c) = reads(c) ∪ writes(c). Note that free(local i = e in c) =

free(e) ∪ (free(c) − {i}).

Definition 3. Let res(c) be the set of resource names occurring free in c, defined by structural induction. In particular,

res(with r when b do c) = res(c) ∪ {r}

res(resource r in c) = res(c) − {r}

res(c1‖c2) = res(c1) ∪ res(c2)

4. Dynamic semantics

We give a trace-theoretical semantics for expressions and commands. The meaning of an expression will be a set of
trace-value pairs, and the meaning of a command will be a set of traces. The trace set denoted by a program describes
in abstract terms the possible interactive computations that the program may perform when executed fairly, in an
environment which is also capable of performing actions.1 We interpret sequential composition as concatenation of
traces, and parallel composition as a resource-sensitive form of interleaving of traces that enforces mutually exclusive
access to each resource.

By presenting traces as sequences of actions, we can keep the underlying notion of state more or less implicit. We
will exploit this feature later, when we show how to use the semantics to prove soundness of a concurrent separation
logic. We start by providing an interpretation of actions using a global notion of state; later we will set up a more
refined local notion of state in which it is easier to reason about ownership. Another advantage of action traces over
the transition traces often used to model shared-memory parallel languages is succinctness: an action typically acts
the same way on all states, and we can express this implicitly, without enumerating all pairs of states related by the
action.

4.1. States and values

A value is either an integer or an address. We use v to range over values, l over addresses. Let Vint be the set of
integers and Vaddr be the set of addresses.2 A truth value is either true or false. Let Vbool be the set of truth values.
We use t as a meta-variable ranging over truth values.

A state σ comprises a store s, a heap h, and a finite set A of resource names. The store maps a finite set of identifiers
to values; we let S be the set of stores, and we write dom(s) = {i | ∃v. (i, v) ∈ s} for the set of identifiers for which
s has a value. The heap maps a finite set of addresses to values; we write dom(h) = {l | ∃v. (l, v) ∈ h} for the set
of locations for which h has a value. We will use notations such as [i1 : v1, . . . , ik : vk] and [l1 : v′

1, . . . , ln : v′
n] to

denote stores and heaps with specific contents. We also use the notation [s | i : v] for the store which agrees with s
on all identifiers except i , which it maps to v; and the similar notation [h | l : v′

] denotes an updated heap. We also
use the notation h\l for the heap obtained from h by deleting l from its domain; clearly dom(h\l) = dom(h) − {l}.

Since we assume that resources are initially available, an “initial” state will always have the form (s, h, {}); we will
use the abbreviation (s, h) in such a case.

1 Although we are mainly concerned with partial correctness properties of programs, which depend only on the finite traces of a program, we
also want to be able to use our semantics to establish race freedom properties, so we also need to include infinite traces. Consequently it makes
sense to build fairness directly into our model.

2 Actually we treat addresses as integers, so that our semantic model can incorporate address arithmetic, but we maintain the conceptual
distinction between integers as values and integers which happen to be addresses in current use.
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4.2. Actions

The atomic units in which a program’s execution is measured will be called actions, and we assume that actions
form a simple algebra under concatenation. Actions include reads and writes to individual identifiers, lookups and
updates to individual heap addresses, allocations and disposals of heap addresses, and actions involving the acquisition
and release of resources. We use λ as a meta-variable ranging over the set of actions.

Definition 4. An action has one of the following forms:

• δ, an idle step
• i=v, a read of identifier i
• i :=v, a write to i
• [l]=v, a lookup of address l
• [l]:=v, an update to address l
• alloc(l, L), an allocation, where l is an address and L is a finite list of values
• disp(l), a disposal of address l
• acq(r), where r is a resource name
• rel(r), where r is a resource name
• try(r), where r is a resource name
• abort, an error stop.

We will refer to reads and writes as store actions, to lookups, updates, allocations and disposals as heap actions, and
to try, acquire and release actions as resource actions.

Each action has a natural intuitive interpretation. For example, an allocate action alloc(l, [v0, . . . , vn]) allocates a
fresh sequence of addresses l, . . . , l+n and initializes their contents to v0, . . . , vn , respectively. A try action represents
an unsuccessful attempt to acquire a resource, and an acquire action represents the successful case.

4.3. Effects and enabling

Each action λ is characterized by its its effect, which can be defined as a partial function λ
==⇒ from states to states

(Fig. 1); the domain of this partial function is the set of states from which the action can be executed. To account for
runtime errors we use a special “improper” state abort.

It is convenient to introduce a more succinct notation that recognizes the facts that: store actions only depend on
the store; heap actions only depend on the heap; and resource actions only involve the resource set. Thus when λ is
a store action we will treat λ

==⇒ as a partial function from stores to stores; when λ is a heap action we may use λ
==⇒

as a partial function from heaps to heaps; and when λ is a resource action we may use λ
==⇒ as a partial function from

resource sets to resource sets.
We extend the definitions of writes, reads, and free to actions:

writes(i :=v) = {i} reads(i=v) = {i}
writes([l]:=v) = {l} reads([l]=v) = {l}
writes(disp(l)) = {l} reads(disp(l)) = {l}
writes(λ) = {} otherwise reads(λ) = {} otherwise

For all actions λ, we let free(λ) = reads(λ) ∪ writes(λ).
For each action λ, reads(λ) is the set of identifiers or addresses needed to enable the action, and writes(λ) is

the set of identifiers or addresses whose current value is changed by the action. Note that allocation actions are given
a special treatment: we do not include addresses l, . . . , l + n in the write-set of alloc(l, [v0, . . . , vn]), because these
addresses will be assumed to be fresh (not in current use) whenever the action occurs. We distinguish between this
kind of effect (generating a fresh piece of heap) and the effect of a disposal or an update, which modifies or deletes
part of the current heap.
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• (s, h, A)
δ

==⇒ (s, h, A) always
• (s, h, A)

i=v
====⇒ (s, h, A) iff (i, v) ∈ s

• (s, h, A)
i=v

====⇒ abort iff i 6∈ dom(s)
• (s, h, A)

i :=v
====⇒ ([s | i : v], h, A) iff i ∈ dom(s)

• (s, h, A)
i :=v

====⇒ abort iff i 6∈ dom(s)

• (s, h, A)
[l]=v

=====⇒ (s, h, A) iff (l, v) ∈ h
• (s, h, A)

[l]=v
=====⇒ abort iff l 6∈ dom(h)

• (s, h, A)
[l]:=v

=====⇒ (s, [h | l : v], A) iff l ∈ dom(h)

• (s, h, A)
[l]:=v

=====⇒ abort iff l 6∈ dom(h)

• (s, h, A)
alloc(l,[v0,...,vn ])

==============⇒ (s, [h | l : v0, . . . , l + n : vn], A)

iff dom(h) ∩ {l, l + 1, . . . , l + n} = {}

• (s, h, A)
disp(l)

======⇒ (s, h\l, A) iff l ∈ dom(h).

• (s, h, A)
disp(l)

======⇒ abort iff l 6∈ dom(h)

• (s, h, A)
try(r)

=====⇒ (s, h, A) iff r ∈ A

• (s, h, A)
acq(r)

=====⇒ (s, h, A ∪ {r}) iff r 6∈ A

• (s, h, A)
rel(r)

=====⇒ (s, h, A − {r}) iff r ∈ A
• (s, h, A)

abort
=====⇒ abort always

• abort λ
==⇒ abort always

Fig. 1. Enabling relations
λ

==⇒.

For a finite trace α we define α
==⇒ in the obvious way, so that σ

λ0...λn
======⇒ σ ′ if there is a sequence of states

σ0, . . . , σn−1 such that

σ
λ0

===⇒ σ0
λ1

===⇒ · · ·
λn−1

====⇒ σn−1
λn

===⇒ σ ′.

For an infinite trace α we write (s, h, A)
α

==⇒ abort when there is a finite prefix β of α such that (s, h, A)
β

==⇒ abort.
We write σ

α
==⇒ · when α is enabled from σ . By definition, every trace participating in this kind of enabling is

sequential. This enabling notion can thus be used to describe the effect of executing a program in isolation, without
interference.

4.4. Traces

A trace is a non-empty finite or infinite sequence of actions. Let Tr be the set of all traces. We use α, β as meta-
variables ranging over the set of traces, and T1, T2 range over trace sets. Using the usual pun, we do not distinguish
notationally between an action λ and the corresponding trace λ consisting of a single action. (But note that δ is not the
same as the empty sequence!)

We write α1α2 for the trace obtained by concatenating α1 and α2; when α1 is infinite this is just α1. We assume
that abort behaves like a left-zero for concatenation, so that α abort β = α abort, for all traces α and β. We also
assume that δ is a unit for concatenation, so that αδβ = αβ for all traces α and β. Thus, in particular, for all n > 0,
δn

= δ. Note, however, that δω is not (and should not be) equal to δ. Concatenation is associative: for all α1, α2 and
α3, α1(α2α3) = (α1α2)α3.

4.4.1. Sequential traces
We write αdi for the subsequence of α consisting of reads and writes to identifier i , αdl for the subsequence

involving heap cell l, and αdr for the subsequence involving resource r . We say that α is sequential for i from s if

s
αdi

===⇒ ·, sequential for l from h if h
αdl

===⇒ ·, and sequential for r from A if A
αdr

===⇒ ·.
A trace which is sequential for i from s describes an execution in which the initial value of i is specified by s and

the value of i is not changed by the environment. Such traces will be used to determine the trace set of local i = e in c,
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since the scope of the local binding for i includes c but not the environment. For a trace set T we let T[i :v] be the set of
traces in T which are sequential for i from [i : v]. We define α\i to be the trace obtained from α by replacing every
action involving i by δ.

Similarly, a trace which is sequential for r from the empty set describes an execution in which r is initially available
and the environment never affects r . This kind of trace will be used to formulate the trace set of resource r in c, since
the scope of the local binding for r only includes c. Since resources are assumed to be initially available we will drop
the qualification and call such a trace sequential for r. Given a trace set T , let Tr be the subset consisting of the traces
in T which are sequential for r . Note that (Tr )r ′ = (Tr ′)r , so we may write Tr,r ′ for the subset of traces which are
sequential both for r and for r ′, without any ambiguity. We let α\r be the trace obtained from α by replacing each
resource action on r by δ.

We say that α is sequential from (s, h, A) if α is sequential for all identifiers from s, for all locations from h, and
for all resources from A. An infinite trace is sequential from (s, h, A) if each of its finite prefixes is sequential from
(s, h, A).

Sequential traces describe the behaviour of a command when executed in isolation from some given initial store
and heap, endowed with a given initial collection of resources. Thus sequential traces provide enough information to
determine partial (and total) correctness properties of commands. It is well known that one cannot generally determine
the sequential traces of a parallel program solely from the sequential traces of its components. This is a symptom of
the usual problem with concurrent programs: in order to obtain a compositional semantics we need to include both
sequential and non-sequential traces in the trace set of a command.

4.4.2. Sequential composition and iteration
For trace sets T1 and T2 we let T1T2 be the set of all concatenations α1α2 with α1 ∈ T1 and α2 ∈ T2. We also let

λT = {λα | α ∈ T } and T λ = {αλ | α ∈ T }.
For each n ≥ 0 we define T 0

= {δ}, and T n+1
= T T n

= T nT . We let T ∗
=

⋃
∞

n=0 T n . We let T ω be the set of all
infinite concatenations of the form α1 . . . αn . . ., where for each n ≥ 1 we have αn ∈ T . We let T ∞

= T ∗
∪ T ω. Note

that {}
∗ is the set {δ} and {}

ω
= {}.

4.4.3. Parallel composition
The resource actions permissible for a command will depend on the resources currently held by the command, but

also on the resources being used by its environment. These sets of resources will always be disjoint. Accordingly we
define the resource enabling relation (A1, A2)

λ
−→ (A1, A2) on disjoint pairs of resource sets, to specify what happens

if a program holding resources A1, in an environment that holds A2, attempts to perform an action λ. This action may
be forbidden because it would acquire a resource already in use by the program or its environment, or because the
action would release a resource which the program does not currently hold. If allowed, we specify the action’s effect
on the resources held by the program:

(A1, A2)
try(r)

−−−−→ (A1, A2)

(A1, A2)
acq(r)

−−−−−→ (A1 ∪ {r}, A2) if r 6∈ A1 ∪ A2

(A1, A2)
rel(r)

−−−−→ (A1 − {r}, A2) if r ∈ A1

(A1, A2)
λ

−→ (A1, A2) if λ is not a resource action

This resource enabling relation generalizes in the obvious way to describe what happens to the resources when the
program tries to perform a finite or infinite sequence α of actions. We write (A1, A2)

α
−→ · to indicate that the trace is

allowed.
We want to detect race conditions caused by an attempt to write to an identifier or address being used concurrently:

we will treat such a possibility as a catastrophe. We will write λ1]λ2, pronounced λ1 interferes with λ2, to indicate
when this happens:

λ1]λ2 ⇔ free(λ1) ∩ writes(λ2) 6= {} ∨ writes(λ1) ∩ free(λ2) 6= {}.

Notice that we do not regard two concurrent reads as a disaster.
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We define, for each pair (A1, A2) of disjoint sets of resources, and each pair (α1, α2) of finite traces, the set
α1 A1‖A2α2 of all mutex fairmerges of α1 (with initial resources A1) and α2 (with initial resources A2). The definition
is inductive in the lengths of α1 and α2, and we include the empty sequence, denoted ε, to allow a simpler formulation:

α1 A1‖A2 ε = {α1 | (A1, A2)
α1

−−→ ·}

ε A1‖A2 α2 = {α2 | (A2, A1)
α2

−−→ ·}

(λ1α1) A1‖A2 (λ2α2) = {abort | λ1]λ2}

∪ {λ1β | (A1, A2)
λ1

−−→ (A′

1, A2) & β ∈ α1 A′

1
‖A2(λ2α2)}

∪ {λ2β | (A2, A1)
λ2

−−→ (A′

2, A1) & β ∈ (λ1α1) A1‖A′

2
α2}.

Note that the definition only produces interleavings which respect the mutex constraints on resource acquisition.3

For example, the set

(acq(r) x :=0 rel(r)){}‖{}(acq(r) x=1 x :=2 rel(r))

contains only

acq(r) x :=0 rel(r) acq(r) x=1 x :=2 rel(r)

and

acq(r) x=1 x :=2 rel(r) acq(r) x :=0 rel(r).

We can also give a coinductive definition of the mutex fairmerges of two infinite traces, or a finite trace with an
infinite trace, starting from a given disjoint pair of resource sets. We need mostly to work with finite traces, given our
focus on partial correctness and race-freedom, so we omit the details, which are standard [16].

For traces α1 and α2, let α1‖α2 be defined to be α1{}‖{}α2. For trace sets T1 and T2 we define T1‖T2 =def
⋃

{α1‖α2 |

α1 ∈ T1 & α2 ∈ T2}. As usual, for all trace sets T1, T2 and T3, T1‖(T2‖T3) = (T1‖T2)‖T3, and T1‖T2 = T2‖T1.
Moreover, for all trace sets T we have T ‖{δ} = T .

4.5. Trace semantics of expressions

We do not assume that expression evaluation is atomic, because we want to design a semantics for commands that
permits analysis of race conditions, and we do not want to make unrealistic assumptions about granularity.

An expression will denote a set of evaluation traces paired with values. Since expression values depend only on the
store, the only non-trivial actions participating in such traces will be reads. We will use ρ as a meta-variable ranging
over evaluation traces. To allow for the possibility of interference during expression evaluation we will include both
non-sequential and sequential evaluation traces. Again the sequential traces describe what happens if an expression is
evaluated without interference.

For an integer expression e,

[[e]] ⊆ Tr × Vint

is defined to be the set of all (ρ, v) such that e evaluates to v along ρ. For a boolean expression b we define

[[b]] ⊆ Tr × Vbool

to be the set of all (ρ, t) such that b evaluates to t along ρ. For a list expression E , we let

[[E]] ⊆ Tr × V ∗
int

be the set of (ρ, [v0, . . . , vn]) such that E evaluates to the value list [v0, . . . , vn] along ρ.

3 This definition of (λ1α1) A1‖A2 (λ2α2) differs slightly from the one originally proposed and which appears in the earlier versions of this
paper [11]. The original definition turns out to lack associativity. Apart from that, all of the results proved in the original paper are valid for both
definitions of interleaving. In particular, the new version leads to the same notion of race freedom.
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We assume that the semantic functions are given, by structural induction, in the usual way. For example:

[[10]] = {(δ, 10)}

[[i]] = {(i=v, v) | v ∈ Vint}

[[e1 + e2]] = {(ρ1ρ2, v1 + v2) | (ρ1, v1) ∈ [[e1]] & (ρ2, v2) ∈ [[e2]]}

[[(e0, . . . , en)]] = {(ρ0 . . . ρn, [v0, . . . , vn]) | ∀ j. 0 ≤ j ≤ n ⇒ (ρ j , v j ) ∈ [[e j ]]}.

