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This paper is concerned with weak solutions of the degenerate
diffusive Hamilton–Jacobi equation

∂t u − �pu = |∇u|q,

with Dirichlet boundary conditions in a bounded domain Ω ⊂ R
N ,

where p > 2 and q > p − 1. With the goal of studying the gradient
blow-up phenomenon for this problem, we first establish local
well-posedness with blow-up alternative in W 1,∞ norm. We then
obtain a precise gradient estimate involving the distance to the
boundary. It shows in particular that the gradient blow-up can take
place only on the boundary. A regularizing effect for ∂t u is also
obtained.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction and main results

This article is concerned with the existence and qualitative properties of weak solutions of the
initial boundary value problem of the p-Laplacian with a nonlinear gradient source term

⎧⎨⎩
∂t u − div

(|∇u|p−2∇u
) = |∇u|q, x ∈ Ω, t > 0,

u(x, t) = g(x), x ∈ ∂Ω, t > 0,

u(x,0) = u0(x), x ∈ Ω,

(1.1)
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where Ω is a bounded domain in RN of class C2+α for some α > 0, p > 2 and q > p − 1. Throughout
the paper we assume that the boundary data g � 0 is the trace on ∂Ω of a regular function in C2(Ω),
also denoted g , and the initial data u0 satisfies

u0 ∈ W 1,∞(Ω), u0 � 0, u0(x) = g(x) for x ∈ ∂Ω. (1.2)

We note that, as far as bounded solutions are concerned, there is no loss of generality in assuming
g, u0 � 0, since the partial differential equation in (1.1) is unchanged when adding a constant to u.

When p = 2, the differential equation of (1.1) is the so-called viscous Hamilton–Jacobi equation
and it appears in the physical theory of growth and roughening of surfaces, where it is known as the
Kardar–Parisi–Zhang equation (q = 2), and has been studied by many authors (see for example [7,27]
and the references therein). It is known that, under certain conditions, |∇u| blows up in a finite
time t = Tmax while, by the maximum principle, all solutions are uniformly bounded (cf. [30,17,32]).
We shall call such phenomenon gradient blow-up (GBU). This is different from the usual blow-up in
which the L∞ norm of the solution tends to infinity as t → Tmax (cf. [27]). Sharp results on gradient
blow-up analysis, including blow-up rate, blow-up set, blow-up profile and continuation after blow-up
have been recently obtained, see e.g. [24,16,17,27,3,31] and the references therein.

When p > 2, Eq. (1.1) is a degenerate parabolic equation for |∇u| = 0 and one cannot expect
the existence of classical solutions. Weak solutions can be obtained by approximation with solutions
of regularized problems. This was done in [34] when the right-hand side in (1.1) is replaced with a
general nonlinearity f (u,∇u, x, t). In the case where f depends on ∇u, typically for problem (1.1), the
results in [34] require the assumption q � p −1, in which case a global solution is directly constructed
for any initial data. Local-in-time existence results are also given in [34] but they require that f
actually does not depend on ∇u. In [10], the existence of a global weak solution for q > p − 1 was
proved for small data, under the assumption that the mean curvature of ∂Ω is nonpositive. In the
articles [22,5], problem (1.1) was studied in the framework of viscosity solutions, but only in situations
where global existence of a W 1,∞ solution is guaranteed, namely for q � p or for suitably small
initial data when q > p. On the other hand, when q > p, global existence is not expected in general
for large initial data. A result in this direction was given in [22, Theorem 5.2], where it was proved
that problem (1.1) (with g = 0) cannot admit a global, Lipschitz continuous, weak solution for large
initial data. See [25,13,15] and the references therein for earlier counter-examples concerning related
quasilinear equations.

Our first goal will be to complete the above results by constructing a unique, maximal in time,
W 1,∞ solution, without size restriction on the initial data and to establish the blow up alternative
in W 1,∞ norm. This will enable us to interpret the above mentioned global nonexistence result from
[22] appropriately as a gradient blow-up (GBU) result (see Theorem 1.4 and Remark 4.1 below), and
will provide the grounds for the subsequent analysis of the asymptotic behavior of GBU solutions. For
the local existence part, we will follow and suitably modify the approximation procedure used in [34].

The main difficulty is to get relevant estimates on the first order derivatives of the approximate
solutions in order to pass to the limit in the nonlinear source term. To deal with this difficulty, our
main new ingredient with respect to [34] is the construction of suitable barrier functions, in order to
get uniform pointwise estimates on the gradients near the boundary for small time. We then use a
strong result of DiBenedetto and Friedman [12] on the Hölder regularity of gradients of weak solutions
of degenerate parabolic equations and consequently we will use the framework of weak rather than
viscosity solutions.

First, let us state the precise definition of solution. Let Q T = Ω ×(0, T ) and ∂p Q T = {∂Ω ×[0, T ]}∪
{Ω ×{0}}, T > 0. Throughout this paper, we will use the following definition of weak solution for (1.1).

