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Abstract

We show that a certain optimality property of the classical Bernstein operator also holds, when suitably
reinterpreted, for generalized Bernstein operators on extended Chebyshev systems.
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1. Introduction

It is well known that the classical Bernstein operator Bn : C [0, 1] → Span{1, x, . . . , xn
},

defined by

Bn f (x) =
n∑

k=0

f

(
k

n

)(n

k

)
xk (1− x)n−k (1)

has good shape preserving properties, a fact that explains its usefulness in computer assisted
geometric design. But the uniform convergence of the polynomials Bn f to f can be slow.
Thus, it is natural to enquire whether one can have operators from the continuous functions
to the space of polynomials, with good shape preserving and fast approximation properties
simultaneously. However, in a certain sense it is impossible to do better than by using Bernstein
operators. Within some natural classes of polynomial valued operators, Bernstein operators
approximate convex functions in an optimal way. In [5], Berens and DeVore consider operators
Ln : C [0, 1] → Span{1, x, . . . , xn

}, fixing 1 and x , and such that (Ln f )( j)
≥ 0 if f ( j)

≥ 0
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for j = 0, 1, 2, . . . , n. They show that for every n, Ln x2
≥ Bn x2, and if for some t ∈ (0, 1),

Ln t2
= Bn t2, then Ln ≡ Bn . Since Bn x2

≥ x2, Ln performs strictly worse than Bn (unless
Ln ≡ Bn) at least for x2. The result of Berens and DeVore [5, p. 214] is extended to a wider class
of operators Ln in [6, Theorem 1]. While the result is stated there for x2, the argument works
for an arbitrary convex function φ (using Jensen’s inequality instead of Hölder’s inequality). The
more general result, for φ convex, can be found in [7, Theorem 2]. A further extension appears
in [12, Theorem 2].

Recently, there has been an increasing interest concerning generalized Bernstein bases in the
framework of extended Chebyshev spaces (in particular, spaces that contain functions such as
sin x and cos x), cf. for instance, [8–11,16–18]. The existence of generalized Bernstein bases
raises the question of the possible existence of associated generalized Bernstein operators. This
topic is studied in [1], for exponential polynomials, and in [2,3,15,19], for extended Chebyshev
spaces. Here we show that the operators considered in [1–3,15,19], share the preceding optimality
property of the classical Bernstein operator, under a suitable generalized notion of convexity.

Additionally, we give a selfcontained and streamlined presentation of the generalized
Bernstein operators introduced in [20] by S. Morigi and M. Neamtu. These operators are used
here to exhibit a sequence of generalized Bernstein operators converging strongly to the identity,
preserving (1, ex )-convexity, and failing to preserve standard convexity.

2. Definitions and optimality results

For each pair n, k of nonnegative integers, let µn,k be a positive measure. Denote by
pn,k(x) :=

( n
k

)
xk (1− x)n−k the elements of the Bernstein basis for the space of polynomials.

Let Ln be the class of positive linear operators Ln : C [0, 1]→ Span{1, x, . . . , xn
} fixing 1 and

x (so Ln preserves affine functions) and defined by

Ln f (x) :=
n∑

k=0

λn,k( f )pn,k(x), where λn,k( f ) :=
∫ 1

0
f dµn,k . (2)

Denote by δx the Dirac delta probability, which assigns mass 1 to the singleton {x}, and observe
that Bn ∈ Ln is obtained by taking µn,k = δk/n in (2), so λn,k( f ) = f (k/n). Recall that if φ
is convex on [0, 1], then Bnφ ≥ φ on that interval. From [6, Theorem 1] and the generalization
in [7, Theorem 2], it is known that Lnφ ≥ Bnφ for every convex function φ and every Ln ∈ Ln ,
and furthermore, Ln ≡ Bn if Lnψ(t) = Bnψ(t) for some strictly convex function ψ and some
t ∈ (0, 1). In this sense the operator Bn approximates convex functions optimally within the
class Ln . We emphasize that this is not an asymptotic optimality result, where n is required to
approach∞. Instead, best approximation holds for each fixed n.

Observe that by uniqueness of the coefficients of the basis functions, the condition Ln1 ≡ 1
entails that each µn,k is a probability measure, while Ln x ≡ x entails that the expectation of x
with respect to µn,k is

∫ 1
0 xdµn,k(x) = k/n. If the assumption Ln x ≡ x is dropped, then the

resulting operator may fail to preserve convexity, and may approximate some convex functions
better than Bn (while in other cases the approximation will be worse, notably for x itself).