The use of concatenation in these semantic clauses assumes that sum expressions and lists are evaluated in left-right
order. This assumption is not crucial; it would be just as reasonable to assume parallel evaluation for such expressions,
with an appropriately modified semantic definition, and this adjustment can be made without affecting the ensuing
development.

Since expressions are pure, the only non-trivial actions occurring in an expression trace ρ will be reads. Note that
s

ρ
==⇒ s holds if and only if the reads in ρ are consistent with the store s.
We assume the usual properties. For instance, the value of an expression depends only on the values of its free

identifiers, so that in particular whenever (ρ, v) ∈ [[e]] and stores s1 and s2 agree on the values of the identifiers
occurring free in e, s1

ρ
==⇒ s1 holds if and only if s2

ρ
==⇒ s2 holds. There are analogous properties for boolean

expressions and list expressions.
We let [[b]]true ⊆ Tr be the set of all ρ such that (ρ, true) ∈ [[b]], and likewise [[b]]false = {ρ | (ρ, false) ∈ [[b]]}.

4.6. Trace semantics of commands

A command c denotes a set [[c]] ⊆ Tr of action traces. Again we include both sequential and non-sequential traces.

Definition 5. For all commands c we define the trace set [[c]] ⊆ Tr inductively by:

[[skip]] = {δ}

[[i :=e]] = {ρ i :=v | (ρ, v) ∈ [[e]]}
[[i :=[e]]] = {ρ [v]=v′ i :=v′

| (ρ, v) ∈ [[e]]}
[[i :=cons E]] = {ρ alloc(l, L) i :=l | (ρ, L) ∈ [[E]]}

[[[e]:=e′
]] = {ρ ρ′

[v]:=v′
| (ρ, v) ∈ [[e]] & (ρ′, v′) ∈ [[e′

]]}

[[dispose(e)]] = {ρ disp(l) | (ρ, l) ∈ [[e]]}
[[c1; c2]] = [[c1]] [[c2]] = {α1α2 | α1 ∈ [[c1]] & α2 ∈ [[c2]]}

[[if b then c1 else c2]] = [[b]]true [[c1]] ∪ [[b]]false [[c2]]

[[while b do c]] = ([[b]]true [[c]])∗ [[b]]false ∪ ([[b]]true [[c]])ω

[[c1‖c2]] = [[c1]]‖[[c2]]

[[local i = e in c]] = {ρ(α\i) | (ρ, v) ∈ [[e]] & α ∈ [[c]][i :v]}

[[with r when b do c]] = wait∗ enter ∪ waitω

where wait = acq(r) [[b]]false rel(r) ∪ {try(r)}

and enter = acq(r) [[b]]true [[c]] rel(r)

[[resource r in c]] = {α\r | α ∈ [[c]]r }

We hope that the purpose of each semantic clause is evident, and that the reader will readily appreciate the role
played in these clauses by the trace constructions discussed earlier. For instance, execution of an assignment command
begins with evaluation of the right-hand-side expression and ends with the assignment to the target identifier. (So we
do not assume that assignments are atomic.) Similarly, an update command evaluates from left to right, then performs
the update action on the relevant heap address. Sequential composition and conditional commands are interpreted
using concatenation, and parallel composition is modelled using mutex fairmerge. While-loops correspond, as usual, to
iteration, and we include traces representing both terminating and non-terminating executions. A block local i = e in c
begins by evaluating e to obtain a value v, then executes c with i bound locally to v. Similarly a resource block
resource r in c executes c with r bound to a local resource assumed to be initially available.

The iterative structure of the traces of a conditional critical region reflect its characteristic synchronization
attributes: waiting until the resource is available and the test condition is true, followed by execution of the body
command while holding the resource, and finally releasing the resource. Note that the clause for a critical region
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allows for the possibility that the body may loop forever or encounter a runtime error, in which case the resource
release action will not occur.

Since [[true]]false = {} and [[true]]true = {δ}, we can derive a simpler formula for the trace set of
with r when true do c: we will use the syntactic abbreviation with r do c for this special case, and we have

[[with r do c]] = try(r)∗ acq(r) [[c]] rel(r) ∪ {try(r)ω}.

Note that the semantics and the enabling relation allow us to determine, for each command c and state σ , what
possible executions of c are enabled from σ , and whether or not execution may encounter a runtime error, such as a
dangling pointer, an attempt to read or assign to an uninitialized identifier or a race.

Examples

1. [[x :=x + 1]] = {x=v x :=v + 1 | v ∈ Vint}

This program always terminates, when executed from a state in which x has a value; its effect is to increment the
value of x by 1.

2. Concurrent assignments to the same identifier cause a race. For example [[x :=x + 1‖x :=x + 1]] contains
interleavings of traces x=v x :=v + 1 and x=v′ x :=v′

+ 1, for all v and v′, and also traces that reflect the inherent
race condition, such as x=v abort.

3. [[with r do x :=x + 1]] = try(r)∗ acq(r) [[x :=x + 1]] rel(r) ∪ {try(r)ω}

This program needs to acquire r before incrementing x , and will wait forever if the resource never becomes
available.

4. The trace set [[with r do x :=x + 1‖with r do x :=x + 1]] contains all traces of the forms:
• acq(r) α rel(r) acq(r) β rel(r)

• acq(r) α rel(r) try(r)ω

• try(r)ω

where α, β ∈ [[x :=x + 1]]. Only the first kind are sequential for r . The trace set also includes traces obtainable
from the above forms by inserting (finitely many) additional try(r) steps.

5. It follows from the previous example, focusing on the traces which are sequential for r , that:

[[resource r in (with r do x :=x + 1‖with r do x :=x + 1)]]

= {αβ | α, β ∈ [[x :=x + 1]]}

= [[x :=x + 1; x :=x + 1]].

The parallel assignments to x here are protected by r , and the overall effect is the same as that of two consecutive
increments.

6. The command x :=cons(1)‖y:=cons(2) has the trace set

{alloc(l, [1]) x :=l | l ∈ Vaddr}‖{alloc(l ′, [2]) y:=l ′ | l ′ ∈ Vaddr}.

This set includes traces of the form:

alloc(l, [1]) x :=l alloc(l, [2]) y:=l,

and other interleavings of alloc(l, [1]) x :=l with alloc(l, [2]) y:=l, none of which are sequential for l. The set
also includes traces obtained by interleaving alloc(l, [1]) x :=l and alloc(l ′, [2]) y:=l ′, where l 6= l ′; all of these
are sequential for l and l ′.

7. The command x :=cons(1)‖dispose(42) has the trace set

{alloc(l, [1]) x :=l | l ∈ Vaddr}‖{disp(42)}.

The possible interleavings have one of the forms
• disp(42) alloc(l, [1]) x :=l
• alloc(l, [1]) disp(42) x :=l
• alloc(l, [1]) x :=l disp(42),

where l ∈ Vaddr.
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8. The command dispose(x)‖dispose(y) has the trace set

{x=v disp(v) | v ∈ Vaddr}‖{y=v′ disp(v′) | v′
∈ Vaddr},

including traces of the form x=v y=v abort because of the race-detecting clause in the definition of fairmerge. A
trace of this form indicates that if the program is executed from a state in which x and y are aliases for the same
heap cell v a race condition will occur.

9. To illustrate how the semantic model deals with deadlock, consider
c1 =def with r1 do with r2 do x :=1
c2 =def with r2 do with r1 do y:=1

We have:
[[c1]] = try(r1)

∞ acq(r1) try(r2)
∞acq(r2) x :=1 rel(r2) rel(r1)

[[c2]] = try(r2)
∞ acq(r2) try(r1)

∞acq(r1) y:=1 rel(r1) rel(r2).

The trace set of c1‖c2 thus includes traces such as
acq(r1) acq(r2) x :=1 rel(r2) rel(r1) acq(r2) acq(r1) y:=1 rel(r1) rel(r2)

acq(r2) acq(r1) y:=1 rel(r1) rel(r2) acq(r1) acq(r2) x :=1 rel(r2) rel(r1)

which correspond to deadlock-free computations, but also includes traces belonging to the subset

(acq(r1)‖acq(r2)) (try(r2)
ω
‖try(r1)

ω)

which represent the deadlock which occurs if c1 acquires r1 and c2 acquires r2, whereupon each process is trying
to acquire a resource held by the other. Using the above analysis it is easy to see that:

[[resource r1, r2 in (c1‖c2)]] = {x :=1 y:=1, y:=1 x :=1, δω
}

and this trace set again records the potential for deadlock.
10. Consider the program c given by:

c =def with r do while true do skip.

We have:

[[c]] = try(r)∗ acq(r) δω
∪ try(r)ω

so that:

[[c‖c]] = try(r)∗ acq(r) try(r)ω ∪ try(r)ω

It follows that:

[[resource r in (c‖c)]] = {δω
}

This reflects the expected behaviour of this command: one of the parallel components will acquire the resource
and loop forever, while the other waits forever.

11. Let PUT(x) and GET(y) be the following code fragments:

PUT(x) : with buf when full = 0 do (z:=x; full:=1)

GET(y) : with buf when full = 1 do (y:=z; full:=0)

We have:
[[PUT(x)]] = wait¬full

∗ put ∪ wait¬full
ω

where wait¬full = {acq(buf ) full=1 rel(buf ), try(buf )}
put = {acq(buf ) put(v) rel(buf ) | v ∈ Vint}

put(v) = full=0 x=v z:=v full:=1

and
[[GET(y)]] = waitfull

∗ get ∪ waitfull
ω

where waitfull = {acq(buf ) full=0 rel(buf ), try(buf )}
get = {acq(buf ) get(v) rel(buf ) | v ∈ Vint}

get(v) = full=1 z=v y:=v full:=0

The trace set of PUT(x)‖(GET(y); dispose(y)) includes traces of the following forms, where v, v′, v′′ range over
Vint:
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• acq(buf ) put(v) rel(buf ) acq(buf ) get(v′) rel(buf ) y=v′′ disp(v′′)

• acq(buf ) get(v′) rel(buf ) ((acq(buf ) put(v) rel(buf ))‖(y=v′′ disp(v′′)))

The sequential traces of these forms are:
• acq(buf ) put(v) rel(buf ) acq(buf ) get(v) rel(buf ) y=v disp(v)

• acq(buf ) get(v′) rel(buf ) ((acq(buf ) put(v) rel(buf ))‖(y=v′ disp(v′)))

None of these traces leads to a race.
For (PUT(x); dispose(x))‖GET(y) the trace set includes traces of the forms:
• acq(buf ) put(v) rel(buf ) ((x=v′′ disp(v′′))‖(acq(buf ) get(v′) rel(buf )))
• acq(buf ) get(v′) rel(buf ) acq(buf ) put(v) rel(buf ) x=v′′ disp(v′′)

The sequential traces of these forms are:
• acq(buf ) put(v) rel(buf ) ((x=v disp(v))‖(acq(buf ) get(v) rel(buf )))
• acq(buf ) get(v′) rel(buf ) acq(buf ) put(v) rel(buf ) x=v disp(v)

Again there are no races in these traces.
On the other hand, the trace set of (PUT(x); dispose(x))‖(GET(y); dispose(y)) includes, for each v, traces of

the form:

acq(buf ) put(v) rel(buf ) acq(buf ) get(v) rel(buf ) (x=v disp(v))‖(y=v disp(v))

and hence includes the sequential trace

acq(buf ) put(v) rel(buf ) acq(buf ) get(v) rel(buf ) x=v y=v abort.

This indicates the possibility of a race condition, caused in this case by concurrent attempts to dispose the same
heap cell. This trace is enabled from any state (s, h) such that s(full) = 0, s(x) = v, and y, z ∈ dom(s).

5. Semantic equivalence

Definition 6. Commands c and c′ are said to be semantically equivalent if [[c]] = [[c′
]].

Since the trace semantics is compositional, semantic equivalence is clearly a congruence: if [[c]] = [[c′
]] then for all

program contexts C[−] we also have [[C[c]]] = [[C[c′
]]].

We can establish a number of standard laws of semantic equivalences. In particular, sequential composition and
parallel composition are associative: for all commands c1, c2 and c3,

[[c1; (c2; c3)]] = [[(c1; c2); c3]]

[[c1‖(c2‖c3)]] = [[(c1‖c2)‖c3]]

Parallel composition is also commutative: for all c1 and c2, [[c1‖c2]] = [[c1‖c2]]. Moreover, for all c we have

[[skip; c]] = [[c; skip]] = [[c]]
[[skip‖c]] = [[c‖skip]] = [[c]]

We also obtain the usual loop unrolling law:

[[while b do c]] = [[if b then c; while b do c else skip]].

Let [i ′/ i]c be the command obtained by replacing each free occurrence of i in c by i ′, changing bound variable
names if necessary to avoid capture. If i ′ 6∈ free(c), then

[[local i = e in c]] = [[local i ′ = e in [i ′/ i]c]].

Simlarly, let [r ′/r ]c be obtained by replacing every free occurrence of the resource name r in c by r ′, changing
bound resource names if necessary to avoid capture. We use a similar notation [r ′/r ]α for the trace obtained by
replacing each resource action on r in α by the corresponding action on r ′. If r ′ is a “fresh” resource name, so that
r ′

6∈ res(c), the commands resource r in c and resource r ′ in [r ′/r ]c are semantically equivalent, since:

[[resource r ′ in [r ′/r ]c]] = {β\r ′
| β ∈ [[[r ′/r ]c]]r ′}

= {([r ′/r ]α)\r ′
| α ∈ [[c]]r }

= {α\r | α ∈ [[c]]r }
= [[resource r in c]].
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Note also that if r1 and r2 are distinct resource names,

[[resource r1 in resource r2 in c]] = {(α\r1)\r2 | α ∈ ([[c]]r1)r2}

[[resource r2 in resource r1 in c]] = {(α\r2)\r1 | α ∈ ([[c]]r2)r1}

and since (α\r1)\r2 = (α\r2)\r1 holds for all traces α, and (Tr1)r2 = (Tr2)r1 holds for all trace sets T , the two
commands are semantically equivalent. Accordingly, we may use the convenient syntactic abbreviation

resource r1, r2 in c

without risk of ambiguity, and we may write:

[[resource r1, r2 in c]] = {α\{r1, r2} | α ∈ [[c]]r1,r2}.

6. Race-free programs

We now formalize, using the trace semantics, a notion of race-freedom for commands. We choose this notion to
be strong enough to imply that whenever the program is executed in isolation, without interference, there will be no
races, no attempt to access an identifier outside the domain of the store and no attempt to access an address outside of
the heap.

Definition 7 (Race-Free Command). A command c is race-free from state (s, h) if for all traces α ∈ [[c]],

¬(s, h)
α

==⇒ abort.

Examples

1. x :=1‖y:=2 is race-free from (s, h) if and only if x, y ∈ dom(s).
2. [x]:=1‖[y]:=2 is race-free from (s, h) if and only if x, y ∈ dom(s), s(x) 6= s(y), and s(x), s(y) ∈ dom(h).
3. [10]:=1‖[10]:=2 is not race-free from any state.
4. x :=[10]‖y:=[10] is race-free from all states (s, h) in which x, y ∈ dom(s) and 10 ∈ dom(h). This is because we

do not view a concurrent pair of reads as a race condition.
5. x :=1‖x :=1 is not race-free from any state; similarly [x]:=1‖x :=1 and y:=[x]‖x :=1 are not race-free.
6. dispose(x)‖dispose(y) is race-free from (s, h) if and only if x, y ∈ dom(s), s(x) 6= s(y) and s(x), s(y) ∈ dom(h).
7. The command x :=cons(1)‖dispose(42) is race-free from any state (s, h) such that x ∈ dom(s) and 42 ∈ dom(h).
8. The command x :=cons(1)‖y:=cons(2) is race-free from every state (s, h) in which x, y ∈ dom(s).
9. The command

x :=3‖with r do x :=x + 1

is not race-free from any state, whereas

with r do x :=3 ‖ with r do x :=x + 1

is race-free from all states (s, h) with x ∈ dom(s).
10. Let PUT(x) and GET(y) be the commands introduced earlier. Based on our prior analysis of the traces of these

programs, we can deduce that:
• PUT(x)‖(GET(y); dispose(y))

is race-free from (s, h) if and only if: x, y, z, full ∈ dom(s) and either s(full) = 0 & s(x) ∈ dom(h) or
s(full) = 1 & s(z) ∈ dom(h).

• (PUT(x); dispose(x))‖GET(y)

is race-free from (s, h) if and only if x, y, z, full ∈ dom(s) and s(full) ∈ {0, 1} & s(x) ∈ dom(h).
• (PUT(x); dispose(x))‖(GET(y); dispose(y))

is not race-free from any state.
• (x :=cons(1); PUT(x))‖(GET(y); dispose(y))

is race-free from (s, h) if and only if x, y, z, full ∈ dom(s) and either s(full) = 0, or s(full) = 1 & s(z) ∈

dom(h).
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• (x :=cons(1); PUT(x); dispose(x))‖GET(y)

is race-free from (s, h) if and only if x, y, z, full ∈ dom(s) and s(full) ∈ {0, 1}.