Definition 1.1. Set m = max(p,q). A function u(x, t) is called a weak super- (sub-)solution of problem
(1.1) on Q T if

u ∈ C
(
Ω × [0, T )

) ∩ Lm(
(0, T ); W 1,m(Ω)

)
,
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∂t u ∈ L2((0, T ); L2(Ω)
)
,

u(x,0) � (�)u0(x), u � (�)g on ∂Ω, and∫ ∫
Q T

∂t uψ + |∇u|p−2∇u · ∇ψ dx dt � (�)

∫ ∫
Q T

|∇u|qψ dx dt (1.3)

holds for all ψ ∈ C0(Q T ) ∩ L p((0, T ); W 1,p(Ω)) such that ψ � 0, ψ = 0 on ∂Ω × (0, T ). A function u
is a weak solution of (1.1) if it is a super-solution and a sub-solution.

Our first result concerns local existence and uniqueness of weak solutions (see also Section 2 for
a comparison principle).

Theorem 1.1. Assume that q > p − 1 > 1. Let M > 0 and let u0 satisfy (1.2) and ‖∇u0‖L∞ � M. Then

(i) There exist a time T = T (M, p,q, N,‖g‖C2 ) > 0 and a weak solution u of (1.1) on [0, T ), which moreover
satisfies u ∈ L∞

loc([0, T ); W 1,∞(Ω)).
(ii) For any T > 0 the problem (1.1) has at most one weak solution u such that u ∈ L∞

loc([0,T ); W 1,∞(Ω)).
(iii) There exists a (unique) maximal, weak solution of (1.1), still denoted by u. Let Tmax(u0) be its existence

time.

Then

min
Ω

u0 � u � max
Ω

u0 in Ω × (
0, Tmax(u0)

)
(1.4)

and

if Tmax(u0) < ∞, then lim
t→Tmax(u0)

∥∥∇u(t)
∥∥

L∞ = ∞ (gradient blow up GBU).

Remark 1.1. Concerning Definition 1.1, we note that if 0 < T1 < T2 < ∞ and u is a weak solution
on Q T2 , then the restriction of u to Q T1 is a weak solution on Q T1 (this can be easily checked, taking
any test function ψ on Q T1 , by extending ψ as ψ̃n(x, t) = ψ(x, T1)[1 −n(t − T1)]+ for t ∈ (T1, T2] and
letting n → ∞). Then, in Theorem 1.1(iii), by u being the maximal weak solution of (1.1), we mean
that u is a weak solution on Q τ for any τ ∈ (0, Tmax(u0)) but cannot be extended to a weak solution
on Q T ′ for any T ′ > Tmax(u0).

We next establish a precise gradient estimate involving the distance to the boundary. Here and in
the rest of the paper we denote δ(x) = dist(x, ∂Ω).

Theorem 1.2. Let q > p − 1 > 1. Let M > 0 and let u0 satisfy (1.2) and ‖∇u0‖L∞ � M. Let u be the unique
weak solution of (1.1) in L∞

loc([0, Tmax(u0)); W 1,∞(Ω)). Then

|∇u| � C1δ
−1/(q−p+1)(x) + C2 in Ω × (

0, Tmax(u0)
)
, (1.5)

where C1 = C1(q, p, N) > 0 and C2 = C2(q, p,Ω, M,‖g‖C2 ) > 0.

This estimate in particular implies that |∇u| remains bounded away from the boundary. Therefore,
when Tmax(u0) < ∞, the blow-up may only take place on the boundary and (1.5) provides information
on the blow-up profile near ∂Ω . Estimate (1.5) is sharp in one space dimension, see [4]. Similar results
are already available for p = 2 and have been established in [32,3]. For p > 2, only global-in-space
gradient estimates were available up to now (i.e. for Ω = RN , see [6]). The proof of estimate (1.5)
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is based on similar arguments as for the case p = 2, namely Bernstein type arguments, but they are
much more technical. Moreover, the proof of (1.5) also relies on a regularizing effect for solutions to
(1.1) which seems to be new and which is stated below.

Theorem 1.3. Assume that q > p − 1 > 1 and let u be the unique weak solution of problem (1.1) in
L∞

loc([0, Tmax(u0)); W 1,∞(Ω)). Then

∂t u � 1

p − 2

sup(‖u0‖L∞ ,‖g‖L∞)

t
in D′(Ω) a.e. t > 0. (1.6)

Let us note that due to the positivity of the source term, this inequality implies the semi-concavity
estimate

�p(u) = div
(|∇u|p−2∇u

)
� C

t
, (1.7)

which was obtained in the case Ω =RN by a different method for q < p in [21] and for q = p in [14].
Finally we give the following blow-up result, which is a variant of a global nonexistence result in

[22], reinterpreted in terms of GBU in the light of Theorem 1.1. Let ϕ1 be the first eigenfunction of
−� with homogeneous Dirichlet boundary conditions

Theorem 1.4. Assume that q > p > 2 and let u be the unique weak solution of (1.1) in L∞
loc([0, Tmax(u0));

W 1,∞(Ω)). Let α � 1 satisfy p−1
q−p+1 < α < q − 1, then there exists a constant C = C(q, p,α,Ω,‖g‖L∞) > 0

such that if
∫
Ω

u0 ϕα
1 dx � C, then Tmax(u0) < ∞, i.e. gradient blow-up occurs.