Example 1. Let 1 < j ≤ n. In [2, Proposition 11] and in [19, Example 5.3], a generalized
Bernstein operator Bn, j fixing 1 and x j , is defined by

Bn, j f (x) =
n∑

k=0

f

([
k(k − 1) · · · (k − j + 1)
n(n − 1) · · · (n − j + 1)

]1/j
)(n

k

)
xk(1− x)n−k .



J.M. Aldaz, H. Render / Journal of Approximation Theory 162 (2010) 1407–1416 1409

In particular, if j = 1 this is the classical Bernstein operator. However, for j > 1 and all
k = 1, 2, . . ., Bn, j xk < Bn xk on (0, 1), since the operator Bn, j samples the strictly increasing
functions xk at nodes lower than those of Bn (except the first and the last nodes, which are 0 and
1 in both cases). It is shown in [2, Example 17] that if 1 ≤ k ≤ j , then Bn, j xk

≤ xk , while if
j ≤ k, then Bn, j xk

≥ xk . Hence, on (0, 1), Bn xk > Bn, j xk
≥ xk when j ≤ k. Of course, Bn, j

does not preserve convexity, since

Bn, j (1− x) = Bn, j (1)− Bn, j (x) > 1− Bn(x) = 1− x

whenever x ∈ (0, 1). But Bn, j does preserve (1, x j )-convexity, defined below.

The way to recover the results from [6,7] is thus to deal with a generalized notion of convexity.
We give next the relevant definitions. An extended Chebyshev space Un of dimension n+ 1 over
the interval [a, b] is an n+1 dimensional subspace of Cn ([a, b]) such that each function f ∈ Un
not vanishing identically, has at most n zeros in [a, b], counting multiplicities. It is well-known
that extended Chebyshev spaces possess non-negative Bernstein bases, i.e. collections of non-
negative functions pn,k, k = 0, . . . , n, in Un , such that each pn,k has a zero of order k at a and a
zero of order n− k at b, for k = 0, . . . , n. Now let us select two functions f0, f1 ∈ Un , such that
f0 > 0 and f1/ f0 is strictly increasing (these functions play the role of 1 and x in the classical
case). It is sometimes possible to define a generalized Bernstein operator Bn : C [a, b] → Un
fixing f0 and f1, by first suitably choosing nodes tn,0, . . . , tn,n ∈ [a, b] such that tn,0 = a and
tn,n = b, second, by selecting appropriate weights αn,0, . . . , αn,n > 0, and finally, by setting

Bn ( f ) =
n∑

k=0

f
(
tn,k
)
αn,k pn,k . (3)

Criteria for the existence of such Bn can be found in [2,3,19], and in the specific case of
exponential polynomials, in [1,15]. In this section, we shall assume that Bn exists (fixing the
given functions), and will show that it has an extremal property analogous to that of Bn . For
simplicity in the notation, we relabel the basis functions so that they already incorporate the
weights αn,k . Thus, (3) becomes

Bn ( f ) =
n∑

k=0

f
(
tn,k
)

pn,k . (4)

The functions f0 and f1 are always assumed to satisfy the conditions “ f0 > 0” and “ f1/ f0 is
strictly increasing”.

Remark 2. Given an extended Chebyshev space Un , it is always possible to select some pair f0
and f1 in Un for which a generalized Bernstein operator can be defined (cf. [2, Corollary 8]).
However, for some choices of f0 and f1, Bn may fail to exist. For instance, it is well known
that if 0 < b < 2π , then U3 := Span{1, x, cos x, sin x} on the interval [0, b] is an extended
Chebyshev space. But there is no generalized Bernstein operator Bn fixing 1 and x if b = 5 (for
instance) while such Bn does exist if b = 4, cf. [2, Theorem 25].