We have shown that the trace semantics supports compositional program analysis, and can be used to determine
whether or not a command causes a runtime error. The semantics applies to all programs in our programming language,
including racy programs as well as race-free programs, but – crucially – we are able to distinguish race-free programs
from racy programs. Although it is possible to use the semantic definitions by hand to determine race-freedom in some
simple examples, it should be evident from the above analyses that this method is likely to be prohibitively complex
for programs on a larger scale.

Now we are ready to introduce a resource-sensitive logic. This logic will be designed to ensure that all provable
programs are race-avoiding. Moreover, the logic is designed to abstract away from irrelevant scheduling details and
allow attention to be directed more narrowly. The interactions between processes in a well designed parallel program
will be amenable to a less taxing analysis that takes advantage of a dynamic form of separation.

7. Separation logic

We begin with the syntax, semantics, and key properties of separation logic formulas, following Reynolds [41].

7.1. Syntax

We use p as a meta-variable ranging over separation logic formulas, given by the following abstract grammar. We
let b range over pure boolean expressions, e over pure integer-valued expressions, and E over pure list expressions.

p ::= b | emp | (e 7→ e′) | p1 ∗ p2 | p1 ∨ p2 | p1 ∧ p2 | ¬p | ∃i.p

We also allow inductively defined formulas such as list( f ). We use the usual notation for derived connectives such
as implication: p ⇒ q is defined to be (¬p) ∨ q .

We also use the standard abbreviations, such as e 7→ − for ∃i.(e 7→ i) (where i is not free in e) and e 7→ E for
e 7→ e0 ∗ · · · ∗ (e + n) 7→ en, when E is (e0, . . . , en).

Let free(p) be the set of identifiers occurring free in p, defined as usual by structural induction.

7.2. Semantics

Since the value of a pure expression depends only on the store, we can specify the atomic semantics of an integer
expression e as a partial function from stores to values. Thus we will write |e| : S ⇀ Vint, where S is the set of stores.
Similarly a pure boolean expression b will denote a partial function from stores to truth values, |b| : S ⇀ {true, false}.
And a list expression E denotes a partial function |E | : S ⇀ V ∗

int from stores to lists of values. These semantic
functions are defined in the traditional, denotational style. For example,

|i | = {(s, v) | (i, v) ∈ s & s ∈ S}

|e1 + e2| = {(s, v1 + v2) | (s, v1) ∈ |e1| & (s, v2) ∈ |e2|}

|(e0, . . . , en)| = {(s, [v0, . . . , vn]) | ∀i.(0 ≤ i ≤ n ⇒ (s, vi ) ∈ |ei |)}

We can connect the atomic semantics and trace semantics of expressions in the following way:

(s, v) ∈ |e| ⇔ ∃ρ. s
ρ

==⇒ s & (ρ, v) ∈ [[e]].

The truth value of a separation logic formula p depends on the store and the heap. When σ |H p we say that σ satisfies
p, or that p holds in σ .

When dom(s) ∩ dom(s′) = {} we say that s and s′ are disjoint, written s ⊥ s′, and we write s · s′
= s ∪ s′. Similarly

when dom(h) ∩ dom(h′) = {} we write h ⊥ h′ and we let h · h′
= h ∪ h′.
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Definition 8. The satisfaction relation (s, h) |H p is defined by structural induction on p, for all states (s, h) such that
dom(s) ⊇ free(p):

(s, h) |H b iff (s, true) ∈ |b|

(s, h) |H emp iff h = {}

(s, h) |H (e 7→ e′) iff ∃v, v′. (s, v) ∈ |e| & (s, v′) ∈ |e′
| & h = {(v, v′)}

(s, h) |H p1 ∗ p2 iff ∃h1 ⊥ h2. h = h1 · h2 & (s, h1) |H p1 & (s, h2) |H p2
(s, h) |H p1 ∧ p2 iff (s, h) |H p1 & (s, h) |H p2
(s, h) |H p1 ∨ p2 iff (s, h) |H p1 or (s, h) |H p2
(s, h) |H ¬p iff not (s, h) |H p
(s, h) |H ∃i.p iff ∃v ∈ Vint. ([s | i : v], h) |H p

We also specify that abort |H p is false for all p. We say that a state is proper if it is not abort; thus σ |H true is true
if and only if σ is proper.

We will assume without proof the following agreement theorem, to the effect that the satisfaction of a separation
logic formula depends only on the heap and the values of its free identifiers.

Lemma 9 (Agreement). If s1 agrees with s2 on free(p) then (s1, h) |H p if and only if (s2, h) |H p.

Let [e/ i]p be obtained from p by replacing every free occurrence of i by e, renaming bound variables if necessary
to avoid capture. The following substitution lemma can be proven by induction on the structure of p.

Lemma 10 (Substitution). For all formulas p, expressions e, identifiers i , and states (s, h),

(s, h) |H [e/ i]p ⇔ ∃v. (s, v) ∈ |e| & ([s | i : v], h) |H p.

We say that p is universally valid if p holds in all (proper) states. Note that an implication p ⇒ q is universally
valid if and only if every state satisfying p also satisfies q . If p ⇒ q and q ⇒ p are both universally valid, so that p
and q hold in exactly the same states, we say that p and q are logically equivalent.

We say that a formula p holds in a sub-heap of (s, h) if there is a sub-heap h′
⊆ h such that (s, h′) |H p. We will

be particularly concerned with precise formulas, which are characterized by the property that in every state there is at
most one sub-heap in which the formula holds.

Definition 11. A formula p is precise if, for all states (s, h), there is at most one sub-heap h′
⊆ h such that (s, h′) |H p.

Note that emp and e 7→ e′ are precise, and if R1 and R2 are precise, so is R1 ∗ R2. If b is pure and p1, p2 are
precise, then (b ∧ p1) ∨ (¬b ∧ p2) is precise. If p1 is precise or p2 is precise, so is p1 ∧ p2.

Moreover, if R is precise then, for all p and q , (p ∧ q) ∗ R and (p ∗ R) ∧ (q ∗ R) are logically equivalent.
If R is precise, (s, h) |H R, and h′

⊆ h, we may refer unambiguously to (sdfree(R), h′) as the portion of (s, h)

determined by R.

8. Concurrent separation logic

8.1. Syntax

As in the Owicki–Gries logic, and in O’Hearn’s adaptation, we want to prove properties of a parallel program in
the context of a collection of assumptions about resources: each resource name occurring in the program is to be
associated with a finite set of identifiers (a protection list) and a resource invariant. As Owicki remarks, the identifiers
chosen to be associated with a particular resource should be “logically” related. Consequently, unlike Owicki–Gries
and O’Hearn, we will make this association part of the structure of a logical formula, rather than part of the program
itself. We will therefore work with resource-sensitive partial correctness formulas of the form

Γ ` {p}c{q},

where the pre-condition p and post-condition q are separation logic formulas and Γ is a resource context which
associates resource names with protection lists and invariants. Each resource invariant is a precise separation logic
formula.
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A typical resource context Γ has the form

r1(X1) : R1, . . . , rk(Xk) : Rk,

in which k ≥ 0 and for each index i ∈ 1 . . . k, X i is the set of identifiers protected by ri and Ri is the resource invariant
for ri . Let dom(Γ ) = {r1, . . . , rk} be the set of resource names mentioned in Γ , and owned(Γ ) =

⋃k
i=1 X i be the

set of identifiers protected by Γ . Let free(Γ ) =
⋃k

i=1 free(Ri ) be the set of identifiers mentioned in the resource
invariants. Let inv(Γ ) = R1 ∗ · · · ∗ Rk be the separate conjunction of the resource invariants in Γ . In particular, when
Γ is empty this is emp. Note that since each resource invariant is precise it follows that inv(Γ ) is precise.

We will impose some syntactic well-formedness constraints on contexts and formulas, designed to facilitate
modularity. Specifically, we say that:

• Γ is well-formed if its entries are disjoint, in that if i 6= j then ri 6= r j , X i ∩ X j = {}, and free(Ri ) ∩ X j = {}.
• Γ ` {p}c{q} is well-formed if Γ is well-formed, and p and q do not mention any protected identifiers, i.e.
free(p, q) ∩ owned(Γ ) = {}.

Thus in a well-formed context each identifier belongs to at most one resource. We do not require that the free identifiers
in a resource invariant be protected, i.e. that free(Ri ) ⊆ X i . This allows us to use a resource invariant to specify a
connection between the values of protected identifiers and the values of non-critical variables.

The inference rules will be designed to enforce the following additional syntactic constraints4:

• Every free write occurrence in c of an identifier used in a resource invariant of Γ is inside a critical region for the
corresponding resource.

• Every free occurrence in c of a protected identifier is inside a critical region for the corresponding resource of Γ .
• Every critical identifier of c is protected by a resource.

Resource contexts Γ and Γ ′ are disjoint when dom(Γ ) ∩ dom(Γ ′) = {} and owned(Γ ) ∩ free(Γ ′) = {} and
free(Γ )∩owned(Γ ′) = {}. We write Γ ⊥ Γ ′ when Γ and Γ ′ are disjoint, and when this holds we write Γ ,Γ ′ for the
union of Γ and Γ ′. Note that If Γ and Γ ′ are well-formed and disjoint, the union context Γ ,Γ ′ is also well-formed.

8.2. Semantics

Intuitively, a resource-sensitive partial correctness formula specifies how the program behaves when executed
in an environment which obeys the mutex discipline for resources and respects the protection lists and invariants.
Echoing O’Hearn’s description of the philosophy behind this methodology, we assume that at all stages the state can
be partitioned into the portion owned by the program, the portion owned by its environment, and the portion belonging
to the currently available resources. We assume that at all times the separate conjunction of the resource invariants
holds, for all available resources. The program guarantees to stay within these bounds, provided it can rely on its
environment to do likewise. When a process acquires a resource it claims ownership of the protected identifiers and
the corresponding (separate) heap portion in which the invariant holds; when releasing the resource it must ensure that
the invariant holds again, separately, and yields ownership of the corresponding piece of state.

Based on this intuitive notion of respect, we can now propose an informal notion of validity for resource-sensitive
partial correctness formulas.

Proposal 12 (Informal Notion of Validity). A formula Γ ` {p}c{q} is valid iff every finite interactive computation of
c, from a state satisfying p ∗ inv(Γ ) with initial values for free(c), in an environment that respects Γ , is error-free,
respects Γ , and ends in a state satisfying q ∗ inv(Γ ).

The special case when Γ is empty implies conventional partial correctness together with freedom from runtime
error: validity of {} ` {p}c{q} implies that whenever c is executed from a state satisfying p, with initial values for
free(c), there are no runtime errors, and if execution terminates the final state satisfies q.

We have not yet formulated precisely the notion of an interactive computation in an environment that respects Γ .
This will be formalized later, but this informal notion of validity should serve as a reasonable guide for now.

We are now ready to present our version of O’Hearn’s rules.

4 We do not use these properties in any of the technical developments that follow, so we will not formalize them or give a proof that they hold in
all provable formulas. Nevertheless we state them here since they recall analogous requirements in the Owicki–Gries logic.
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8.3. Inference rules

The following are the inference rules of concurrent separation logic. The side conditions of various rules are
designed to ensure that every provable formula is well formed. In particular, this means that all resource contexts are
well formed, resource invariants are precise, and the pre- and post-condition of a formula do not mention any protected
identifiers. Some of the rules have side conditions to ensure that the command obeys the resource discipline, so that
protected identifiers, and writes to identifiers occurring in invariants, only appear inside regions. Similar restrictions
are made in O’Hearn’s paper [31].

• SKIP

Γ ` {p}skip{p}

if free(p) ∩ owned(Γ ) = {}

• ASSIGNMENT

Γ ` {[e/ i]p}i :=e{p}

if i 6∈ owned(Γ ) ∪ free(Γ ) and free(p, e) ∩ owned(Γ ) = {}

• LOOKUP

Γ ` {[e′/ i]p ∧ e 7→ e′}i :=[e]{p ∧ e 7→ e′}

if i 6∈ free(e, e′) and i 6∈ owned(Γ ) ∪ free(Γ )

and free(e, e′, p) ∩ owned(Γ ) = {}

• ALLOCATION

Γ ` {emp}i :=cons(E){i 7→ E}

if i 6∈ free(E) and i 6∈ owned(Γ ) ∪ free(Γ ) and free(E) ∩ owned(Γ ) = {}

• UPDATE

Γ ` {e 7→ −}[e]:=e′{e 7→ e′}

if free(e, e′) ∩ owned(Γ ) = {}

• DISPOSAL

Γ ` {e 7→ −}dispose e{emp}

if free(e) ∩ owned(Γ ) = {}

• SEQUENTIAL

Γ ` {p1}c1{p2} Γ ` {p2}c2{p3}

Γ ` {p1}c1; c2{p3}

• CONDITIONAL

Γ ` {p ∧ b}c1{q} Γ ` {p ∧ ¬b}c2{q}

Γ ` {p}if b then c1 else c2{q}

• LOOP

Γ ` {p ∧ b}c{p}

Γ ` {p}while b do c{p ∧ ¬b}

• LOCAL VARIABLE

Γ ` {p ∧ i = e}c{q}

Γ ` {p}local i = e in c{q}

if i 6∈ free(e, p, q) and free(p, e, i, q) ∩ owned(Γ ) = {}
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• RENAMING VARIABLE

Γ ` {p}local i ′ = e in [i ′/ i]c{q}

Γ ` {p}local i = e in c{q}

if i ′ 6∈ free(c)
• PARALLEL

Γ ` {p1}c1{q1} Γ ` {p2}c2{q2}

Γ ` {p1 ∗ p2}c1‖c2{q1 ∗ q2}

if free(p1, q1) ∩ writes(c2) = free(p2, q2) ∩ writes(c1) = {}

and (free(c1) ∩ writes(c2)) ∪ (free(c2) ∩ writes(c1)) ⊆ owned(Γ )

• LOCAL RESOURCE

Γ , r(X) : R ` {p}c{q}

Γ ` {p ∗ R}resource r in c{q ∗ R}

if r 6∈ dom(Γ ), X ∩ owned(Γ ) = {}, free(R) ∩ owned(Γ ) = {},
and R is precise.

• RENAMING RESOURCE

Γ ` {p}resource r ′ in [r ′/r ]c{q}

Γ ` {p}resource r in c{q}

if r ′
6∈ res(c)

• REGION

Γ ` {(p ∗ R) ∧ b}c{q ∗ R}

Γ , r(X) : R ` {p}with r when b do c{q}

if r 6∈ dom(Γ ), X ∩ owned(Γ ) = {}, free(R) ∩ owned(Γ ) = {}, R is precise, and free(p, q) ∩ X = {}

• FRAME

Γ ` {p}c{q}

Γ ` {p ∗ I }c{q ∗ I }

if free(I ) ∩ writes(c) = {} and free(I ) ∩ owned(Γ ) = {}

• CONSEQUENCE

p′
⇒ p Γ ` {p}c{q} q ⇒ q ′

Γ ` {p′}c{q ′}

provided p′
⇒ p and q ⇒ q ′ are universally valid,

and free(p′, q ′) ∩ owned(Γ ) = {}

• EXISTENTIAL

Γ ` {p}c{q}

Γ ` {∃i.p}c{∃i.q}

if i 6∈ free(c)
• AUXILIARY

Γ ` {p}c{q}

Γ ` {p}c\X{q}

if X is auxiliary for c, and X ∩ free(p, q) = {}.
• CONJUNCTION

Γ ` {p1}c{q1} Γ ` {p2}c{q2}

Γ ` {p1 ∧ p2}c{q1 ∧ q2}
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• DISJUNCTION

Γ ` {p1}c{q1} Γ ` {p2}c{q2}

Γ ` {p1 ∨ p2}c{q1 ∨ q2}

• EXPANSION

Γ ` {p}c{q}

Γ ,Γ ′ ` {p}c{q}

if writes(c) ∩ free(Γ ′) = {}, free(c) ∩ owned(Γ ′) = {}, Γ ⊥ Γ ′, and free(p, c, q) ∩ owned(Γ ′) = {}

• CONTRACTION

Γ ,Γ ′
` {p}c{q}

Γ ` {p}c{q}

if res(c) ⊆ dom(Γ ) and Γ ⊥ Γ ′

8.4. Comments

The rules dealing with the sequential programming constructs of the language are natural adaptations of the
corresponding inference rules given by Reynolds, with the incorporation of a resource context and side conditions
to ensure well-formedness of the formulas and adherence to the protection policy. For instance, the ASSIGNMENT
rule has a side condition to prevent the rule’s use when the target identifier is protected or used in a resource invariant,
and another side condition to disallow use of a protected identifier on the right-hand side of an assignment. The
REGION rule permits such use of protected identifiers inside the body of a critical region for the relevant resource.