For results concerning other aspects of Eq. (1.1) and the corresponding Cauchy problem, see e.g.
[11,28,10,34,6] and the references therein. Asymptotic behavior of global solution is investigated in
[33,5,22,21,23,18,2,1,8] and references therein.

The rest of the paper is organized as follows: In Section 2 we prove the well-posedness of (1.1) in
W 1,∞(Ω), as well as the regularizing effect. Section 3 is devoted to the proof of Theorem 1.2. Finally
in Section 4 we prove the sufficient blow-up criterion of Theorem 1.4.

2. Proof of Theorem 1.1 and Theorem 1.3

2.1. Local existence

Consider the following approximate problems for (1.1):

⎧⎪⎪⎨⎪⎪⎩
∂t un − div

((
|∇un|2 + 1

n

)(p−2)/2

∇un

)
=

(
|∇un|2 + 1

n

)q/2

− 1

nq/2
, x ∈ Ω, t > 0,

un(x, t) = g(x), x ∈ ∂Ω, t > 0,

un(x,0) = u0(x), x ∈ Ω.

(2.1)

For each fixed n ∈ N, problem (2.1) is no longer degenerate and the regularity theory of quasilinear
parabolic equations [20] provides local-in-time solutions un , which are smooth for t > 0 and continu-
ous up to t = 0.

To find the limit function u(x, t) of the sequence {un(x, t)}, we divide our proof into 5 steps. Recall
that there exists η0 > 0 small such that, for any x ∈ Ω with δ(x) � η0, the point x̃ := proj∂Ω(x) (the
projection of x onto the boundary) is well defined and unique.



2478 A. Attouchi / J. Differential Equations 253 (2012) 2474–2492
Step 1. Let Q T := Ω × (0, T ). There exist a small time T0 > 0, η ∈ (0, η0) and M2 > 0, all independent
of n and depending on u0 through M only, such that

‖un‖L∞(Q T0 ) � M1 := sup
(‖u0‖L∞ ,‖g‖L∞

)
, (2.2)

and

sup
x∈Ω

δ(x)�η

|un(x, t) − un(x̃, t)|
δ(x)

� M2, 0 < t � T0. (2.3)

Estimate (2.2) is a direct consequence of the maximum principle since M1 is a super-solution for
any n.

In order to prove estimate (2.3), we are going to construct a local barrier function under the
exterior sphere condition satisfied by the domain Ω , i.e. for any x near ∂Ω , a super-solution in a
neighborhood of x.

Let ρ > 0 be such that for all x ∈ ∂Ω , Bρ(x + ρνx)∩Ω = {x}, where νx is the unit outward normal
vector on ∂Ω at x. Fix an arbitrary x0 ∈ Ω such that δ(x0) � η where η ∈ (0, η0) will be chosen later.
Define x1 = x̃0 + ρνx̃0 , where x̃0 := proj∂Ω(x0). Without loss of generality we may assume that x1 = 0
and we write r = |x|. Let us denote, for s � 0,

a(s) =
(

s + 1

n

)(p−2)/2

and κ(s) = 2a′(s)s

a(s)
∈ [0, p − 2]. (2.4)

We recall that for a function φ(x) = φ(|x|), we have:

∇φ(x) = φ′(r) x

r
,

D2φ(x) = φ′′(r) x ⊗ x

r2
+ φ′(r) Id

r
− φ′(r) x ⊗ x

r3
,

�φ(x) = φ′′(r) + (N − 1)φ′(r)
r

, (2.5)

where Id is the unit matrix and (x ⊗ x)i j = xi x j .
Define for x ∈ Ω

v̄(x, t) = φ(r − ρ) + g(x),

where φ is a smooth function of one variable which is increasing and concave. First let us write

div

((
|∇ v̄|2 + 1

n

)(p−2)/2

∇ v̄

)
= a

(|∇ v̄|2)�v̄ + 2a′(|∇ v̄|2)(∇ v̄)t D2 v̄∇ v̄,

= a
(|∇ v̄|2)(�v̄ + κ

(|∇ v̄|2) (∇ v̄)t D2 v̄∇ v̄

|∇ v̄|2
)

. (2.6)

Using (2.5), we have
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Fig. 1. Local barrier function.[
�v̄ + κ

(|∇ v̄|2) (∇ v̄)t D2 v̄∇ v̄

|∇ v̄|2
]

= φ′′(r − ρ) + (N − 1)φ′(r − ρ)

r
+ �g

+ κ
(|∇ v̄|2)φ′′(r − ρ)(∇ v̄ · x)2

r2|∇ v̄|2 + κ
(|∇ v̄|2)φ′(r − ρ)

r

− κ
(|∇ v̄|2)φ′(r − ρ)(∇ v̄ · x)2

r3|∇ v̄|2 + κ
(|∇ v̄|2) (∇ v̄)t D2 g∇ v̄

|∇ v̄|2 .