Remark 3. The condition on the zeros of pn,k entails that, like the classical Bernstein operator,
the operators given by (3) interpolate functions at the endpoints of the interval [a, b]: Since
f0 is strictly positive, from f0(a) = Bn ( f0) (a) = f0 (a) αn,0 pn,0(a) we conclude that
αn,0 pn,0(a) = 1. Likewise, αn,n pn,n(b) = 1, so we always have Bn ( f ) (a) = f (a) and
Bn ( f ) (b) = f (b).
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Convexity of φ can be defined by saying that if we interpolate between φ(x) and φ(y) using
an affine function h, then on [x, y] the graph of φ lies below the graph of h. If instead of
affine functions we use ( f0, f1)-affine functions, that is, functions in Span{ f0, f1}, we obtain
the corresponding notion of ( f0, f1)-convexity. Thus, ordinary convexity corresponds to (1, x)-
convexity. According to [14], p. 376, this generalized notion of convexity was introduced in 1926
by Hopf, and was later extensively developed by Popoviciu, specially in the context of Chebyshev
spaces. Strict ( f0, f1)-convexity is defined analogously to strict convexity. It is shown in [2,
Theorem 22] (cf. also [19, Proposition 4.14]) that a generalized Bernstein operator Bn fixing f0
and f1 preserves ( f0, f1)-convexity.

We would like to stress the point that Bn will in general fail to preserve standard convexity
(recall Example 1). It will be shown in Section 3 that likewise, the standard Bernstein operator
Bn does not in general preserve strengthened forms of convexity, such as (1, ex )-convexity for
increasing functions.

The following characterization of ( f0, f1)-convexity, due to M. Bessenyei and Z. Páles
(cf. [4, Theorem 5]), helps to understand its meaning.

Theorem 4. Let I := ( f1/ f0)([a, b]). Then φ ∈ C[a, b] is ( f0, f1)-convex if and only if
(φ/ f0) ◦ ( f1/ f0)

−1
∈ C (I ) is convex in the standard sense.

In particular, if f0 = 1, the relationship between convexity and (1, f1)-convexity is given by
a simple change of variables (determined by f1). For instance, returning to Example 1, and to
the functions considered there, we see that if 1 ≤ k ≤ j , then xk is (1, x j )-concave, while if
j ≤ k ≤ n, then xk is (1, x j )-convex.

Before we prove the announced optimality property of generalized Bernstein operators, we
need the following lemma. It is entirely analogous to Theorem 4, save that strict convexity
replaces convexity throughout. The proof is also essentially the same, and thus we omit it.
Basically, all one needs to do is to use strict inequalities > instead of ≥, at the appropriate
places.

Lemma 5. Let I := ( f1/ f0)([a, b]). Then ψ ∈ C[a, b] is strictly ( f0, f1)-convex if and only if
(ψ/ f0) ◦ ( f1/ f0)

−1
∈ C (I ) is strictly convex.

Theorem 6. Let Un ⊂ Cn [a, b] be an extended Chebyshev space containing the functions f0
and f1, with f0 > 0 and f1/ f0 strictly increasing. Suppose there exists a generalized Bernstein
operator Bn : C [a, b]→ Un fixing f0 and f1. Let the operator Ln : C [a, b]→ Un , subject to
Ln f0 = f0 and Ln f1 = f1, be defined by

Ln ( f ) =
n∑

k=0

λn,k( f )pn,k, (5)

where pn,k has the same meaning as in (4), and λn,k( f ) is obtained from f and the positive
measure µn,k via

λn,k( f ) := f0(tn,k)
∫ b

a
f dµn,k . (6)

Then, for every ( f0, f1)-convex function φ, we have φ ≤ Bnφ ≤ Lnφ. Moreover, if for some
t ∈ (a, b) and some strictly ( f0, f1)-convex function ψ we have Bnψ(t) = Lnψ(t), then
Bn ≡ Ln .
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Proof. First we make explicit what the assumptions in the theorem entail about the measures
µn,k . Since

Ln f0 =

n∑
k=0

λn,k( f0)pn,k = f0 = Bn f0 =

n∑
k=0

f0
(
tn,k
)

pn,k,

by uniqueness of the coefficients of the basis functions, we must have f0
(
tn,k
)
= λn,k( f0)

for all pairs n, k. But then 1 =
∫ b

a f0dµn,k by (6), so admissible measures µn,k must be such
that dPn,k := f0dµn,k defines a probability Pn,k . With this notation, the second condition
Ln( f1) = f1 leads to

λn,k( f1) = f0
(
tn,k
) ∫ b

a

f1

f0
dPn,k,

so again by uniqueness of the coefficients of the basis functions, we have

f0
(
tn,k
) ∫ b

a

f1

f0
dPn,k = λn,k( f1) = f1

(
tn,k
)
= f0

(
tn,k
) f1

(
tn,k
)

f0
(
tn,k
) .