The PARALLEL, REGION and RESOURCE rules are based on O’Hearn’s proposed adaptations of Owicki–Gries
inference rules. A side condition in the PARALLEL rule enforces the requirement that each critical variable must be
associated with a resource, just as in the original Owicki–Gries rule, but the pre- and post-conditions of the component
commands are combined with the separating form of conjunction. The original rule using the standard conjunction is
not sound for pointer-programs, as we have already remarked. The well-formedness condition in the RESOURCE and
REGION rules require the resource invariant R to be precise. As Reynolds has shown, arbitrary resource invariants
cannot be used here without losing soundness.

The AUXILIARY rule similarly adapts the Owicki/Gries rule for auxiliary variables.5 As usual, a set of identifiers
X is said to be auxiliary for c if every free occurrence in c of an identifier from X is in an assignment that only affects
the values of identifiers in X . In particular, auxiliary identifiers cannot occur in conditional tests or loop tests, and do
not influence the control flow of the program. The command c\X is obtained from c by deleting all assignments to
identifiers in X .

The “structural” rules CONJUNCTION and DISJUNCTION are not crucial but can be useful as methodological tools.
The “contextual” rules EXPANSION and CONTRACTION suggest themselves rather naturally as a by-product of our

formal development.
We have omitted the obvious structural rules permitting permutation of resource contexts.

9. Examples

To demonstrate the utility of the inference rules, clarify the need for some of the side conditions, and explain what
aspects of program behaviour the logic handles, we now present a series of examples. Many of these are more formal
versions of examples drawn from O’Hearn’s paper, and we include them here to emphasize the virtues of our logical
formulation.

5 Owicki and Gries cite Brinch Hansen [8] and Lauer [29] as having first recognized the need for auxiliary variables in proving correctness
properties of concurrent programs.
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9.1. Non-termination, deadlock, and runtime errors

Our resource-sensitive notion of partial correctness is designed to support reasoning about the absence of runtime
errors. This requires proper account to be taken of the infinite traces of a command, not just its finite traces, in
case an infinite trace may lead to a runtime error. The semantics, of course, deals with this possibility appropriately.
Nevertheless, our logic is not sensitive to error-free non-termination, and ignores the potential for deadlock. To help
clarify the subtleties, consider the following simple commands.

The command while true do skip never terminates, and never causes any runtime errors. It is easy to prove the
formula

` {true} while true do skip {false},

using the LOOP rule.
On the other hand, the command while true do dispose(42) never terminates successfully, and always causes a

runtime error. There is no non-trivial formula of the form

` {p} while true do dispose(42) {q}

that can be proven from our inference rules, since this would require both p ⇒ 42 7→ − and emp ⇒ p to be
universally valid, and this can only happen when p is logically equivalent to false.

Finally, let c1 and c2 be the following commands:

c1 =def with r1 do with r2 do x :=1
c2 =def with r2 do with r1 do y:=1

The formula

r1 : emp, r2 : emp ` {x = 0 ∧ y = 0}c1‖c2{x = 1 ∧ y = 1}

is provable. Note that the possibility of deadlock, which was evident from the trace set of this program, is ignored by
the logic.

From the above formula we can then deduce:

` {x = 0 ∧ y = 0}resource r1, r2 in (c1‖c2) {x = 1 ∧ y = 1}

by RESOURCE and CONSEQUENCE. Again this formula ignores the potential for deadlock.

9.2. Concurrent disposal

Suppose that p ⇒ x 7→ − ∗ y 7→ − ∗ q . We can then construct the following derivation:

• ` {x 7→ −}dispose(x){emp} by DISPOSAL

• ` {y 7→ −}dispose(y){emp} by DISPOSAL

• ` {x 7→ − ∗ y 7→ −}dispose(x)‖dispose(y){emp ∗ emp}

by PARALLEL

• ` {x 7→ − ∗ y 7→ − ∗ q}dispose(x)‖dispose(y){emp ∗ emp ∗ q}

by FRAME, since writes(dispose(x)‖dispose(y)) = {}

• ` {p}dispose(x)‖dispose(y){q} by CONSEQUENCE

9.3. Memory manager

Let list( f ) be the least predicate satisfying the usual recursive definition:

list( f ) =def ( f = nil ∧ emp) ∨ (∃y. f 7→ −, y ∗ list(y))

This is a precise predicate.
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Let ALLOC(x) and FREE(y) be the following code fragments:

ALLOC(x) = with mm do
if f = nil then x :=cons(−, −) else (x := f ; f :=[x + 1])

FREE(y) = with mm do ([y + 1]:= f ; f :=y)

The following formula is provable from the rules CONDITIONAL, LOOKUP, SEQUENCE, ALLOCATION and
SEQUENTIAL.

{} ` {emp ∗ list( f )}

if f = nil then x :=cons(−, −) else (x := f ; f :=[x + 1])

{x 7→ −, − ∗ list( f )}

Hence, using REGION

mm( f ) : list( f ) ` {emp}ALLOC(x){x 7→ −, −}

and with the appropriate substitutions we can replay the above derivation to deduce:

mm( f ) : list( f ) ` {emp}ALLOC(x1){x1 7→ −, −}

mm( f ) : list( f ) ` {emp}ALLOC(x2){x2 7→ −, −}

Using PARALLEL and CONSEQUENCE we get:

mm( f ) : list( f ) ` {emp}ALLOC(x1)‖ALLOC(x2){x1 7→ −, − ∗ x2 7→ −, −}

Using the RESOURCE rule yields:

{} ` {list( f )}

resource mm in ALLOC(x1)‖ALLOC(x2)

{x1 7→ −, − ∗ x2 7→ −, − ∗ list( f )}

Similarly:

{} ` {list( f ) ∗ y 7→ −, −}[y + 1]:= f ; f :=y{emp ∗ list( f )}

mm( f ) : list( f ) ` {y 7→ −, −}FREE(y){emp}

With the appropriate substitutions, we can derive similarly:

mm( f ) : list( f ) ` {y1 7→ −, −}FREE(y1){emp}

mm( f ) : list( f ) ` {y2 7→ −, −}FREE(y2){emp}

Now using the PARALLEL rule we get:

mm( f ) : list( f ) ` {y1 7→ −, − ∗ y2 7→ −, −}FREE(y1)‖FREE(y2){emp}

The RESOURCE rule then gives:

{} ` {y1 7→ −, − ∗ y2 7→ −, − ∗ list( f )}

resource mm in FREE(y1)‖FREE(y2)

{list( f )}

9.4. Buffer

Let RI be the following (precise) resource invariant:

RI : (full = 1 ∧ z 7→ −) ∨ (full = 0 ∧ emp)
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Let PUT(x) and GET(y) be the following code fragments:

PUT(x) : with buf when full = 0 do (z:=x; full:=1)

GET(y) : with buf when full = 1 do (y:=z; full:=0)

We can prove:

{} ` {(RI ∗ x 7→ −) ∧ full = 0}z:=x; full:=1{RI ∗ emp}

buf (z, full) : RI ` {x 7→ −}PUT(x){emp}

Similarly:

{} ` {(RI ∗ emp) ∧ full = 1}y:=z; full:=0{RI ∗ y 7→ −}

buf (z, full) : RI ` {emp}GET(y){y 7→ −}

Hence we can also prove:

buf (z, full) : RI ` {emp}x :=cons(−); PUT(x){emp}

buf (z, full) : RI ` {emp}GET(y); dispose(y){emp}

Using the PARALLEL rule we obtain:

buf (z, full) : RI ` {emp ∗ emp}

(x :=cons(−); PUT(x))‖(GET(y); dispose(y))

{emp ∗ emp}

and hence, using CONSEQUENCE,

buf (z, full) : RI ` {emp}

(x :=cons(−); PUT(x))‖(GET(y); dispose(y))

{emp}

Now using the RESOURCE rule we derive:

{} ` {RI ∗ emp}

resource buf in
(x :=cons(−); PUT(x))‖(GET(y); dispose(y))

{RI ∗ emp}

Again we can simplify via CONSEQUENCE, to obtain:

{} ` {RI }
resource buf in

(x :=cons(−); PUT(x))‖(GET(y); dispose(y))

{RI }

Using CONSEQUENCE and the definition of RI we can deduce:

{} ` {full = 0 ∧ emp}

resource buf in
(x :=cons(−); PUT(x))‖(GET(y); dispose(y))

{(full = 0 ∧ emp) ∨ (full = 1 ∧ z 7→ −)}

Unfortunately the post-condition of this formula does not tell us the whole story, since we expect there to be no heap
left over and full to be 0. We will revisit this example using auxiliary variables later. Since full is a critical variable
there’s no way to carry around extra information about the value of full in the pre- and post-conditions, so we cannot
strengthen the formula that way.
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9.5. Ownership is in the eye of the prover

Suppose we dispose in the first rather than the second process. The program becomes:

resource buf in
(x :=cons(−); PUT(x); dispose(x)) ‖ GET(y)

We must then reason about the program’s behaviour under the assumption that no heap locations are deemed to transfer
ownership when the resource is acquired or released, so we employ a different resource invariant:

RI′
=def (full = 0 ∧ emp) ∨ (full = 1 ∧ emp)

This choice of invariant leads to different specifications for the put and get operations:

{} ` {(RI ′
∗ x 7→ −) ∧ full = 0}z:=x; full:=1{RI ′

∗ x 7→ −}

buf (z, full) : RI ′
` {x 7→ −}PUT(x){x 7→ −}

{} ` {(RI ′
∗ emp) ∧ full = 1}y:=z; full:=0{RI ′

∗ emp}

buf (z, full) : RI ′
` {emp}GET(y){emp}

Hence we can derive:

buf (z, full) : RI ′
` {emp}x :=cons(−); PUT(x); dispose(x){emp}

so the PARALLEL rule gives:

buf (z, full) : RI ′
` {emp ∗ emp}

(x :=cons(−); PUT(x); dispose(x))‖GET(y)

{emp ∗ emp}

Finishing off with CONSEQUENCE and the RESOURCE rule, we obtain:

{} ` {RI ′
}

resource buf in
(x :=cons(−); PUT(x); dispose(x))‖GET(y)

{RI ′
}

Since RI ′ implies emp this post-condition is as strong as can be expected.
We have seen that memory ownership can either be deemed to transfer with a pointer’s value, or to stay located

in the sending process, depending on what we want to prove. (The distinction is made when we choose a resource
invariant.) It is not possible for the ownership to go both ways. For example, there is no resource invariant R that
would permit us to prove any non-trivial formula for the program:

(x :=cons(−); PUT(x); dispose(x)) ‖ (GET(y); dispose(y))

in the resource context buf (z, full) : R. It is fairly easy to see that for such an invariant R to exist we would have to
be able to prove both:

buf (z, full) : R ` {emp}GET(y){y 7→ −}

and

buf (z, full) : R ` {x 7→ −}PUT(x){x 7→ −}.

Thus in turn we would have to be able to prove both:

` {(R ∗ emp) ∧ full = 1}y:=z; full:=0{y 7→ − ∗ R}

and

` {(R ∗ x 7→ −) ∧ full = 0}z:=x; full:=1{R ∗ x 7→ −}

The first requires that R ∧ full = 1 ⇒ z 7→ −. But the second requires that R ∗ x 7→ − holds in the state immediately
after setting z to x and full to 1. This is impossible since z = x ∧ (z 7→ − ∗ x 7→ −) is never true.
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9.6. Combining the buffer and the memory manager

Using the notation from before, we had:

mm( f ) : list( f ) ` {emp}ALLOC(x){x 7→ −}

mm( f ) : list( f ) ` {y 7→ −}FREE(y){emp}

If we let R be the following (precise) resource invariant:

R : (full = 1 ∧ z 7→ −, −) ∨ (full = 0 ∧ emp)

then we can derive the following:

buf (z, full) : R ` {x 7→ −, −}PUT(x){emp}

buf (z, full) : R ` {emp}GET(y){y 7→ −, −}

The two resource contexts involved here are disjoint, so we can appeal to the EXPANSION rule to obtain:

mm( f ) : list( f ), buf (z, full) : R ` {emp}ALLOC(x){x 7→ −, −}

mm( f ) : list( f ), buf (z, full) : R ` {x 7→ −, −}PUT(x){emp}.

Hence, using the SEQUENTIAL rule,

mm( f ) : list( f ), buf (z, full) : R ` {emp}ALLOC(x); PUT(x){emp}

Similarly we can derive:

mm( f ) : list( f ), buf (z, full) : R ` {emp}GET(y); FREE(y){emp}

Now the PARALLEL rule yields:

mm( f ) : list( f ), buf (z, full) : R ` {emp}

(ALLOC(x); PUT(x))‖(GET(y); FREE(y))

{emp}

There are two ways to apply the RESOURCE rule, and the rule can be applied twice in either order, yielding:

mm( f ) : list( f ) ` {R}

resource buf in
(ALLOC(x); PUT(x))‖(GET(y); FREE(y))

{R}

or

buf (z, full) : R ` {list( f )}

resource mm in
(ALLOC(x); PUT(x))‖(GET(y); FREE(y))

{list( f )}

followed by:

` {R ∗ list( f )}

resource mm, buf in
(ALLOC(x); PUT(x))‖(GET(y); FREE(y))

{R ∗ list( f )}
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9.7. Using auxiliary variables

Previously we proved the following formula:

{} ` {full = 0 ∧ emp}

resource buf in
(x :=cons(−); PUT(x))‖(GET(y); dispose(y))

{(full = 0 ∧ emp) ∨ (full = 1 ∧ z 7→ −)}

and we noted that the post-condition is not strong enough to imply that there is no “memory leak” with this program.
In fact the trace set of this command shows that on termination full will be 0 and the heap will be empty. However,
since full is a critical variable, read and written by both processes, there is no way to propagate information about
the value of full in the logic, except by invoking the resource invariant. We can skirt around this difficulty by using
auxiliary variables, as suggested by Owicki and Gries to deal with similar problems in the pointer-free setting.

Let PUT′(x) and GET′(y) be the following:

PUT′(x) : with buf when full = 0 do
(z:=x; full:=1; start:=0)

GET′(y) : with buf when full = 1 do
(y:=z; full:=0; finish:=1)

Note that PUT′(x) and GET′(y) are obtained from PUT(x) and GET(y) by inserting assignments to start and finish.
Since these assignments do not affect the flow of control and have no influence on the values of any other identifiers,
or on the heap, start and finish are indeed auxiliary variables.

Let R′ be the (precise) formula:

(full = 0 ∧ emp ∧ (start = 1 ⇔ finish = 0))

∨ (full = 1 ∧ z 7→ − ∧ start = 0 ∧ finish = 0)

We can prove the formulas:

buf (z, full) : R′
` {start = 1 ∧ emp}

x :=cons(−); PUT′(x)

{start = 0 ∧ emp}

buf (z, full) : R′
` {finish = 0 ∧ emp}

GET′(y); dispose(y)

{finish = 1 ∧ emp}

buf (z, full) : R′
` {start = 1 ∧ finish = 0 ∧ emp}

(x :=cons(−); PUT′(x))‖(GET′(y); dispose(y))

{start = 0 ∧ finish = 1 ∧ emp}

` {start = 1 ∧ finish = 0 ∧ R′
}

resource buf in
(x :=cons(−); PUT′(x))‖(GET′(y); dispose(y))

{start = 0 ∧ finish = 1 ∧ R′
}

We then derive:

` {full = 0 ∧ emp}

start:=1;

finish:=0;

resource buf in
(x :=cons(−); PUT′(x))‖(GET′(y); dispose(y))

{start = 0 ∧ finish = 1 ∧ R′
}
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Hence, using CONSEQUENCE,

` {full = 0 ∧ emp}

start:=1;

finish:=0;

resource buf in
(x :=cons(−); PUT′(x))‖(GET′(y); dispose(y))

{full = 0 ∧ emp}

Since start and finish are auxiliary variables and do not occur free in the pre-condition or the post-condition, we can
use the AUXILIARY rule to deduce:

` {full = 0 ∧ emp}

resource buf in
(x :=cons(−); PUT(x))‖(GET(y); dispose(y))

{full = 0 ∧ emp},

since the removal of the auxiliary assignments converts PUT′(x) to PUT(x) and GET′(y) to GET(y).
As desired, this formula expresses the property that this program is error-free and does not leak memory.

10. Towards validity

We now return to the problem of interpretation that we raised earlier but have not yet settled. We wish to establish
that every provable resource-sensitive formula is valid, but we need to determine precisely what that should mean.
Earlier we proposed informally that Γ ` {p}c{q} should be regarded as valid if every finite interactive computation
of c from a state satisfying p ∗ inv(Γ ), in an environment which respects Γ , is error-free, respects Γ , and ends in a
state satisfying q ∗ inv(Γ ). We might try to formalize this notion of validity in terms of the enabling relation, as in:

for every trace α of c, and all states σ and σ ′,
if σ satisfies p ∗ inv(Γ ) and σ

α
==⇒ σ ′, then σ ′ satisfies q ∗ inv(Γ ).

This characterization of “validity” would work well for sequential programs. However, it only involves the sequential
traces of c. As a result it will not suffice for parallel programs: we would be unable to establish soundness of the proof
rule for parallel composition. What is missing here is the ability to quantify over traces with gaps at resource actions,
assuming that the gaps will be filled by actions on protected identifiers performed by an environment which respects
invariants and obeys the mutex constraints on resources.