Since φ′(r − ρ) � 0, r � ρ , κ(|∇ v̄|2) � 0 and 0 � φ′′(r − ρ), we have

−
[
�v̄ + κ

(|∇ v̄|2) (∇ v̄)t D2 v̄∇ v̄

|∇ v̄|2
]

� −φ′′(r − ρ) −
(

N − 1 + κ(|∇ v̄|2)
ρ

)
φ′(r − ρ)

− ‖�g‖L∞ − κ
(|∇ v̄|2)∥∥D2 g

∥∥
L∞ . (2.7)

On the other hand |∇ v̄| = |φ′(r − ρ) x
r + ∇g| � φ′(r − ρ) + |∇g| � 2φ′(r − ρ) provided that

φ′(r − ρ) � ‖∇g‖L∞ . (2.8)

In this case we have

(
|∇ v̄|2 + 1

n

)(q−p+2)/2

�
[
4
(
φ′(r − ρ)

)2 + 1
](q−p+2)/2

. (2.9)

We take

φ(s) = s(s + μ)−β, s � 0,

where β = β(q, p) ∈ (0,1) is to be chosen later and μ > 0. We denote Γ := B(x1,ρ + η) ∩ Ω (see
Fig. 1). Our aim is to show that, for some T0 > 0 sufficiently small v̄ is a super-solution in Γ × (0, T0)

where μ > 0 and η ∈ (0, η0) are small enough. In the rest of the proof, the constants T0, η,μ and C
will be independent of x0, n and will depend on the initial data u0 through M only (and they will
depend on the other data p,q, N,Ω and ‖g‖C2 without other mention). We calculate
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φ′(s) = [
(1 − β)s + μ

]
(s + μ)−β−1,

φ′′(s) = −β
[
(1 − β)s + 2μ

]
(s + μ)−β−2.

We are looking for condition on β and μ such that

−div

((
|∇ v̄|2 + 1

n

)
∇ v̄

)
�

(
|∇ v̄|2 + 1

n

)q/2

−
(

1

n

)q/2

. (2.10)

Due to (2.6), it suffices to have

−
[
�v̄ + κ

(|∇ v̄|2) (∇ v̄)t D2 v̄∇ v̄

|∇ v̄|2
]

�
(

|∇ v̄|2 + 1

n

) q−p+2
2

, (2.11)

which, by (2.4), (2.7), (2.9) reduces to

−φ′′(r − ρ) +
(

3 − N − p

ρ

)
φ′(r − ρ)

�
[
4
(
φ′(r − ρ)

)2 + 1
](q−p+2)/2 + (p − 2 + √

N )
∥∥D2 g

∥∥
L∞ . (2.12)

Using that ρ < r < ρ + η and (3 − N − p) < 0, then (2.10) holds if

(r − ρ + μ)−β−2
[

2βμ + (3 − N − p)

ρ
(η + μ)2

]
�

[
4(r − ρ + μ)−2β + 1

](q−p+2)/2 + (p − 2 + √
N )

∥∥D2 g
∥∥

L∞ .

Assume that η and μ are such that⎧⎨⎩
4(r − ρ + μ)−2β � 4(η + μ)−2β � 1,

2βμ + (3 − N − p)

ρ
(η + μ)2 � βμ,

(2.13)

then to get (2.10) it is sufficient to have

βμ(r − ρ + μ)−β−2 � (r − ρ + μ)−β(q−p+2)4(q−p+3), (2.14)

and

βμ(r − ρ + μ)−β−2 � 4(p − 2 + √
N )

∥∥D2 g
∥∥

L∞ . (2.15)

Inequality (2.14) holds if we choose η = μ, β = 1
2(q−p+2)

, and μ satisfying

4p−q−4β � μ(q−p+3)/(2q−2p+4).

Inequalities (2.14)–(2.15) and (2.8) hold if we choose η = μ small enough. We have thus shown that
if η = μ is small, then v̄ is a super-solution on Γ × (0, T ) for any T > 0.
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Now we need to have a control on the parabolic boundary of Γ × (0, T ) for T > 0 small. For this
purpose, we introduce another comparison function

ū(x, t) = (
2C2 K 2 + 2‖∇g‖2

L∞ + 1
)q/2

t + C
(
1 − e−K (|x|−ρ)

) + g(x).

It is easy to check that if we fix K > 0 large enough, then we can find a constant C =
C(p, N, M,Ω,‖g‖C2 ) > 0 sufficiently large such that

−div

((
|∇ū|2 + 1

n

)(p−2)/2

∇ū

)
� 0 in Ω.

Indeed, since Ω is bounded, there exists R(Ω) > 0 such that Ω ⊂ B(x1, R(Ω)) and hence r − ρ �
R(Ω). Now once (K >

2(N+p−3)
ρ ) is fixed, using (2.7) it is sufficient to require that

C K e−K (r−ρ)

[
K − N + p − 3

ρ

]
� (p − 2 + √

N )
∥∥D2 g

∥∥
L∞ ,

which is satisfied if

C � 2eK R(Ω)(p − 2 + √
N )‖D2 g‖L∞

K 2
.

Thus

∂t ū − div

((
|∇ū|2 + 1

n

)(p−2)/2

∇ū

)
�

(
|∇ū|2 + 1

n

)q/2

−
(

1

n

)q/2

.