Thus,

f1
(
tn,k
)

f0
(
tn,k
) = ∫ b

a

f1

f0
dPn,k (7)

for all pairs n, k.
Next, suppose φ is ( f0, f1)-convex on [a, b]. Given h : X → Y and a measure ν on X , the

pushforward to Y of ν, using h, is denoted by h∗ν; recall that h∗ν(A) := ν(h−1(A)). Applying
the change of variables formula twice (cf., for instance, [13, Theorem C, p. 163]), Theorem 4
above, Jensen’s inequality, and (7), we obtain

λn,k(φ) = f0
(
tn,k
) ∫ b

a
φ(x)dµn,k(x) = f0

(
tn,k
) ∫ b

a

φ

f0
(x)dPn,k(x) (8)

= f0
(
tn,k
) ∫

f1
f0
([a,b])

φ

f0
◦

(
f1

f0

)−1

(x)d
(

f1

f0

)
∗

Pn,k(x) (9)

≥ f0
(
tn,k
) φ

f0
◦

(
f1

f0

)−1
(∫

f1
f0
([a,b])

xd
(

f1

f0

)
∗

Pn,k(x)

)
(10)

= f0
(
tn,k
) φ

f0
◦

(
f1

f0

)−1 (∫
[a,b]

(
f1

f0

)
(x)dPn,k(x)

)
(11)

= f0
(
tn,k
) φ

f0
◦

(
f1

f0

)−1 ( f1

f0
(tn,k)

)
= φ(tn,k). (12)

Since the basis functions are non-negative, we obtain Bnφ ≤ Lnφ just by adding up. And the
fact that φ ≤ Bnφ for all ( f0, f1)-convex functions φ is proven in [2, Theorem 15].

Assume next that for some t ∈ (a, b) and some strictly ( f0, f1)-convex function ψ we have
Bnψ(t) = Lnψ(t). We must show that Pn,k = δtn,k for each pair n, k. Set φ = ψ in (8)–(12).
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Since

n∑
k=0

λn,k(ψ)pn,k(t) = Lnψ(t) = Bnψ(t) =
n∑

k=0

ψ
(
tn,k
)

pn,k(t),

and for all n, k, we have λn,k(ψ) ≥ ψ
(
tn,k
)

(by (8)–(12)) from pn,k > 0 on (a, b) we conclude
that λn,k(ψ) = ψ

(
tn,k
)

for all n, k. Thus, with φ = ψ we have equality in (10). By Lemma 5,

the function ψ
f0
◦

(
f1
f0

)−1
is strictly convex. So by the equality case in Jensen’s inequality we

conclude that the function x is constant a.e. with respect to
(

f1
f0

)
∗

Pn,k . This entails that the latter

measure is a Dirac delta, and since f1/ f0 is strictly increasing, Pn,k must also be a Dirac delta. It
now follows from (7) that Pn,k = δtn,k . �

3. On the generalized Bernstein operator of Morigi and Neamtu

There are known examples of chains of extended Chebyshev spaces, for which their associated
generalized Bernstein operators exist and converge strongly to the identity. An instance is given
by the operators Bn, j described in Example 1 (cf. [2, Proposition 11] or [19, Theorem 6.1] for
the convergence assertion). As was observed in Example 1, the operators Bn, j preserve (1, x j )-
convexity, and fail to preserve ordinary convexity when j > 1.

Nevertheless, these operators are somewhat degenerate in that the sequences of nodes are
not strictly increasing, due to the fact that for j > 1, f1(x) = x j has a zero of order at
least two at zero, and in particular, f ′1(0) = 0. Thus, f ′1 is not strictly positive on [0, 1].
We shall use the generalized Bernstein operators introduced by Morigi and Neamtu in [20] to
present a sequence of operators that (i) converges to the identity, (ii) the operators preserve
(1, ex )-convexity, (iii) they do not preserve ordinary convexity, iv) they are defined via strictly
increasing sequences of nodes (in fact, the nodes are equidistributed), and (v) they fix f0 = 1
and f1(x)/ f0(x) = f1(x) = ex . Obviously we have f ′1 > 0 everywhere.

Our presentation here of the Morigi and Neamtu operators is selfcontained and simplifies
some of the arguments from [20]. At the beginning we will consider a setting more general than
we really need (from the shape preservation perspective) allowing complex values. We start by
defining these operators.