To obtain a suitably general notion of validity we will work with local states, so that we can make accurate
statements about the portion of the state which is deemed to be “owned” by the program and the pieces of state
that are designated to transfer on resource acquisition or release.

10.1. Local states and local enabling

Given a resource context Γ , a process holding resource set A is allowed to access unprotected identifiers, as well as
identifiers protected by resources in A, but should be prevented from accessing identifiers protected by other resources.
We will therefore say that (s, h, A) is a local state consistent with Γ if dom(s) ∩ owned(Γ ) = owned(Γ dA), where
Γ dA is the subset of Γ involving the resources in A. Similarly we let Γ\A be the rest of Γ . Note that a local state also
satisfies dom(s) ∩ owned(Γ\A) = {}.

We introduce a family of local enabling relations (Fig. 2): a step

(s, h, A)
λ

−−→
Γ

(s′, h′, A′)

will mean that in the local state (s, h, A) a program is permitted to perform action λ, causing the local state to change
to (s′, h′, A′). This is a partial relation, defined only when (s, h, A) is consistent with Γ and the action is enabled in
the usual manner; whenever (s, h, A)

λ
−−→
Γ

(s′, h′, A′) holds it will follow that (s′, h′, A′) is also consistent with Γ and
the action “respects” the resource constraints and the ownership rules. We use the error state abort to handle runtime
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• (s, h, A)
δ

−−→
Γ

(s, h, A) and (s, h, A)
abort

−−−−→
Γ

abort always

• (s, h, A)
i=v

−−−→
Γ

(s, h, A) iff (i, v) ∈ s

• (s, h, A)
i=v

−−−→
Γ

abort iff i 6∈ dom(s)

• (s, h, A)
i :=v

−−−−→
Γ

([s | i : v], h, A) iff i ∈ dom(s) − free(Γ\A)

• (s, h, A)
i :=v

−−−−→
Γ

abort iff i 6∈ dom(s) or i ∈ free(Γ\A)

• (s, h, A)
[l]=v

−−−−→
Γ

(s, h, A) iff (l, v) ∈ h

• (s, h, A)
[l]=v

−−−−→
Γ

abort iff l 6∈ dom(h)

• (s, h, A)
[l]:=v′

−−−−−→
Γ

(s, [h | l : v′
], A) iff l ∈ dom(h)

• (s, h, A)
[l]:=v′

−−−−−→
Γ

abort iff l 6∈ dom(h)

• (s, h, A)
alloc(l,[v0,...,vn ])

−−−−−−−−−−−−−→
Γ

(s, [h | l : v0, . . . , l + n : vn], A)

iff dom(h) ∩ {l, l + 1, . . . , l + n} = {}

• (s, h, A)
disp(l)

−−−−−→
Γ

(s, h\l, A) iff l ∈ dom(h)

• (s, h, A)
disp(l)

−−−−−→
Γ

abort iff l 6∈ dom(h)

• (s, h, A)
try(r)

−−−−→
Γ

(s, h, A) iff r ∈ A

• (s, h, A)
acq(r)

−−−−−−−→
Γ ,r(X):R

(s · s′, h · h′, A ∪ {r}) iff

r 6∈ A, h ⊥ h′, dom(s′) = X and (s · s′, h′) |H R
• (s, h, A)

rel(r)
−−−−−−−→
Γ ,r(X):R

(s\X, h − h′, A − {r}) iff

r ∈ A, h′
⊆ h, and (s, h′) |H R

• (s, h, A)
rel(r)

−−−−−−−→
Γ ,r(X):R

abort iff ∀h′
⊆ h. ¬(s, h′) |H R

Fig. 2. Local enabling relations on states consistent with Γ .

errors such as races or an attempt to use an identifier or heap address not locally owned, or an attempt to release a
resource in a state for which no sub-heap satisfies the corresponding invariant. Thus a step

(s, h, A)
λ

−−→
Γ

abort

indicates that the action λ is enabled but would cause a runtime error or break the rules. As before it is convenient to
extend this enabling relation so that abort λ

−−→
Γ

abort holds, for all Γ and λ.

The local enabling relations are designed to embody the ownership rules and transfer policy implied by the resource
context: each time the program acquires a resource it claims ownership of exactly the store and heap needed to satisfy
the relevant invariant, and on releasing a resource it relinquishes ownership of the store and heap determined by the
invariant. (The importance of precision here is evident: since resource invariants are precise there will be, for a given
global store s′′

⊇ s at most one heap h′ such that (s′′, h′) |H R, and hence at most one local transition from (s, h, A)

involving the action acq(r) consistent with this global state.)
This leads us to a notion of local computation in which the program’s claims on heap and protected identifiers are

guided by the resource invariants. A local computation can be seen to reflect the program’s view of the global state
during an interactive execution with an environment that respects the resource environment. We write σ

α
−−→
Γ

σ ′ when
there is a local computation α from σ to σ ′ respecting Γ . We allow this notation when α is finite, in which case σ ′ may
be a proper state or abort; if α is λ0 . . . λn we therefore have σ

λ0...λn
−−−−−→

Γ
σ ′ if there is a sequence of states σ0, . . . , σn−1

such that

σ
λ0

−−→
Γ

σ0
λ1

−−→
Γ

σ1 · · ·
λn−1

−−−−→
Γ

σn−1
λn

−−→
Γ

σ ′.
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We also allow the notation when α is an infinite trace and σ ′ is abort, to handle the case when a program may cause
an error part way through a non-terminating computation. Thus σ

α
−−→
Γ

abort means that a program attempting the

trace α from σ aborts, possibly in mid-trace. And we write σ
α

−−→
Γ

· to indicate that the trace α is locally enabled, or
more informally, that α respects Γ from σ . Note that this notion of local computation makes sense for arbitrary traces,
not just for sequential traces.

10.2. Fundamental properties

In preparation for the soundness analysis we build up a series of results expressing basic properties of local
computation. Most of the proofs are straightforward, making extensive use of the relevant definitions. We include
more details in the Appendix for the more complex cases.

First we show that executing a command with a trivial resource context that never transfers any state is the same as
executing the command without interference.

Lemma 13 (Empty Context Lemma). Let α be a finite trace, let {r1, . . . , rn} be the set of resource names occurring
in actions of α, and let Γ0 be the resource context r1 : emp, . . . , rn : emp. Then:

(s, h, A)
α

==⇒ σ ′ if and only if (s, h, A)
α

−−→
Γ0

σ ′.

Theorem 14 (Respect for Resources). If α ∈ [[c]] and (s, h, A)
α

−−→
Γ

(s′, h′, A′), then dom(s′) = dom(s) and A = A′.

Note that these results imply the corresponding property for sequential traces.

Corollary 15. If α ∈ [[c]] and (s, h, A)
α

==⇒ (s′, h′, A′), then dom(s) = dom(s′) and A = A′.

The following definition therefore makes sense:

Definition 16. We define (s, h)
α

−−→
Γ

(s′, h′) if (s, h, {})
α

−−→
Γ

(s′, h′, {}).

The effect of a program in a local computation depends only on the heap, the values of its free identifiers, and
the values of (non-critical) identifiers occurring free in resource invariants; moreover, a program can only change the
value of identifiers which have a free write occurrence.

Theorem 17 (Agreement). Let α ∈ [[c]] and suppose that s1 agrees with s2 on free(c,Γ ).

• If (s1, h)
α

−−→
Γ

abort, then (s2, h)
α

−−→
Γ

abort.

• If (s1, h)
α

−−→
Γ

(s′

1, h′) then there is a store s′

2 such that

(s2, h)
α

−−→
Γ

(s′

2, h′) and s′

1 agrees with s′

2 on free(c,Γ ).

If α ∈ [[c]] and (s, h)
α

−−→
Γ

(s′, h′) then s′ agrees with s′ except on writes(c).

Again this property, together with the Empty Context Lemma, implies the analogous property for sequential traces.

Corollary 18. If α ∈ [[c]] and s1 agrees with s2 on free(c), then

• (s1, h)
α

==⇒ abort implies (s2, h)
α

==⇒ abort
• (s1, h)

α
==⇒ (s′

1, h′) implies (s2, h)
α

==⇒ (s2, h′) for some store s′

2 that agrees with s′

1 on free(c).

Moreover, if α ∈ [[c]] and: (s, h)
α

==⇒ (s′, h′), then s′ agrees with s except on writes(c).

As in the sequential setting, we obtain a frame property.

Theorem 19 (Frame). Let α ∈ [[c]] and suppose h1 ⊥ h2 and h = h1 · h2.

• If (s, h)
α

−−→
Γ

abort then (s, h1)
α

−−→
Γ

abort.
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• If (s, h)
α

−−→
Γ

(s′, h′) then either (s, h1)
α

−−→
Γ

abort, or there is a heap h′

1 such that h′

1 ⊥ h2, h′
= h′

1 · h2, and

(s, h1)
α

−−→
Γ

(s′, h′

1).

Yet again by invoking the Empty Context Lemma we deduce the corresponding property for interference-free
executions.

Corollary 20. Let α ∈ [[c]], h1 ⊥ h2, and h = h1 · h2.

• If (s, h)
α

==⇒ abort then (s, h1)
α

==⇒ abort.
• If (s, h)

α
==⇒ (s′, h′) then either (s, h1)

α
==⇒ abort, or there is a heap h′

1 such that h′

1 ⊥ h2, h′
= h′

1 · h2, and
(s, h1)

α
==⇒ (s′, h′

1).

Using the frame theorem as a basis, we can establish a parallel decomposition property relating a local computation
of a parallel program to local computations of its components. If the critical identifiers of c1 and c2 are protected
by resources in Γ , a local computation of c1‖c2 can be “projected” into a local computation of c1 and a local
computation of c2. Suppose c1‖c2 has a local computation α from (s, h) to (s′, h′), where α is obtained by interleaving
α1 ∈ [[c1]] and α2 ∈ [[c2]], and we choose a partition (h1, h2) of h. If c1 and c2 have successful computations α1 from
(s\writes(α2), h1) and α2 from (s\writes(α1), h2), the results of these computations fit together, determining
(s′, h′) in a natural manner. On the other hand, if α leads to an error one (or both) of α1, α2 must lead to error. The
following theorem expresses this intuition more precisely. We include proof details in the Appendix.

Theorem 21 (Parallel Decomposition). Suppose (free(c1)∩writes(c2))∪ (writes(c1)∩free(c2)) ⊆ owned(Γ )

and α ∈ α1‖α2, where α1 ∈ [[c1]] and α2 ∈ [[c2]]. Suppose h1 ⊥ h2 and h = h1 · h2.

• If (s, h)
α

−−→
Γ

abort then

(s\writes(α2), h1)
α1

−−→
Γ

abort or (s\writes(α1), h2)
α2

−−→
Γ

abort.

• If (s, h)
α

−−→
Γ

(s′, h′) then

(s\writes(α2), h1)
α1

−−→
Γ

abort or (s\writes(α1), h2)
α2

−−→
Γ

abort,
or there are disjoint heaps h′

1 ⊥ h′

2 such that h′
= h′

1 · h′

2 and:
– (s\writes(α2), h1)

α1
−−→
Γ

(s′
\writes(α2), h′

1)

– (s\writes(α1), h2)
α2

−−→
Γ

(s′
\writes(α1), h′

2)

The following property of local computations shows that our definition handles resources sensibly, and provides a
way to connect local computations of resource r in c in resource context Γ with local computations of c in resource
context Γ , r(X) : R. Recall that every trace of resource r in c has the form β\r , where β is a trace of c that is
sequential for r .

Theorem 22 (Local Resource Lemma). Let β ∈ [[c]]r and suppose h1 ⊥ h2 and (s, h2) ` R.

• If (s, h1 · h2)
β\r

−−−→
Γ

abort then (s\X, h1)
β

−−−−−−−→
Γ ,r(X):R

abort.

• If (s, h1 ·h2)
β\r

−−−→
Γ

(s′, h′) then either (s\X, h1)
β

−−−−−−−→
Γ ,r(X):R

abort, or there are heaps h′

1 ⊥ h′

2 such that h′
= h′

1 ·h′

2,

(s′, h′

2) |H R, and (s\X, h1)
β

−−−−−−−→
Γ ,r(X):R

(s′
\X, h′

1).

There is an analogous property relating the local computations of a block local i = e in c with those of its body.

Theorem 23 (Local Variable Lemma). Let β ∈ [[c]][i :v] and i 6∈ owned(Γ ).

• If (s, h)
β\i

−−−→
Γ

abort then ([s | i : v], h)
β

−−→
Γ

abort.

• If (s, h)
β\i

−−−→
Γ

(s′, h′) then either ([s | i : v], h)
β

−−→
Γ

abort, or there is a value v′ such that ([s | i : v], h)
β

−−→
Γ

([s′
|

i : v′
], h′).
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11. Validity

The definition of local enabling was designed to formalize the notion of a computation by a process, in an
environment that respects resources, and “minds its own business” by obeying the ownership policy of a given resource
context. With this definition in hand we can at last give a formal version of validity.

Definition 24. The formula Γ ` {p}c{q} is valid if for all traces α of c, all local states (s, h) such that dom(s) ⊇

free(c,Γ ) − owned(Γ ), and all σ ′, if (s, h) |H p and (s, h)
α

−−→
Γ

σ ′ then σ ′
|H q.

Note that this definition involves the local enabling relation, so that the quantification ranges over local states (s, h)

consistent with Γ , for which dom(s) ∩ owned(Γ ) = {}. Since abort does not satisfy q validity implies freedom from
race conditions. Furthermore, this notion of validity involves all traces of c, not just the sequential traces and not just
the finite traces; the infinite traces only really matter in the no-abort requirement, since we never get σ

α
−−→
Γ

σ ′ when
α is infinite and σ ′ is a proper state.

It is easy to see from the above definition that, when Γ is the empty context and c has no free resource names,
validity of {} ` {p}c{q} implies the usual notion of partial correctness together with the guaranteed absence of runtime
errors: in every terminating execution of c from a state satisfying p, with values for all free identifiers of c, there is no
runtime error and the final state satisfies q . More generally, the same implication holds when res(c) = {r1, . . . , rn}

and Γ0 is the context r1 : emp, . . . , rn : emp: validity of Γ0 ` {p}c{q} implies the usual notion of partial correctness
together with absence of errors.

Again we return to some examples to illustrate validity.

1. ` {true} while true do skip {false} is valid, because for all states σ there is no state σ ′ such that σ
δω

−−→
{}

σ ′.

2. The formula ` {p}dispose(x)‖dispose(y){q} is valid if and only if p ⇒ (x 7→ −) ∗ (y 7→ −) ∗ q is universally
valid.

Suppose p ⇒ (x 7→ −) ∗ (y 7→ −) ∗ q is universally valid. Let (s, h) be a state satisfying p and let s(x) =

v, s(y) = v′. It follows that v 6= v′, and (s, h\{v, v′
}) satisfies q. Every trace of dispose(x)‖dispose(y) enabled

from (s, h) is an interleaving of x=v disp(v) with y=v′ disp(v′), and therefore leads to the state (s, h\{v, v′
}),

which satisfies q as required. The converse implication is straightforward.
3. Let Γ be the context r(x) : x = m + n ∧ emp. Note that in this example the resource invariant connects the value

of the protected identifier x with the values of two unprotected identifiers m and n. The formula

Γ ` {m = 0}with r do (x :=x + 1; m:=m + 1){m = 1}

is clearly well formed, and also valid. To see this, let (s, h) be a local state such that dom(s) ⊇ {m, n}, x 6∈ dom(s),
and (s, h) |H m = 0, so that s(m) = 0 and s(n) = v for some integer v. The only relevant trace of the program,
enabled from this state, is:

acq(r) x=v x :=v + 1 m=0 m:=1 rel(r)

and we have:

(s, h)
acq(r)

−−−−−→
Γ

([s | x : v], h, {r})
x=v

−−−→
Γ

([s | x : v], h, {r})

x :=v+1
−−−−−−→

Γ
([s | x : v + 1], h, {r})

m=0
−−−−→

Γ
([s | x : v + 1], h, {r})

m:=1
−−−−→

Γ
([s | x : v + 1, m : 1], h, {r})

rel(r)
−−−−→

Γ
([s | m : 1], h),

leading to a state satisfying m = 1, as required.
By symmetry the formula

Γ ` {n = 0}with r do (x :=x + 1; n:=n + 1){n = 1}
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is also well formed and valid. Moreover, the formula
Γ ` {m = 0 ∧ n = 0}

with r do (x :=x + 1; m:=m + 1)

‖ with r do (x :=x + 1; n:=n + 1)

{m = 1 ∧ n = 1}

is well formed, since x is the only critical variable and it is protected by r . This formula is also valid, because when
(s, h) is a local state such that dom(s) ⊇ {m, n}, x 6∈ dom(s), and s(m) = s(n) = 0, every trace of this parallel
command enabled from (s, h) leads to the state ([s | m : 1, n : 1], h).