We can also choose C such that C(1 − e−K (r−ρ)) + g(x) � u0(x). Since ū � g on ∂Ω ⊂ {x ∈ RN ,

|x| � ρ}, by the comparison principle we get that for any n, un � ū in Q T for any T > 0. Thus

un(x, t) �
(
2C2 K 2 + 2‖∇g‖2

L∞ + 1
)q/2

t + C
(
1 − e−Kη

) + g(x)

� 2−βη1−β + g(x) = v̄(x, t)

on {x ∈ Ω, |x| = ρ + η} × [0, T0], provided T0 and η = μ are small enough (depending only on
M, p,q,Ω,‖g‖C2 ). Next we also choose η = μ small enough so that

u0(x) � g(x̃) + M|x − x̃| � g(x̃) + M(r − ρ)

� g(x̃) + (r − ρ)
[
(2η)−β − ‖∇g‖L∞

]
� v̄(x,0).

On the other hand un = g � v̄ on ∂Ω ×[0, T0]. We conclude that v̄ is a super-solution on Γ × (0, T0).
Similarly v := g −φ(r −ρ) is a sub-solution. Applying the comparison principle we get v � un � v̄ on
Γ × [0, T0], and hence in particular

|un(x0, t) − un(x̃0, t)|
|x0 − x̃0| � sup

0�s�η

∣∣φ′(s)
∣∣ + ‖∇g‖L∞ � η−β + ‖∇g‖L∞ =: M2, 0 < t � T0,

which yields (2.3).
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Step 2. There holds

‖∇un‖L∞(Q T0 ) � M3 := sup
(
M, M2 + ‖∇g‖L∞

)
. (2.16)

We use a similar argument as in [19, Theorem 5]. Let h ∈ RN satisfy |h| � η. Due to the translation
invariance of (2.1), if un is a classical solution of (2.1) in Ω , then the function uh

n(x, t) := un(x − h, t)
is a classical solution of (2.1) in Ωh × (0, T0) where Ωh := {x ∈ RN | x − h ∈ Ω}. By the regularity of
the initial data (u0 ∈ W 1,∞(Ω)), we have |un(x,0) − uh

n(x,0) |� M|h| on Ωh ∩ Ω . Let t ∈ [0, T0] and
x ∈ ∂(Ω ∩ Ωh). We may assume for instance x ∈ ∂Ω , the case x + h ∈ ∂Ω being similar. Then using
| ỹ − z̃| � |y − z| and (2.3), we get

∣∣un(x, t) − un(x + h, t)
∣∣ = ∣∣un(x̃, t) − un(x̃ + h, t) + un(x̃ + h, t) − un(x + h, t)

∣∣
� ‖∇g‖L∞|x̃ − x̃ + h| + M2δ(x + h)

�
(‖∇g‖L∞ + M2

)|h| � M3|h|.

In particular un(x, t) � uh
n(x, t)+ M3|h| on ∂(Ω ∩Ωh)×[0, T0]. Applying the comparison principle, we

have un(x, t) � uh
n(x, t)+ M3|h| on (Ω ∩Ωh)×[0, T0]. By the same argument uh

n(x, t)− M3|h| � un(x, t)
on (Ω ∩ Ωh) × [0, T0], hence |un(x, t) − uh

n(x, t)| � M3|h|. Since |h| � η is arbitrary, the conclusion
follows.

Step 3. Let ε > 0 and set Q T0,ε = {x ∈ Ω,δ(x) > ε} × (ε, T0 − ε). There exists a constant M4 > 0
independent of n, such that

∣∣∇un(x1, t1) − ∇un(x2, t2)
∣∣ � M4

(|x1 − x2|α + |t1 − t2| α
2
)

(2.17)

for any pair of points (xi, ti) ∈ Q T0,ε , where M4 and α are positive constants depending only on
T0, M3 and ε . Indeed we know from a result of DiBenedetto and Friedman [12] that if f ∈ Lr(ΩT ) for
some r >

pN
p−1 then weak solutions of degenerate parabolic equation of the form

∂t v − div
(|∇v|p−2∇v

) = f (x, t) (2.18)

are of class C1,α
loc (Q T ) with Hölder norm depending only on ‖ f ‖Lr ,‖∇v‖Lp and ‖v‖L∞

t ,L2
x
.

Step 4. There exists a constant M5 > 0 independent of n, such that

‖∂t un‖L2(Q T0 ) � M5. (2.19)

To see this, multiplying (2.1) by ∂t un and integrating over Q T0 , we have

T0∫
0

∫
Ω

(∂t un)
2 dx dt = −

T0∫
0

∫
Ω

(
|∇un|2 + 1

n

)(p−2)/2

∇un · ∇(∂t un)dx dt

+
T0∫ ∫ (

|∇un|2 + 1

n

)q/2

∂t un dx dt.
0 Ω
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By Hölder’s inequality and

T0∫
0

∫
Ω

(
|∇un|2 + 1

n

)(p−2)/2

∇un · ∇(∂t un)dx dt

= 1

p

∫
Ω

(∣∣∇un(x, T0)
∣∣2 + 1

n

)p/2

− 1

p

∫
Ω

(∣∣∇un(x,0)
∣∣2 + 1

n

)p/2

,

we get

T0∫
0

∫
Ω

(∂t un)
2 dx dt � 2

p

∫
Ω

(∣∣∇un(x,0)
∣∣2 + 1

n

)p/2

dx + 2

T0∫
0

∫
Ω

(
|∇un|2 + 1

n

)q

dx dt

� M ′,

for some M ′ = M ′(|Ω|, M3, T0, p,q) > 0.