Given two different complex numbers µ0, µ1, set ωn :=
1
n (µ1 − µ0) 6= 0, and for j =

0, . . . , n, let

λ j := µ0 + jωn . (13)

Thus, λ0 = µ0 and λn = µ1. Define

ϕn (x) :=
eωn(x−b) − eωn(a−b)

1− eωn(a−b)
and ψn (x) := 1− ϕn (x) =

1− eωn(x−b)

1− eωn(a−b)
. (14)

Then (ϕn)
k is a linear combination of the exponential functions eωn j x , where j = 0, . . . , k, and

(ψn)
n−k is a linear combination of the functions eωn j x , where j = 0, . . . , n − k,. Therefore,

pn,k (x) := e−λ0
k
n (b−a)

· eλ0(x−a)
(n

k

)
(ϕn (x))

k (ψn (x))
n−k (15)
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is a linear combination of the exponential functions eλ j x , j = 0, . . . , n. It follows that pn,k is
contained in the vector space

Un :=

{
f ∈ C (R,C) :

(
d

dx
− λ0

)
· · ·

(
d

dx
− λn

)
f = 0

}
. (16)

Since ϕn has a simple zero at x = a and ψn a simple zero at b, pn,k has a zero order k at a and a
zero of order n − k at b.

It is well known that if λ0, . . . , λn are real, then U r
n := { f ∈ Un : f is real-valued} is an

extended Chebyshev space over any bounded closed interval [a, b] (we mention that when
dealing with complex values λ0, . . . , λn , restrictions must be imposed on the length of [a, b]
in order to ensure that Un is an extended Chebyshev space, cf. for instance [1, Theorem 19]).
Furthermore, {pn,k : k = 0, . . . , n} is a non-negative Bernstein basis.

Next we specify nodes and weights. Let tn,k := a + k
n (b − a) for k = 0, . . . , n, and let

Bn ( f ) (x) :=
n∑

k=0

f
(
tn,k
)

pn,k (x) . (17)

Proposition 7. The operator Bn fixes eµ0x and eµ1x .

Proof. Recall from (13) that µ0 = λ0 and µ1 = λn . Using (17), (15) and (14), we obtain

Bn
(
eλ0x)

= eλ0x
n∑

k=0

(n

k

)
(ϕn (x))

k (1− ϕn (x))
n−k
= eλ0x (ϕn (x)+ 1− ϕn (x))

n
= eλ0x .

Furthermore,

Bn
(
eλn x)

=

n∑
k=0

eλnae(λn−λ0)
k
n (b−a)eλ0(x−a)

(n

k

)
(ϕn (x))

k (1− ϕn (x))
n−k

= eλnaeλ0(x−a)
n∑

k=0

(n

k

) (
eωn(b−a)ϕn (x)

)k
(1− ϕn (x))

n−k

= eλnaeλ0(x−a)
(

eωn(b−a)ϕn (x)+ 1− ϕn (x)
)n

= eλnaeλ0(x−a)
((

eωn(b−a)
− 1

)
ϕn (x)+ 1

)n
.

But now (14) implies that(
eωn(b−a)

− 1
)
ϕn (x)+ 1 = eωn(b−a)

(
1− eω(a−b)

)
ϕn (x)+ 1

= eωn(b−a)
(

eωn(x−b)
− eωn(a−b)

)
+ 1 = eωn(x−a),

so from the preceding equalities we obtain

Bn
(
eλn x)

= eλnaeλ0(x−a)enωn(x−a)
= eλn x . �

For simplicity, next we take [a, b] to be [0, 1], µ0 = 0, and µ1 = 1. Then the Morigi and
Neamtu operator reduces to

Bn f (x) :=
n∑

k=0

f

(
k

n

)(n

k

)
(ϕn (x))

k (1− ϕn (x))
n−k , (18)
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where by specialization of (14) we have

ϕn (x) =
ex/n
− 1

e1/n − 1
.

Observe that since ex/n is convex and increasing, so is ϕn . Furthermore, ϕn (0) = 0 and
ϕn (1) = 1. Recalling that Bn denotes the classical Bernstein operator, given by (1), we see
that

Bn f (x) = Bn f (ϕn (x)) . (19)

From the preceding expression it is immediate that Bn does not in general preserve the convexity
of a (decreasing) convex function. Let h(x) = −x . Since Bnh = h, we have

Bnh (x) = Bnh (ϕn (x)) = −ϕn (x) .

But ϕn is strictly convex, so the image under Bn of the affine (hence convex) function
h is the strictly concave function −ϕn . This shows that the following assertion, contained
in [19, Remark 4.15 (1)], is not correct: If f0 = 1, f1 is convex, and f ′1 > 0 everywhere on
[a, b], then the image of a decreasing convex function under Bn is convex (this is claimed to
follow from [19, Proposition 4.14], but it does not; we note that Proposition 4.14 from [19] is
correct, cf. [2, Theorem 22] together with Theorem 4 above for a stronger result).