12. Soundness

Theorem 25 (Soundness). Every provable formula Γ ` {p}c{q} is valid.

Proof. Our inference rules are subject to an implicit well-formedness constraint: only well formed instance of rules
are permitted. To prove soundness of the proof system we show that each well formed instance of an inference rule
is sound: if the rule’s premises and conclusion are well formed, the side conditions hold, and the premises are valid,
then the conclusion is valid. It then follows, by induction on the length of the derivation, that every provable formula
is valid.

For some of the rules this is fairly easy, although we provide details since the notion of validity is rather subtle.
The proofs for UPDATE, ALLOCATION and DISPOSAL are carried out in a similar manner to the proof given here for
LOOKUP; these are all straightforward adaptations of the soundness analysis that can be given for these constructs in
the sequential setting. Similarly the rules for CONDITIONAL and LOOP are straightforward.

• SKIP
The formula Γ ` {p}skip{p} is clearly valid, because the only computation of skip from a state σ satisfying p has
the form σ

δ
−−→
Γ

σ. The well-formedness assumption that free(p) ∩ owned(Γ ) = {} simply ensures that if (s, h)

satisfies p then so does (s\owned(Γ ), h).
• ASSIGNMENT

We verify that the formula Γ ` {[e/ i]p}i :=e{p} is valid when i , free(e), and free(p) are disjoint from
owned(Γ ), and i is not free in any resource invariant of Γ . Let (s, h) be a state satisfying the pre-condition [e/ i]p
and such that dom(s) ⊇ free(i :=e,Γ ) − owned(Γ ). This implies that i ∈ dom(s) and free(e) ⊆ dom(s).
Moreover, (s\owned(Γ ), h) |H [e/ i]p.
The traces of i :=e have the form ρ i :=v, where (ρ, v) ∈ [[e]]. Every local computation of i :=e from (s, h) will
therefore have the form:

(s, h)
ρ i :=v

−−−−−→
Γ

([s | i : v], h)

where (ρ, v) is an evaluation trace of e enabled from s. Hence (s, v) ∈ |e| and (s, h)
i :=v

−−−−→
Γ

([s | i : v], h). Since
(s, h) |H [e/ i]p and (s, v) ∈ |e| the Substitution Lemma implies that ([s | i : v], h) |H p, as required.

• SEQUENTIAL COMPOSITION
Suppose that the formulas Γ ` {p1}c1{p2}, Γ ` {p2}c2{p3} are valid and well formed. It is clear that
Γ ` {p1}c1; c2{p3} is also well formed. We need to show that Γ ` {p1}c1; c2{p3} is valid.

Suppose (s, h) |H p1 and dom(s) ⊇ free(c1; c2,Γ ) − owned(Γ ). Every trace of c1; c2 has the form α = α1α2
for some traces α1 of c1 and α2 of c2. Suppose we have a local computation of c1; c2 of the form

(s, h)
α1α2

−−−−→
Γ

σ ′′.

We need to show that σ ′′
|H p3. Since dom(s) ⊇ free(c1,Γ ) − owned(Γ ), by validity of Γ ` {p1}c1{p2} we

know that the computation along α1 is error-free. If α1 is infinite (so α = α1) there is no more to prove. Otherwise
α1 is finite and there is a (proper) state (s′, h′) such that:

(s, h)
α1

−−→
Γ

(s′, h′)
α2

−−→
Γ

σ ′′

and (s′, h′) |H p2. By the local respect lemma, dom(s′) = dom(s), so we have dom(s′) ⊇ free(c2,Γ )−owned(Γ ).
By validity of Γ ` {p2}c2{p3} it follows that σ ′′ satisfies p3.
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• PARALLEL COMPOSITION
Suppose that Γ ` {p1}c1{q1} and Γ ` {p2}c2{q2} are well formed and valid, and that free(p1) ∩ writes(c2) =

free(p2) ∩ writes(c1) = {} and (free(c1) ∩ writes(c2)) ∪ (writes(c1) ∩ free(c2)) ⊆ owned(Γ ).
It is clear that Γ ` {p1 ∗ p2}c1‖c2{q1 ∗ q2} is well formed.
We must show that Γ ` {p1 ∗ p2}c1‖c2{q1 ∗ q2} is valid.

Let (s, h) |H p1 ∗ p2, and suppose h1 ⊥ h2, h = h1 · h2, and (s, h1) |H p1, (s, h2) |H p2. Given the well-
formedness assumptions, we also have (s\writes(c2), h1) |H p1 and (s\writes(c1), h2) |H p2.

Let α ∈ [[c1‖c2]], and (s, h)
α

−−→
Γ

σ ′. Choose traces α1 ∈ [[c1]] and α2 ∈ [[c2]] such that α ∈ α1‖α2. If

σ ′
= abort it would follow by the parallel decomposition lemma that either (s\writes(c2), h1)

α1
−−→
Γ

abort or

(s\writes(c1), h2)
α2

−−→
Γ

abort. Neither of these is possible, since they contradict the assumed validity of the
premises Γ ` {p1}c1{q1} and Γ ` {p2}c2{q2}. If α is infinite that is all we need. Otherwise α is finite, and σ ′ has
the form (s′, h′). Again by the parallel decomposition lemma and validity of the premises, there are heaps h′

1 ⊥ h′

2
such that h′

= h′

1 · h′

2,

(s\writes(c2), h1)
α1

−−→
Γ

(s′
\writes(c2), h′

1)

(s\writes(c1), h2)
α2

−−→
Γ

(s′
\writes(c1), h′

2),

and (s′
\writes(c2), h′

1) |H q1, (s′
\writes(c1), h′

2) |H q2. Since q1 does not depend on writes(c2) and q2
does not depend on writes(c1) we also have (s′, h′

1) |H q1 and (s′, h′

2) |H q2, from which it follows that
(s′, h′) |H q1 ∗ q2, as required.

• REGION
Suppose we have a well formed and valid instance of the rule’s premiss, of the form Γ ` {(p ∗ R) ∧ b}c{q ∗ R}.

We need to show that:

Γ , r(X) : R ` {p}with r when b do c{q}

is valid, provided this formula is also well formed. In particular, we assume that free(p, q) ∩ owned(Γ ) = {} and
free(p, q) ∩ X = {}, and we suppose that r 6∈ dom(Γ ) and R is precise.

To this end, let (s, h) be a state satisfying p, let α be a trace of [[with r when b do c]], and assume that
(s, h)

α
−−−−−−−→
Γ ,r(X):R

σ ′. We must show that σ ′ satisfies q. By definition, and ignoring try actions, which can be done
without loss of generality, α must have the form:

acq(r) ρ1 rel(r) . . . acq(r) ρn−1 rel(r) acq(r) ρ β rel(r)

where ρ1, . . . , ρn−1 ∈ [[b]]false, ρ ∈ [[b]]true, and β ∈ [[c]]. Each of the ρi is a sequence of evaluation actions, having
no effect on the state. Since R is precise, the heap portion released at the end of each waiting phase acq(r) ρi rel(r)

must be the same as the heap portion acquired at the start of that phase. Hence we have:

(s, h)
acq(r) ρ β rel(r)

−−−−−−−−−−−−→
Γ ,r(X):R

σ ′.

But this requires that there exists a state σ ′′ such that:

(s, h)
acq(r)

−−−−−−−→
Γ ,r(X):R

(s · s1, h · h1)
ρ β

−−−−−−−→
Γ ,r(X):R

σ ′′ rel(r)
−−−−−−−→
Γ ,r(X):R

σ ′

for some s1 ⊥ s, h1 ⊥ h such that dom(s1) = X and (s · s1, h1) |H R. Since ρ ∈ [[b]]true and b is pure, we must
have (s · s1, h · h1) |H b.

Since (s, h) |H p and free(p) ∩ X = {}, it follows that (s · s1, h) |H p. So (s · s1, h · h1) |H (p ∗ R) ∧ b.
Since ρ does not change the state we therefore have:

(s · s1, h · h1)
β

−−−−−−−→
Γ ,r(X):R

σ ′′,

and since β cannot contain any acquire or release actions on resource r we also have:

(s · s1, h · h1)
β

−−→
Γ

σ ′′.
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Validity of the premiseΓ ` {(p∗ R)∧b}c{q ∗ R} establishes that σ ′′ is not abort and satisfies q ∗ R. The final rel(r)

action leading from σ ′′ to σ ′ must therefore release the unique subheap corresponding to R (retaining the subheap
corresponding to q), and remove the store’s values for X . Since free(q) ∩ X = {} it follows that σ ′ satisfies q.

Note that the case where β is infinite is handled implicitly in the above proof, and causes no problem.
• RESOURCE

Suppose Γ , r(X) : R ` {p}c{q} is well-formed and valid. Thus R is precise, r 6∈ dom(Γ ), free(p, q, R) ∩

owned(Γ ) = {}, free(p, q) ∩ X = {}, and X ∩ (owned(Γ ) ∪ free(Γ )) = {} It is then easy to see that
Γ ` {p ∗ R}resource r in c{q ∗ R} is well formed. To prove validity of this formula we argue as follows:

Suppose (s, h) satisfies p ∗ R, and let α be a trace of resource r in c such that (s, h)
α

−−→
Γ

σ ′. We must show that
σ ′ satisfies q ∗ R.

Choose a trace β ∈ [[c]]r such that β\r = α, and heaps h1 ⊥ h2 such that h = h1 · h2, (s, h1) |H p and
(s, h2) |H R. Since X ∩ free(p) = {}, we also have (s\X, h1) |H p.

By the local resource lemma, if σ ′
= abort we would also have (s\X, h1)

β
−−−−−−−→
Γ ,r(X):R

abort, which contradicts

our assumption that the premise Γ , r(X) : R ` {p}c{q} is valid. So σ ′ must have the form (s′, h′). Again by
the local resource lemma and validity of the premise, it follows that there must be heaps h′

1 ⊥ h′

2 such that

h′
= h′

1 · h′

2, (s′, h′

2) |H R, (s\X, h1)
β

−−−−−−−→
Γ ,r(X):R

(s′
\X, h′

1), and (s′
\X, h′

1) |H q. Since X ∩ free(q) = {} we also

have (s′, h′

1) |H q . It then follows that (s′, h′) |H q ∗ R, as required.
• RENAMING RESOURCE

Γ ` {p}resource r ′ in [r ′/r ]c{q}

Γ ` {p}resource r in c{q}

if r ′ does not occur free in c.
This rule is sound because if r ′

6∈ res(c) the commands resource r in c and resource r ′ in [r ′/r ]c are
semantically equivalent. Since they have the same traces they have the same computations.

• LOOKUP

Γ ` {[e′/ i]p ∧ e 7→ e′}i :=[e]{p ∧ e 7→ e′}

provided i not free in e or e′ and the formula is well formed, i.e. free(p, e, e′) ∩ owned(Γ ) = {}.
Suppose (s, h) |H [e′/ i]p ∧ e 7→ e′. Let v = |e|s and v′

= |e′
|s, so that we have ([s | i : v′

], h) |H p by the
substitution theorem, and h = {(v, v′)}. The only traces of i :=[e] relevant here have the form ρ [v]=v′ i :=v′, and
it is obvious that we have:

(s, h)
ρ [v]=v′ i :=v′

−−−−−−−−−−→
Γ

([s | i : v′
], h).

Since i 6∈ free(e, e′) we have |e|[s | i : v′
] = |e|s and |e′

|[s | i : v′
] = |e′

|s, so ([s | i : v′
], h) |H p ∧ e 7→ e′, as

required.
• UPDATE

Γ ` {e 7→ −}[e]:=e′{e 7→ e′}

provided free(e) ∩ owned(Γ ) = {} and free(e′) ∩ owned(Γ ) = {}.
Suppose (s, h) |H e 7→ −. Thus there are values v and v0 such that (s, v) ∈ |e| and h = {(v, v0)}. Every trace of

[e]:=e′ enabled from (s, h) has the form ρ ρ′
[v]:=v′, where (s, v′) ∈ |e′

|. And we have

(s, h)
ρ ρ′

[v]:=v′

−−−−−−−−−→
Γ

(s, [h | v : v′
]).

Clearly [h | v : v′
] = {(v, v′)}. Since e and e′ are pure we also have (s, {(v, v′)}) |H e 7→ e′, as required.

• LOCAL VARIABLE

Suppose Γ ` {p ∧ i = e}c{q} is valid and i 6∈ free(e, p, q), i 6∈ owned(Γ ), free(e) ∩ owned(Γ ) = {}, and
free(p, q) ∩ owned(Γ ) = {}.

We must show that Γ ` {p}local i = e in c{q} is valid. (It is obvious that this formula is also well formed.)
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Suppose (s, h) |H p. Every trace of local i = e in c has the form ρ (α\i) where (ρ, v) ∈ [[e]] and α ∈ [[c]][i :v]. If

(s, h)
ρ (α\i)

−−−−−→
Γ

σ ′ then (s, v) ∈ |e| and (s, h)
α\i

−−−→
Γ

σ ′. If σ ′
= abort then ([s | i : v], h)

α
−−→
Γ

abort, by the Local
Variable Lemma. But we already know that the state ([s | i : v], h) satisfies p ∧ i = e and α is a trace of c, so this
would contradict validity of the premise. Hence σ ′ has the form (s′, h′), and the local variable lemma implies that
([s | i : v], h)

α
−−→
Γ

([s′
| i : v′

], h′) for some v′. Since the premise is valid we have ([s′
| i : v′

], h′) |H q, and since
i is not free in q we obtain (s′, h′) |H q , as required.

• EXPANSION
Let Γ ` {p}c{q} be valid and well formed, free(c) ∩ owned(Γ ′) = {}, and writes(c) ∩ free(Γ ′) = {}.

Suppose that Γ ,Γ ′
` {p}c{q} is well formed. We need to prove that this formula is valid.

By well-formedness Γ and Γ ′ are mutually disjoint. By assumption, c does not read or write any identifier
protected by Γ ′, and c does not write to any identifier mentioned in the resource invariants of Γ ′. Hence, if α ∈ [[c]]
and σ

α
−−−−→
Γ ,Γ ′

σ ′, then σ
α

−−→
Γ

σ ′. The result follows easily.
• CONTRACTION

Let Γ ,Γ ′
` {p}c{q} be well formed and valid. In particular Γ and Γ ′ are mutually disjoint. Suppose that

res(c) ⊆ dom(Γ ). We must show that Γ ` {p}c{q} is valid. Let α ∈ [[c]], σ |H p, and σ
α

−−→
Γ

σ ′. Since α cannot

contain any actions involving the resources of Γ ′, we also get σ
α

−−−−→
Γ ,Γ ′

σ ′. So by validity of Γ ,Γ ′
` {p}c{q} it

follows that σ ′
|H q , as required.

• EXISTENTIAL
Suppose Γ ` {p}c{q} is valid and well formed, i 6∈ free(Γ ) ∪ owned(Γ ), and i 6∈ free(c). We must show that

Γ ` {∃i.p}c{∃i.q} is valid.
Assume that (s, h) |H ∃i.p, so that ([s | i : v0], h) |H p for some value v0. Let α be a trace of c. Since

i is not free in c we can use the agreement theorem to deduce that (s, h)
α

−−→
Γ

abort if and only if, for all v,

([s | i : v], h)
α

−−→
Γ

abort. Similarly, (s, h)
α

−−→
Γ

(s′, h′) if and only if, for all v, ([s | i : v], h)
α

−−→
Γ

([s′
| i : v], h′).

Since Γ ` {p}c{q} is valid and ([s | i : v0], h) |H p it follows that for all (s′, h′) such that: (s, h)
α

−−→
Γ

(s′, h′) we
have ([s′

| i : v0], h′) |H q , and hence (s′, h′) |H ∃i.q.
• AUXILIARY

Γ ` {p}c{q}

Γ ` {p}c\X{q}

if X is auxiliary for c, and X ∩ free(p, q) = {}.
Recall that a set X is auxiliary for c if every free occurrence in c of an identifier from X is in an assignment

whose target belongs to X . The command c\X is obtained from c by deleting all assignments to identifiers in X .
Suppose X is auxiliary for c, Γ ` {p}c{q} is well formed and valid, and X ∩ free(p, q) = {}. We must show

that Γ ` {p}c\X{q} is valid. So let β ∈ [[c\X ]], and suppose that (s, h) |H p and (s, h)
β

−−→
Γ

σ ′. We need to show
that σ ′

|H q .
Since X is auxiliary for c, if (s, h)

β
−−→
Γ

abort, there is a trace α of c and a store ŝ such that ŝ agrees with s except

on X and (ŝ, h)
α

−−→
Γ

abort. But since X ∩free(p) = {} we also have (ŝ, h) |H p, so this contradicts the validity of

Γ ` {p}c{q}. Hence σ ′ must be a proper state of the form (s′, h′). Similarly, since we now have (s, h)
β

−−→
Γ

(s′, h′),

and X is auxiliary, there are stores ŝ and ŝ′ that agree with s and s′ (respectively) on X , and a trace α of c, such
that (ŝ, h)

α
−−→
Γ

(ŝ′, h′). Again we have (ŝ, h) |H p, so by validity of Γ ` {p}c{q} it follows that (ŝ′, h′) |H q . Since
X ∩ free(q) = {} we deduce that (s′, h′) |H q , as required.