Step 5. We recall that by the Arzelà–Ascoli theorem we have

W 1,∞(Ω)
c

↪→ C(Ω) ↪→ L2(Ω). (2.20)

Using (2.2), (2.16), (2.19)–(2.20) and the compactness theorem in [29, Corollary 4], we have that {un}
is relatively compact in C([0, T0]; C(Ω)) = C(Ω ×[0, T0]). By virtue of (2.16)–(2.17), (2.19), the Ascoli–
Arzelà theorem and the relative compactness of {un} in C(Ω × [0, T0]), we can find a subsequence,
still denoted by {un} for convenience, such that, for each ε > 0,

un → u in C
(
Ω × [0, T0]

)
,

∇un → ∇u in C(Q T0,ε),

∂t un → ∂t u weakly in L2(Q T0).

⎫⎪⎬⎪⎭ (2.21)

We multiply (2.1) by a test function and integrate. Then by the Lebesgue’s dominated convergence
theorem and (2.21) we can pass to the limit and check that u is a weak solution of (1.1).

2.2. The blow-up alternative

Let us temporarily assume the uniqueness result which will be proved in the next section. The
construction of the weak solution as a limit of classical solutions implies the blow-up alternative.

Indeed suppose that the maximal existence time Tmax(u0) < ∞ and that there exist M > 0 and
tk → Tmax(u0) such that for all k

∥∥∇u(tk)
∥∥

L∞ � M. (2.22)

Then we can find τ = τ (M) > 0 independent of k, such that the problem⎧⎨⎩
∂t u − div

(|∇u|p−2∇u
) = |∇u|q, x ∈ Ω, t > 0,

u(x, t) = g(x), x ∈ ∂Ω, t > 0, (2.23)
u(x,0) = u(x, tk), x ∈ Ω,
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admits a unique weak solution vk on [0, τ ). Setting

ũ(t) =
{

u(t) for t ∈ [0, tk),

vk(t − tk) for t ∈ [tk, tk + τ ),

it is easy to see that we get a weak solution defined on [0, tk + τ ).
Since for k large enough tk + τ > Tmax(u0), this contradicts the definition of Tmax(u0). Hence

Tmax(u0) < ∞ ⇒ limt→Tmax(u0) ‖∇u(t)‖L∞ = ∞.

2.3. Uniqueness

In this section we prove the uniqueness of the weak solution. This result will be a consequence of
the following comparison principle which, in turns, also guarantees (1.4).

Proposition 2.1. Let u, v be respectively, sub-, super-solutions of (1.1). Assume that u, v ∈ L∞((0, T );
W 1,∞(Ω)). Then u � v on Ω × (0, T ).

The proof of Proposition 2.1 is mostly based on the following algebraic lemma from which we can
show that the source term can be counterbalanced by the diffusion effect (c.f. [9] and [26] for useful
inequalities for the p-Laplacian).

Lemma 2.1 (Monotonicity Property). Let σ > 1. For all a and b ∈RN :

〈|a|σ−2a − |b|σ−2b,a − b
〉
� 4

σ 2

∣∣|a|(σ−2)/2a − |b|(σ−2)/2b
∣∣2

.

Proof of Proposition 2.1. We set w = (u − v)+ . By definition we have w = 0 on ∂Ω . By Remark 1.1,
for any τ ∈ (0, T ), using ψ = w as test-function, we have

τ∫
0

∫
Ω

∂t w w dx dt

�
τ∫

0

∫
{w(·,t)>0}

[|∇u|q − |∇v|q]w dx dt

︸ ︷︷ ︸
B

−
τ∫

0

∫
{w(·,t)>0}

[|∇u|p−2∇u − |∇v|p−2∇v
] · ∇w dx dt

︸ ︷︷ ︸
H

.

We set a = ∇u and b = ∇v . We get by Lemma 2.1,

H � c(p)

τ∫
0

∫
{w(·,t)>0}

∣∣|∇u|(p−2)/2∇u − |∇v|(p−2)/2∇v
∣∣2

dx dt. (2.24)

Let’s consider the term B. We put h(s) = s
2q
p for s � 0. Given that q � p − 1 � p

2 , we have h′(s) =
2q
p s

2q−p
p . The mean value theorem yields

∣∣|∇u|q − |∇v|q∣∣2 � Ch′(θ)2
∣∣|∇u|p/2 − |∇v|p/2

∣∣2
,

for some 0 � θ � max(|∇u| p
2 , |∇v| p

2 ).
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Now a direct computation shows that∣∣|∇u|p/2 − |∇v|p/2
∣∣2 �

∣∣|∇u|(p−2)/2∇u − |∇v|(p−2)/2∇v
∣∣2

.