It is shown in [20, Theorem 3.3] that the operators Bn converge strongly to the identity (more
general or related results can be found in [1, Theorem 23] and [19, Theorem 6.1]). However, for
the special case we are considering, it is easy to give a direct argument, so in order to make this
section as selfcontained as possible, we do this next.

Let g(x) := x . Since Bn fixes 1 and ex , by Korovkin’s Theorem it suffices to prove that Bng
converges uniformly to g on [0, 1]. By (19), Bng = ϕn , so it is enough to show that ϕn converges
uniformly to g. Since ϕn is convex and increasing, its derivative achieves its maximum value
over [0, 1] at 1. Now let gn be the affine function with slope ϕ′n(1) passing through the point
(1, 1). By convexity, gn ≤ ϕn ≤ g, so to obtain the uniform convergence it suffices to show that
limn→∞ ϕ

′
n(1) = 1. But this follows immediately by writing explicitly ϕ′n(1), and then using

L’Hospital rule, or the Taylor expansion for e1/n .
We have seen that Bn does not preserve convexity. It is easy to check that Bn does not preserve

(1, ex )-convexity either. Actually, both of these facts can be derived from the slightly more
general result given next.

Proposition 8. Let f0 = 1 and f1 be functions in an Extended Chebyshev Space E over the
interval [a, b], where f1 is assumed to be strictly increasing and strictly convex. Suppose there
exists a generalized Bernstein operator Bn : C[a, b] → E fixing f0 and f1. Then the classical
Bernstein operator Bn does not preserve (1, f1)-convexity, and the generalized operator Bn does
not preserve convexity.

Proof. For the first assertion, observe that while f1 is trivially (1, f1)-convex, Bn f1 is not. To see
why, note that since Bn f1(a) = f1(a) and Bn f1(b) = f1(b), the unique function in Span{1, f1}

interpolating Bn f1 at a and b is f1 itself. If Bn f1 were (1, f1)-convex, we would have Bn f1 ≤ f1
on [a, b]. But f1 is strictly convex, so by Jensen’s inequality (including the equality condition)
we have Bn f1(x) > f1(x) for all x ∈ (a, b).

An analogous argument yields the second assertion. Set h(x) = x , so both h and −h are
convex. Towards a contradiction, suppose that Bn preserves convexity. Then Bnh ≤ h and
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Bn(−h) ≤ −h, so Bnh = h. Fix x ∈ (a, b), and note that f 7→ Bn f (x) is a positive linear
functional on C[a, b], defined by a probability measure (since Bn1(x) = 1). Thus we can once
more apply Jensen’s inequality, in this case to the strictly concave function f −1

1 , to conclude that

x = h(x) = Bnh(x) = Bn( f −1
1 ◦ f1)(x) > f −1

1 (Bn f1(x)) = f −1
1 ( f1(x)) = x .

Alternatively, we can reach the same conclusion without using Jensen’s inequality, by observing
that if in addition to fixing 1 and f1, we have Bnh = h, then Bn fixes three linearly independent
functions, and thus it must be the identity operator (by [19, Proposition 3.7]). So again we have
a contradiction. �

We finish with an easy Proposition, which sheds some light on the relationship between the
different notions of convexity considered above.

Proposition 9. Let f1 be increasing and strictly convex on [a, b]. For increasing functions on
[a, b], the condition of (1, f1)-convexity is strictly stronger than convexity. Over the decreasing
functions on [a, b], convexity is strictly stronger than (1, f1)-convexity.

Proof. Let f be increasing and (1, f1)-convex on [a, b]. Pick x, y ∈ [a, b] with x < y. Since
f (y) ≥ f (x), the unique interpolant ψ of f at x and y such that ψ ∈ Span{1, f1}must be of the
form ψ = c0 + c1 f1, with c1 ≥ 0. Thus ψ is convex, so the unique interpolant φ ∈ Span{1, t}
of ψ (or f ) at x and y satisfies φ(t) ≥ ψ(t) ≥ f (t) for all t ∈ [x, y], whence f is convex.
Also, h(t) := t is increasing and convex but not (1, f1)-convex, since h( f −1

1 ) = f −1
1 is strictly

concave, cf. Lemma 5.
The assertion about decreasing functions is proved by the same type of argument, so we omit

it. �
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