• FRAME
Assume Γ ` {p}c{q} is well formed and valid, free(I ) ∩ writes(c) = {} and free(I ) ∩ owned(Γ ) = {}. We
must show that Γ ` {p ∗ I }c{q ∗ I } is valid.

Let α ∈ [[c]] and let (s, h) be a state satisfying p ∗ I . Let h = h1 · h2 with h1 ⊥ h2, (s, h1) |H p, (s, h2) |H I .
Suppose (s, h)

α
−−→
Γ

σ ′. By the Frame Property and validity of Γ ` {p}c{q}, there is a state (s′, h′

1) such that

h′

1 ⊥ h2, (s, h1)
α

−−→
Γ

(s′, h′

1), (s′, h′

1) |H q , and σ ′ has the form (s′, h′

1 · h2). Since α does not write to free(I ), we
also have (s′, h2) |H I by the agreement theorem. Hence σ ′

|H q ∗ I , as required.
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Thus we have established soundness of the inference rules with respect to a “local” enabling relation that keeps
track of protection lists and resource invariants. It remains to connect this result with the global enabling the relation
introduced earlier. In fact, we can now show that validity, defined on the basis of local computations, implies the
weaker notion of validity that was discussed earlier.

13. Provability implies no races

As we mentioned earlier, the global state can be regarded as combining the local states of each process and the
state portions determined by the available resources. A global state (s, h, A) corresponds in the obvious manner to the
local state (s↓A, h, A), where we define s↓A = s\owned(Γ\A).

Lemma 26 (Connection Property). Let (s, h, A) be a global state and suppose h = h1 ·h2 with (s, h2) |H inv(Γ\A).

• If (s, h, A)
λ

==⇒ abort then (s↓A, h1, A)
λ

−−→
Γ

abort.

• If (s, h, A)
λ

==⇒ (s′, h′, A′) then either (s↓A, h1, A)
λ

−−→
Γ

abort, or there are heaps h′

1 ⊥ h′

2 such that h′
= h′

1 · h′

2,

(s′, h′

2) |H inv(Γ\A′), and (s↓A, h1, A)
λ

−−→
Γ

(s′
↓A′, h′

1, A′).

Proof. Case analysis using the definitions of the two enabling relations.

• For δ, i=v and abort the results hold trivially.
• For i :=v note that the side condition justifying a successful local step is sufficient to ensure that the change to i

has no effect on the relevant invariants.
• For [l] = v′, [l]:=v′, alloc(l, L), disp(l) the proof is straightforward.

• For acq(r) let r(X) : R ∈ Γ . Note that if (s, h, A)
acq(r)

=====⇒ (s, h, A ∪ {r}) and r 6∈ A, then we can split h2 into
disjoint pieces hr , h3 such that (s, hr ) |H R and (s, h3) |H inv(Γ\(A ∪ {r})). Hence we also have:

(s↓A, h1, A)
acq(r)

−−−−−→
Γ

((s↓A) · (sdX), h1 · hr , A ∪ {r}).

Clearly (s↓A) · (sdX) = s↓(A ∪ {r}) and (h1 · hr ) · h3 = h, and the result follows.
• For rel(r) the proof is similar.

The connection property obviously generalizes to a finite sequence of transitions, i.e. to a finite trace α instead of
a single action λ. This is easy to prove by induction on the length of α using the above lemma as the base case. By
putting A = A′

= {} we obtain the following corollary:

Corollary 27. Let α be a trace. Let (s, h) be a state, h = h1 · h2, and (s, h2) |H inv(Γ ).

• If (s, h)
α

==⇒ abort then (s\owned(Γ ), h1)
α

−−→
Γ

abort.

• If (s, h)
α

==⇒ (s′, h′) then either (s\owned(Γ ), h1)
α

−−→
Γ

abort, or there are heaps h′

1 ⊥ h′

2 such that h′
= h′

1 · h′

2,

(s′, h′

2) |H inv(Γ ), and (s\owned(Γ ), h1)
α

−−→
Γ

(s′
\owned(Γ ), h′

1).

Theorem 28 (Valid Implies Race-free). If Γ ` {p}c{q} is valid and well formed, then c is race-free from every state
satisfying p ∗ inv(Γ ). In fact, for all states σ, σ ′ and all traces α ∈ [[c]], if σ |H p ∗ inv(Γ ) and σ

α
==⇒ σ ′ then

σ ′
|H q ∗ inv(Γ ).

Proof. If Γ ` {p}c{q} is well formed then free(p, q)∩owned(Γ ) = {}. Let α be a trace of c. Suppose (s, h) satisfies
p ∗ inv(Γ ), with h1 ⊥ h2, h = h1 · h2 and (s, h1) |H p, and (s, h2) |H inv(Γ ). Note that s↓{} = s\owned(Γ ) and
that the stores s and s\owned(Γ ) agree on free(p, q). Hence we also have (s\owned(Γ ), h1) |H p.

By the connection corollary above, and validity of Γ ` {p}c{q}, we cannot have (s, h)
α

==⇒ abort, i.e. every
computation of α from (s, h) is error-free.
Similarly, for every computation of form (s, h)

α
==⇒ (s′, h′) there is a corresponding local computation

(s\owned(Γ ), h1)
α

−−→
Γ

(s′
\owned(Γ ), h′

1), and a subset h′

2 of h′ such that (s′, h′

2) |H inv(Γ ), h′
= h′

1 · h′

2. By
validity of Γ ` {p}c{q}, it follows that (s′

\owned(Γ ), h′

1) |H q. Since s′ and s′
\owned(Γ ) agree on free(q) we also
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have (s′, h′

1) |H q . Hence (s′, h′) |H q ∗ inv(Γ ), as required.
Since the transition relation handles races by aborting, this is enough to ensure absence of races when the program is
run from an initial (global) state satisfying p ∗ inv(Γ ),

Corollary 29. If ` {p}c{q} is provable then for all σ, σ ′ such that σ |H p and all traces α ∈ [[c]], if σ
α

==⇒ σ ′ then
σ ′

|H q. Hence c is race-free from every state satisfying p.

Using the above result we now have another way to demonstrate race-freedom for the example programs discussed
earlier. In each case the logic confirms our previous semantic analysis.

For instance, let Γ be the following resource context:

buf (c, full) : (full = 1 ∧ z 7→ −) ∨ (full = 0 ∧ emp)

We showed that the formula

Γ ` {emp}

(x :=cons(1); PUT(x))‖(GET(y); dispose(y))

{emp}

is provable. Hence the formula is also valid. By the above result, it follows that the program is race-free from any state
satisfying

(full = 1 ∧ z 7→ −) ∨ (full = 0 ∧ emp).

14. Conclusions

We have given a trace-based denotational semantics for a language of parallel programs operating on shared
mutable data. The semantics employs a form of fair parallel composition that detects, and views as catastrophic,
the potential for race conditions. The semantics supports compositional reasoning about partial correctness and the
absence of races, and we used the semantics as the basis for a proof of soundness for resource-sensitive concurrent
separation logic. In doing this we formulated a novel “local” semantics that permits reasoning about the dynamic
transfer of heap ownership that may occur during program execution.

It is already known that concurrent separation logic can be used to reason about a wide range of examples, including
parallel mergesort and a simple memory allocator [31,30]. In view of the newness of the logic and the freshness of the
methodology there is still room for further exploration of the benefits, power and utility of this framework. We plan to
tackle a series of challenging examples from the literature, with the expectation that concurrent separation logic will
facilitate more streamlined proofs. The semantic framework should help to formalize and better understand intuitive
concepts such as transfer of ownership, and help to generalize such notions as appropriate.

We have assumed so far that each resource invariant is precise, so that a resource context defines what might be
called a precise ownership policy: when a program acquires or releases a resource there is a uniquely determined
portion of the heap whose ownership can be deemed to transfer. This has not seemed to be a major limitation so far,
and a methodology based on precision seems very natural. Moreover this limitation is sufficient to ensure soundness.
But the question remains if there is a more general class of formulas, suitable as resource invariants, for which the
rules remain sound (possibly with the additional imposition of further side conditions restricting the kind of pre- and
post-condition allowed in rules dealing with resources).

One cannot simply drop the precision constraint completely and allow arbitrary resource invariants. This is shown
by the following problematic formula, due to John Reynolds:

r : true ` {emp ∨ one}with r do skip{emp},

where one is a separation logic formula that holds only in heaps of size one. This formula is derivable if we allow the
REGION rule as before but without insisting that the resource invariant be precise. This formula is not valid, according
to our notion of validity, adapted to the imprecise setting in the obvious way. Nor is there a reasonable variation
on the notion of validity that would make this formula valid and still accurately reflect the program’s computational
behaviour: when executed in a heap of size 1 the program obviously has a computation in which it ends in the same
heap, which certainly does not satisfy the specified post-condition.
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Our semantic model can be used to prove that the methodology is still sound under a parsimonious ownership
policy, characterized as follows: when a process acquires a resource it claims ownership of the smallest heap portion
that suffices, and when releasing the resource cedes ownership of the minimal relevant heap portion. Technically
this involves the use of supported resource invariants with compensatory adjustments in the rules for regions and
resource declarations to require that their pre- and post-conditions be intuitionistic. A supported formula [41,42] has
the characteristic property that in any state there is at most one minimal sub-heap for which the formula holds. If
an intuitionistic formula [41,42] holds in a sub-heap of the state then it holds in all larger sub-heaps. With these
adjustments, the inference rules would then be:

• REGION

Γ ` {(p ∗ R) ∧ b}c{q ∗ R}

Γ , r(X) : R ` {p}with r when b do c{q}

if R supported, p and q intuitionistic
• RESOURCE

Γ , r(X) : R ` {p}c{q}

Γ ` {p ∗ R}resource r in c{q ∗ R}

if R supported, p and q intuitionistic

The key lemmas used in the soundness proof, notably the parallel decomposition lemma and the local resource lemma,
can be adapted to this setting, and the soundness proof goes through as before, with appropriate adjustments in the
case analysis for these two rules.

This seems an intuitively natural generalization of the approach using precise ownership policies. The use of
intuitionistic and supported formulas suggests, by analogy with results from sequential separation logic, that this kind
of reasoning may be useful for concurrent programs operating on data structures that involve structure sharing, such
as overlapping linked lists [33,44,42]. Another example in which such formulas arise naturally is parallel mergesort.
It would also be interesting to see if any other natural ownership policies are useful and can be fit into this framework.

The trace semantics was designed to detect races. We did not include a pair of concurrent reads as a race, since this
kind of passive interaction is usually regarded as benign. However, the use of separating conjunction in the PARALLEL
rule requires that the processes in a provable program operate on disjoint portions of the heap, even if part of the heap
is treated as “read-only” by all processes and could safely be shared without racing. For example, there is no way to
prove the obviously valid formula

` {z 7→ 1}x :=[z]‖y:=[z]{x = y = 1 ∧ z 7→ 1},

since the logic requires both processes to “need” to own the heap cell denoted by z, separately. Nevertheless, the trace
semantics handles this issue (and this example) correctly, so here is a place where the semantics is ahead of the logic.

We believe that it may be possible to solve this passivity problem by introducing a further class of formulas of the
form Γ `R {p}c{q}, decorated with a separation logic formula R describing a “read-only” part of the heap, together
with suitably designed inference rules. It is not yet clear if this approach can be pushed through completely, or if it
is necessary to restrict the kind of formula allowed as read-only annotation, perhaps to the class of precise formulas.
Another possibility might be to try to adapt Boyland’s ideas on fractional permissions [6], perhaps by designing
a semantics in which partial permissions are attached to resource actions and managed in an appropriate manner
upon resource acquisition and release, instead of all-or-nothing transfer. The trace semantic framework should help to
provide a rigorous test-bed for checking the soundness of such proposed extensions.

Our focus so far has been limited to partial correctness. It should also be possible to develop resource-sensitive
inference rules for total correctness, leading to a logic in which every provable program is both race-free and deadlock-
free. One natural idea is to take a more intentional view of the structure of resource contexts, so that a context
designates a sequence rather than a set of resources, conveying an acquisition order for resource names. One can then
re-phrase the side conditions in the inference rules so that in every provable program all processes acquire resources
in the order in which they occur in the list Γ . When all processes obey the same acquisition order we will be able to
rule out “cyclic” deadlocks. For example, the program

(with r1 do with r2 do x :=1) ‖ (with r2 do with r1 do y:=1)
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can either deadlock or terminate successfully, depending on the scheduling. However, there is no resource context
Γ for which both c1 and c2 respect the precedence order, and hence c1‖c2 has no provable formulas. This idea, that
precedence rules can prevent deadlock, appears to be a well known folk theorem.

The trace semantics presented here makes distinctions between programs based on the order in which they perform
actions, and hence fails to be fully abstract for partial correctness. Moreover our repertoire of actions assumes that
reads and writes to individual variables and heap addresses are executable indivisibly. But the partial correctness
properties of a race-free program should not depend on whether assignments, or reads and writes to a variable, are
atomic [43]. For example, the trace sets denoted by the programs x :=1; y:=1 and y:=1; x :=1 are distinct, but the
two programs clearly satisfy the same partial correctness formulas (and the same race-freedom properties) in all
program contexts. Of course, the fact that our semantics is compositional implies the usual half of full abstraction:
if two programs have the same trace set then they satisfy the same partial correctness formulas in all contexts. It
would be interesting to devise a semantic model more abstract than ours, abstracting away from granularity, in which
(for example) the above programs would be given the same meaning. One possibility is to work with a form of
“big step” transition trace in which the actions between successive resource actions are conflated (by a form of
“mumbling”) into one big state transformation [16,13]. Such a semantics would ascribe identical meaning to all
pairs of commands which are indistinguishable in this sense. John Reynolds has recently proposed an alternative
semantics with similar aims but different structure. However appealing this prospect is, we leave this as a topic for
future research.

Turning the above argument on its head, we might equally well argue that the trace semantics makes the
right kinds of distinctions between programs to support reasoning about safety and liveness properties, since
these properties depend on the sequences of states through which a program may pass during a fair execution.
Using temporal logics an enormous variety of safety and liveness properties can be expressed [39]. We plan
to explore a combination of separation logic with the modal operators of temporal logic to obtain a temporal
separation logic. As a first step in this direction it may be possible to adapt rely/guarantee methodology [26,28,
27] to our setting. Indeed our description of ownership transfer policy clearly has both “rely” and “guarantee”
aspects.

The idea of using traces of some kind to model processes is widespread and attests to the utility of the general
concept, but the word “trace” means different things to different people. Hoare proposed a form of action trace
in which each action represents a potential to send or receive a value on a channel, and used such traces in an
early model of CSP which ignored deadlock (and ignored state). The failures model of CSP augmented such traces
with “refusal sets” to permit proper treatment of deadlock. The failures/divergences model further incorporated
“divergence traces” to permit a limited form of liveness analysis. In retrospect these models can be seen as early
pre-cursors of the action trace framework that we currently advocate: our notion of action trace encompasses
both state (including mutable state with embedded pointers) and communication. Transition traces are descended
from the foundational work of David Park, who used similar traces to model shared-variable programs. The main
difference is that in Park’s semantics each step represents the effect (again on the global shared state) of a single
atomic action, so that Park’s model failed to be fully abstract, for instance distinguishing unnecessarily between
skip and skip; skip. A similar motivation was behind our built-in assumption that δ is a unit for concatenation of
actions.
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Appendix

We include here some technical lemmas leading to the proof of the parallel decomposition lemma, which was used
crucially in the soundness proof for the PARALLEL rule.

Lemma 1 (Agreement Property for Traces). For all resource contexts Γ and all traces α:

1. If s1 agrees with s2 on Y and Y ⊇ free(α,Γ ), then:
• If (s1, h, A)

α
−−→
Γ

abort, then (s2, h, A)
α

−−→
Γ

abort.
• If (s1, h, A)

α
−−→
Γ

(s′

1, h′, A′) then there is a store s′

2 such that (s2, h, A)
α

−−→
Γ

(s′

2, h′, A′) and s′

1 agrees with s′

2 on
Y .

2. If (s, h, A)
α

−−→
Γ

(s′, h′, A′) then s\owned(Γ ) agrees with s′
\owned(Γ ) except on writes(α).

Proof of (1). By induction on the length of α.
The base case (when α is a single action λ) is a straightforward case analysis using the definition of the transition
relations λ

−−→
Γ

, and the inductive step is easy. Here are the base cases for resource actions:

• For λ of the form acq(r), suppose that s1 and s2 agree on Y ⊇ free(Γ ).
– If (s1, h, A)

acq(r)
−−−−−→

Γ
abort then r ∈ A, so we also have (s2, h, A)

acq(r)
−−−−−→

Γ
abort.