Since we assumed u, v ∈ L∞((0, T ); W 1,∞(Ω)), it follows that∣∣|∇u|q − |∇v|q∣∣2 � C
∣∣|∇u|(p−2)/2∇u − |∇v|(p−2)/2∇v

∣∣2
.

On the other hand, the Young’s inequality implies

B � ε

τ∫
0

∫
{w(·,t)>0}

∣∣|∇u|q − |∇v|q∣∣2
dx dt + C(ε)

τ∫
0

∫
{w(·,t)>0}

w2 dx dt.

Combining these two inequalities, we arrive at

B � Cε

τ∫
0

∫
{w(·,t)>0}

∣∣|∇u|(p−2)/2∇u − |∇v|(p−2)/2∇v
∣∣2

dx dt + C(ε)

τ∫
0

∫
{w(·,t)>0}

w2 dx dt. (2.25)

Choosing ε small enough, we get

∫
Ω

w2(τ )dx �
∫
Ω

w2(0)dx + C(ε)

τ∫
0

∫
Ω

w2 dx dt, 0 < τ < T . (2.26)

The Gronwall lemma implies that for any t ∈ (0, T ),∫
Ω

w2(x, t)dx � eCt
∫
Ω

w(x,0)2 dx.

We conclude that w ≡ 0 almost everywhere. �
Remark 2.1.

(a) The question of uniqueness was partially open in [33]. The preceding result can be applied to
show uniqueness in the case p − 1 � q � p

2 with p � 2.
(b) In [12] we have a weaker inequality for p ∈ (1,2) but it is sufficient to prove uniqueness for the

case q > 1:

〈|a|p−2a − |b|p−2b,a − b
〉
� (p − 1)|a − b|2(|a|p + |b|p) p−2

p .

2.4. Regularizing effect

We use a technique similar to that used by Zhao for the p-Laplace equation without source
term [35]. The idea is to compare λγ u(x, λt) and u(x, t). Let u be a weak solution of (1.1) in
L∞

loc([0, T ); W 1,∞(Ω)). Set

uλ(x, t) = λγ u(x, λt), λ > 1, γ = 1
.

p − 2



2486 A. Attouchi / J. Differential Equations 253 (2012) 2474–2492
Then uλ is a weak solution of

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂t uλ − div

(|∇uλ|p−2∇uλ

) = λ−(q−p+1)γ |∇uλ|q, x ∈ Ω, t ∈
(

0,
T

λ

)
,

uλ(x, t) = λγ g(x), x ∈ ∂Ω, t ∈
(

0,
T

λ

)
,

uλ(x,0) = λγ u0(x), x ∈ Ω.

Set v(x, t) = u(x, t) + k where k := (λγ − 1) sup(‖u0‖L∞ ,‖g‖L∞), then v satisfies the same equation
(1.1) as u with v(x,0) = u0(x)+k and v(x, t) = g(x)+k on ∂Ω × (0, T ). Given that λγ u0(x) = u0(x)+
(λγ −1)u0(x) � u0(x)+(λγ −1)‖u0‖L∞ and λγ g(x) � g(x)+(λγ −1)‖g‖L∞ , we have uλ(x,0) � v(x,0)

in Ω and uλ � v in ∂Ω × (0, T
λ
). Since λ > 1 and q > p − 1, we have λ−(q−p+1)γ |∇uλ|q � |∇uλ|q and

hence uλ is a sub-solution of Eq. (1.1). Using Proposition 2.1, we have uλ(x, t) � v(x, t) in Ω × (0, T
λ
)

that is

λγ u(x, λt) − u(x, t) �
(
λγ − 1

)
sup

(‖u0‖L∞ ,‖g‖L∞
)
. (2.27)

Dividing (2.27) by (λ − 1) and letting λ → 1+ , we get

γ u(x, t) + t ∂t u(x, t) � γ sup
(‖u0‖L∞ ,‖g‖L∞

)
.

We conclude using the positivity of u.

Remark 2.2. The homogeneity of the operator and the boundedness of u are essential.

3. Gradient estimate: proof of Theorem 1.2

The proof of (1.5) relies on a modification of the Bernstein technique and the use of a suitable cut-
off function. It requires the study of the partial differential equation satisfied by |∇u|2. We follow the
ideas used in [32] and [6]. Let x0 ∈ Ω be fixed, 0 < t0 < T < Tmax(u0), R > 0 such that B(x0, R) ⊂ Ω

and write Q t0
T ,R = B(x0, R) × (t0, T )

Let α ∈ (0,1) and set R ′ = 3R
4 . We select a cut-off function η ∈ C2(B(x0, R ′)), 0 < η < 1, with

η(x0) = 1 and η = 0 for |x − x0| = R ′ , such that

|∇η| � C R−1ηα∣∣D2η
∣∣ + η−1|∇η|2 � C R−2ηα

}
for |x − x0| < R ′ (3.1)

with C = C(α) > 0 (see [32] for an example of such function).
First let us state the following lemma.