– If (s1, h, A)
acq(r)

−−−−−→
Γ

(s1 · s′, h · h′, A ∪ {r}) where dom(s′) = X , h ⊥ h′, and (s1 · s′, h′) |H R, since s1 and

s2 agree on free(R) by assumption, it follows that we also have (s2 · s′, h′) |H R. Hence: (s2, h, A)
acq(r)

−−−−−→
Γ

(s2 · s′, h · h′, A ∪ {r}). It follows easily that s1 · s′ and s2 · s′ agree on Y , as required.
• For λ of form rel(r), suppose that s1 and s2 agree on Y ⊇ free(Γ ).

– If (s1, h, A)
rel(r)

−−−−→
Γ

abort then either r 6∈ A, or r(X) : R ∈ Γ and for all h′
⊆ h we have (s1, h′) |H ¬R. In the

first case it is obvious that we also have (s2, h, A)
rel(r)

−−−−→
Γ

abort. Otherwise r ∈ A, and since s1 and s2 agree on

free(R), we also have (s2, h′) |H ¬R for all h′
⊆ h, so again (s2, h, A)

rel(r)
−−−−→

Γ
abort.

– Otherwise assume that: (s1, h, A)
rel(r)

−−−−→
Γ

(s1\X, h − h′, A − {r}) where r ∈ A, r(X) : R ∈ Γ , h′
⊆ h

and (s1, h′) |H R. Since s1 and s2 agree on free(R) we also have (s2, h′) |H R, so that (s2, h, A)
rel(r)

−−−−→
Γ

(s2\X, h − h′, A − {r}). Clearly s1\X and s2\X agree on Y , as required.

Proof of (2). Again by induction on the length of α.
The base case uses the definition of λ

−−→
Γ

and the inductive step is easy. Here are the base cases for resource actions.

• If (s, h, A)
acq(r)

−−−−−→
Γ

(s · s′, h · h′, A ∪ {r}) we have writes(acq(r)) = {}, and dom(s′) ⊆ owned(Γ ), so
(s · s′)\owned(Γ ) = s\owned(Γ ), as required.

• If (s, h, A)
rel(r)

−−−−→
Γ

(s\X, h − h′, A − {r}) we have X ⊆ owned(Γ ) and (s\X)\owned(Γ ) = s\owned(Γ ). Since
writes(rel(r)) = {} the result holds.

Lemma 2 (Frame Property for Actions). Suppose h1 ⊥ h2, A1 ⊥ A2, and h = h1 · h2, A = A1 · A2. Assume that
(A1, A2)

λ
−→ (A′

1, A2).

• If (s, h, A)
λ

−−→
Γ

abort, then (s\owned(Γ dA2), h1, A1)
λ

−−→
Γ

abort.

• If (s, h, A)
λ

−−→
Γ

(s′, h′, A′) then either (s\owned(Γ dA2), h1, A1)
λ

−−→
Γ

abort, or there is a heap h′

1 such that
h′

1 ⊥ h2, h′
= h′

1 · h2, A′
= A′

1 · A2, and

(s\owned(Γ dA2), h1, A1)
λ

−−→
Γ

(s′
\owned(Γ dA2), h′

1, A′

1).
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Proof. Case analysis for each form of action. Most cases are straighforward. Here are the cases for resource actions.
Let s↓A1 = s\owned(Γ dA2).

• For λ = acq(r), since (A1, A2)
acq(r)

−−−−−→ (A′

1, A2) we have r 6∈ A1 · A2 and A′

1 = A1 ∪ {r}.
– Obviously we also have r 6∈ A1, so the abort case is vacuous.
– If (s, h, A)

acq(r)
−−−−−→

Γ
(s · s′′, h · h′′, A ∪ {r}) where r(X) : R ∈ Γ , s′′

⊥ s, dom(s′′) = X , h′′
⊥ h, and

(s · s′′, h′′) |H R, we argue as follows.
Since r 6∈ A, we have free(R) ∩ owned(Γ dA) = {}. Hence the stores s · s′′ and (s↓A1) · s′′ agree on free(R),
so that we also get

((s↓A1) · s′′, h′′) |H R.

It follows that (s↓A1, h1, A1)
acq(r)

−−−−−→
Γ

((s↓A1) · s′′, h1 · h′′, A1 ∪{r}). Clearly (h1 · h′′) ⊥ h2 and (h1 · h′′) · h2 =

h · h′′. By the disjointness properties of Γ , (s · s′′)↓(A1 ∪ {r}) = (s↓A1) · s′′. The result thus holds for this case.
• For λ = rel(r) since (A1, A2)

rel(r)
−−−−→

Γ
(A′

1, A2) we have r ∈ A1 and A′

1 = A1 −{r}. Hence r ∈ A. Let r(X) : R ∈ Γ .

– If (s, h, A)
rel(r)

−−−−→
Γ

abort then (since r ∈ A) there is no subset h′ of h such that (s, h′) |H R. Since r 6∈ A2 the
stores s and s↓A1 agree on free(R). It follows that there is no subset h′ of h1 such that (s↓A1, h′) |H R, and
hence that (s↓A1, h1, A1)

rel(r)
−−−−→

Γ
abort.

– On the other hand, if

(s, h, A)
rel(r)

−−−−→
Γ

(s\X, h − h′, A − {r}),

where (s, h′) |H R and h′
⊆ h, we argue as follows.

Recall that r ∈ A1. By the disjointness properties of Γ and the assumption that r 6∈ A2, the stores s↓A1 and s
agree on free(R). Hence (s↓A1, h′) |H R. If h′ is not also a subset of h1 we clearly get

(s↓A1, h1, A1)
rel(r)

−−−−→
Γ

abort.

Otherwise, h′
⊆ h1 and we therefore get

(s↓A1, h1, A1)
rel(r)

−−−−→
Γ

((s↓A1)\X, h1 − h′, A1 − {r}).

Since h1 ⊥ h2 and h = h1 ·h2 we also have h−h′
= (h1−h′)·h2, (h1−h′) ⊥ h2, and A′

−{r} = (A1−{r})· A2.
The result follows, since (s\X)↓(A1 − {r}) = (s↓A1)\X .

The generalization to traces is an obvious induction.

Lemma 3 (Frame Property for Traces). Suppose h1 ⊥ h2, A1 ⊥ A2, and h = h1 · h2, A = A1 · A2.
Assume that: (A1, A2)

α
−→ (A′

1, A2).

• If (s, h, A)
α

−−→
Γ

abort, then (s\owned(Γ dA2), h1, A1)
α

−−→
Γ

abort.
• If (s, h, A)

α
−−→
Γ

(s′, h′, A′) then either (s\owned(Γ dA2), h1, A1)
α

−−→
Γ

abort, or there is a heap h′

1 such that
h′

1 ⊥ h2, h′
= h′

1 · h2, A′
= A′

1 · A2, and

(s\owned(Γ dA2), h1, A1)
α

−−→
Γ

(s′
\owned(Γ dA2), h′

1, A′

1).

In the statement of the following lemma let free(α1), writes(α2) and so on refer to the set of free identifiers, and
the set of free write identifiers, respectively, of a trace. (We do not include the heap cells read or written by the trace,
since the lemma concerns the effect of the trace on the identifiers protected by Γ .)

Lemma 4 (Parallel Decomposition for Traces). Assume (free(α1) ∩ writes(α2)) ∪ (writes(α1) ∩ free(α2)) ⊆

owned(Γ ) and α ∈ α1 A1‖A2 α2. Suppose h1 ⊥ h2, A1 ⊥ A2, and h = h1 · h2, A = A1 · A2.
Let s1 = s\writes(α2)\owned(Γ ) ∪ sdowned(Γ dA1), and s2 = s\writes(α1)\owned(Γ ) ∪ sdowned(Γ dA2).

• If (s, h, A)
α

−−→
Γ

abort then either (s1, h1, A1)
α1

−−→
Γ

abort, or (s2, h2, A2)
α2

−−→
Γ

abort.



268 S. Brookes / Theoretical Computer Science 375 (2007) 227–270

• If (s, h, A)
α

−−→
Γ

(s′, h′, A′) then either (s1, h1, A1)
α1

−−→
Γ

abort, or (s2, h2, A2)
α2

−−→
Γ

abort, or there are disjoint

heaps h′

1, h′

2, and disjoint resource sets A′

1, A′

2, such that h′
= h′

1 · h′

2, A′
= A′

1 · A′

2, (s1, h1, A1)
α1

−−→
Γ

(s′

1, h′

1, A′

1),

and (s2, h2, A2)
α2

−−→
Γ

(s′

2, h′

2, A′

2), where s′

1 = (s′
\writes(α2)\owned(Γ )) ∪ (s′

downed(Γ dA′

1)) and s′

2 =

(s′
\writes(α1)\owned(Γ )) ∪ (s′

downed(Γ dA′

2)).

Proof. By induction on the lengths of α1 and α2.

• Base case: when one of the traces is empty.
Without loss of generality, assume that α2 = ε and α ∈ α1 A1‖A2 ε, so that (A1, A2)

α
−−→
Γ

(A′

1, A2) for some
A′

1 ⊥ A2, and α = α1. Note that s1 = s↓A1 and s2 = s\writes(α)\owned(Γ ) ∪ sdowned(Γ dA2).
– If (s, h, A)

α
−−→
Γ

abort then (s↓A1, h1, A1)
α

−−→
Γ

abort by the Frame Property. Hence (s1, h1, A1)
α1

−−→
Γ

abort, as
required.
(The other base case, when α1 is empty, is symmetric; we would get (s2, h2, A2)

α2
−−→
Γ

abort here instead.)

– If (s, h, A)
α

−−→
Γ

(s′, h′, A′) we use the frame property again. Let s′

1 = s′
↓A′

1 and s′

2 =

s′
\writes(α1)\owned(Γ ) ∪ s′

downed(Γ dA2). There are two possibilities.
∗ Either (s↓A1, h1, A1)

α
−−→
Γ

abort, and we can argue as above to show that (s1, h1, A1)
α1

−−→
Γ

abort.

∗ Or (s↓A1, h1, A1)
α1

−−→
Γ

(s′
↓A′

1, h′

1, A′

1) with h′

1 ⊥ h2 and h′
= h′

1 · h2. Hence (s1, h1, A1)
α1

−−→
Γ

(s′

1, h′

1, A′

1).

Trivially we also have (s2, h2, A2)
ε

−−→
Γ

(s2, h2, A2). By the Agreement Property s′
\owned(Γ ) agrees with

s\owned(Γ ) except on writes(α), and by definition of the enabling relation writes(α) must be disjoint
from owned(Γ dA2), so it is easy to see that s′

2 = s2. The result follows.
• Inductive case: α1 = λ1α

′

1 and α2 = λ2α
′

2, α ∈ α1 A1‖A2 α2.
If α is abort because λ1 and λ2 interfere, they must involve a concurrent write to a critical identifier or to a heap
cell. Since critical identifiers are protected and A1 ∩ A2 = {}, and dom(h1) ∩ dom(h2) = {}, it follows that either
(s1, h1, A1)

λ1
−−→
Γ

abort or (s2, h2, A2)
λ2

−−→
Γ

abort. The result then follows.

Otherwise, without loss of generality, assume that: (A1, A2)
λ1

−−→ (A′′

1, A2), α = λ1α
′′, α′′

∈ α′

1‖A′′

1,A2
α2. (Again

the other case is symmetrical.)
Let s1 = s\writes(α2)\owned(Γ ) ∪ sdowned(Γ dA1),
and s2 = s\writes(α1)\owned(Γ ) ∪ sdowned(Γ dA2).
– If (s, h, A)

α
−−→
Γ

abort then either (s, h, A)
λ1

−−→
Γ

abort, or there is a state (s′′, h′′, A′′) such that (s, h, A)
λ1

−−→
Γ

(s′′, h′′, A′′)
α′′

−−→
Γ

abort.

In the first subcase the frame property for λ1 implies that (s↓A1, h1, A1)
λ1

−−→
Γ

abort. But s↓A1 and s1 agree on

free(α1), so (s1, h1, A1)
λ1

−−→
Γ

abort and (s1, h1, A1)
α1

−−→
Γ

abort, as required.
In the second subcase by the Frame Property for λ1 there is a heap h′′

1 ⊥ h2 such that h′′
= h′′

1 · h2, and

(s↓A1, h1, A1)
λ1

−−→
Γ

(s′′
↓A′′

1, h′′

1, A′′

1).

Let s′′

1 = s′′
\writes(α2)\owned(Γ ) ∪ s′′

downed(Γ dA′′

1),
and s′′

2 = s′′
\writes(α1)\owned(Γ ) ∪ s′′

downed(Γ dA2).
By the Agreement Properties, s′′

2 agrees with s2 on free(α2,Γ ), and

(s1, h1, A1)
λ1

−−→
Γ

(s′′

1 , h1, A1).

We also have, by assumption,

(s′′, h′′, A′′)
α′′

−−→
Γ

abort.

By the induction hypothesis for α′′, we must have:

∗ either (s′′

1 , h′′

1, A′′

1)
α′

1
−−→
Γ

abort and hence (s1, h1, A1)
α1

−−→
Γ

abort;
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∗ or (s′′

2 , h2, A2)
α2

−−→
Γ

abort, in which case since s2 agrees with s′′

2 on free(α2,Γ ) it also follows that

(s2, h2, A2)
α2

−−→
Γ

abort.
– If (s, h, A)

α
−−→
Γ

(s′, h′, A′) then there must be a state (s′′, h′′, A′′) such that

(s, h, A)
λ1

−−→
Γ

(s′′, h′′, A′′)
α′′

−−→
Γ

(s′, h′, A′).

Use the frame property for the first step.
If (s↓A1, h1, A1)

λ1
−−→
Γ

abort we get(s1, h1, A1)
α1

−−→
Γ

abort as above.

Otherwise, we must have (s↓A1, h1, A1)
λ1

−−→
Γ

(s′′
↓A′′

1, h′′

1, A′′

1) with h′′

1 ⊥ h2, h′′
= h′′

1 · h2.

Using the Agreement Properties as above it follows that (s1, h1, A1)
λ1

−−→
Γ

(s′′

1 , h′′

1, A′′

1), where s′′

1 =

s′′
\writes(α2)\owned(Γ ) ∪ s′′

downed(Γ dA′′

1).
Let s′′

2 = s′′
\writes(α′

1)\owned(Γ ) ∪ s′′
downed(Γ dA2).

The induction hypothesis for α′′ implies that

∗ either (s′′

1 , h′′

1, A′′

1)
α′

1
−−→
Γ

abort, so that (s1, h1, A1)
α1

−−→
Γ

abort;
∗ or (s′′

2 , h2, A2)
α2

−−→
Γ

abort, and since s′′

1 agrees with s2 on free(α2,Γ ) we get (s2, h2, A2)
α2

−−→
Γ

abort;

∗ or (s′′

1 , h′′

1, A′′

1)
α′

1
−−→
Γ

(s′

1, h′

1, A′

1) and (s′′

2 , h2, A2)
α2

−−→
Γ

(s′′′

2 , h′

2, A′

2), where h′

1 ⊥ h′

2, h′
= h′

1 · h′

2,
A′

1 ⊥ A′

2, A′

1 · A′

2 = A′, and
s′

1 = s′
\writes(α2)\owned(Γ ) ∪ s′

downed(Γ dA′

1),
s′′′

2 = s′
\writes(α′

1)\owned(Γ ) ∪ s′
downed(Γ dA′

2).

Hence (s1, h1, A1)
λ1

−−→
Γ

(s′′

1 , h′′

1, A′′

1)
α′

1
−−→
Γ

(s′

1, h′

1, A′

1) and

(s1, h1, A1)
α1

−−→
Γ

(s′

1, h′

1, A′

1).

Since s′′

2 agrees with s2 except on writes(λ1) − owned(Γ ) we also get

(s2, h2, A2)
α2

−−→
Γ

(s′

2, h′

2, A′

2),

where s′

2 = s′
\writes(α1)\owned(Γ ) ∪ s′

downed(Γ dA′

2).
That completes the proof.

Corollary 5 (Parallel Decomposition). Assume (free(c1) ∩ writes(c2)) ∪ (writes(c1) ∩ free(c2)) ⊆ owned(Γ )

and α ∈ α1‖α2, where α1 ∈ [[c1]] and α2 ∈ [[c2]]. Suppose that h1 ⊥ h2 and h = h1 · h2. Let s1 = s\writes(α2) and
s2 = s\writes(α1).

• If (s, h)
α

−−→
Γ

abort then (s1, h1)
α1

−−→
Γ

abort or (s2, h2)
α2

−−→
Γ

abort.
• If (s, h)

α
−−→
Γ

(s′, h′) then (s1, h1)
α1

−−→
Γ

abort or (s2, h2)
α2

−−→
Γ

abort, or there are disjoint heaps h′

1 ⊥ h′

2 such that

h′
= h′

1 · h′

2 and (s1, h1)
α1

−−→
Γ

(s′

1, h′

1), (s2, h2)
α2

−−→
Γ

(s′

2, h′

2), where s′

1 = s′
\writes(α2) and s′

2 = s′
\writes(α1).

Proof. Let A = {} in the previous lemma.
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