Lemma 3.1. Let u0 , u be as in Theorem 1.2. We denote w = |∇u|2 and z = ηw. Then at any point (x1, t1) ∈
Q t0

T ,R ′ such that |∇u(x1, t1)| > 0, z is smooth and satisfies the following differential inequality

Lz + C z
2q−p+2

2 � C

(
sup(‖u0‖L∞ ,‖g‖L∞)

t0

) 2q−p+2
q

+ C R− 2q−p+2
q−p+1 ,

where
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Lz = ∂t z −Az − H · ∇z, (3.2)

Az = |∇u|p−2�z + (p − 2)|∇u|p−4(∇u)t D2z∇u, (3.3)

H is defined by (3.6) and C = C(p,q, N) > 0.

Proof of Lemma 3.1. At points where |∇u| > 0 Eq. (1.1) is uniformly parabolic and weak solutions are
smooth at these points [20]. More precisely, we know that ∇u ∈ C2,1 in a neighborhood of such points
and hence we can differentiate the equation. As observed in [6], w = |∇u|2 satisfies the following
differential equation:

∂t w −Aw = −2|∇u|p−2|D2u|2 + H · ∇w.

Indeed, for i = 1, . . . , N , put ui = ∂u
∂xi

and wi = ∂ w
∂xi

. Differentiating (1.1) in xi , we have

∂t ui − |∇u|p−2�ui − p − 2

2
|∇u|p−4

N∑
j=1

∂ wi

∂x j
u j − p − 2

2
|∇u|p−4

N∑
j=1

w j
∂ui

∂x j

= q

2
w

q−2
2 wi + p − 2

2
w

p−4
2 wi�u + (p − 2)(p − 4)

4
w

p−6
2 (∇u · ∇w)wi . (3.4)

Multiplying (3.4) by 2ui , summing up, and using �w = 2∇u · ∇(�u) + 2|D2u|2, we deduce that

Lw = −2w
p−2

2 |D2u|2, (3.5)

where

H :=
[
(p − 2)w

p−4
2 �u + (p − 2)(p − 4)

2
w

p−6
2 ∇u · ∇w + qw

q−2
2

]
∇u

+ p − 2

2
w

p−4
2 ∇w. (3.6)

Setting z = ηw , we get

Lz = ηLw + wLη − 2w
p−2

2 ∇η · ∇w − 2(p − 2)w
p−4

2 (∇η · ∇u)(∇w · ∇u).

Now we shall estimate the different terms. In what follows δi > 0 can be chosen arbitrarily small.

• Estimate of |2w
p−2

2 ∇η · ∇w|.
Using Young’s inequality, we have

∣∣2w
p−2

2 ∇η · ∇w
∣∣ � w

p−2
2

[
Cη−1|∇η|2 w + δ1η

∣∣D2u
∣∣2]

, (3.7)

where we used the fact that ∇w = 2D2u∇u.

• Estimate of |2(p − 2)w
p−4

2 (∇η · ∇u)(∇w · ∇u)|.
∣∣2(p − 2)w

p−4
2 (∇η · ∇u)(∇w · ∇u)

∣∣ � w
p−2

2
[
Cη−1|∇η|2 w + δ2η

∣∣D2u
∣∣2]

. (3.8)
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• Estimate of |w H · ∇η|.

|w H · ∇η| � w
p−2

2
(
Cη−1|∇η|2 w + δ3

∣∣D2u
∣∣2η

)︸ ︷︷ ︸
(1)

+ w
p−2

2
(
Cη−1|∇η|2 w + δ4

∣∣D2u
∣∣2η

)︸ ︷︷ ︸
(2)

+ w
p−2

2
(
Cη−1|∇η|2 w + δ5

∣∣D2u
∣∣2η

)︸ ︷︷ ︸
(3)

+C w
q+1

2 |∇η|. (3.9)

(1) comes from an estimate based on Young’s inequality of w
p−2

2 �u(∇u · ∇η), (2) comes from

(3.8) and (3) comes from an estimate of w
p−2

2 ∇w · ∇η.

Finally choosing δi such that −2 + δ1 + δ2 + δ3 + δ4 + δ5 = −1, we arrive at

Lz + ηw
p−2

2
∣∣D2u

∣∣2 � C(p,q, N)w
p
2
[∣∣D2η

∣∣ + |�η| + η−1|∇η|2] + C |∇η|w q+1
2 .

Using the properties of the cut-off function η, we get

Lz + ηw
p−2

2
∣∣D2u

∣∣2 � C(p,q, N)R−2ηα w
p
2 + C(p,q, N)R−1ηα w

q+1
2 . (3.10)

Using the result of Theorem 1.3, we shall estimate |∇u|p−2|D2u|2 in terms of a power of w . For
(x1, t1) ∈ Q t0

T ,R ′ such that |∇u(x1, t1)| > 0, we have

∣∣∇u(x1, t1)
∣∣q = ∂t u(x1, t1) − div

(|∇u|p−2∇u(x1, t1)
)

� sup(‖u0‖L∞ ,‖g‖L∞)

(p − 2)t0
+ (p − 2 + √

N )|∇u|p−2
∣∣D2u(x1, t1)

∣∣.
Hence

1

2(p − 2 + √
N )2

∣∣∇u(x1, t1)
∣∣2q �

(
sup(‖u0‖L∞ ,‖g‖L∞)

(p − 2)(p − 2 + √
N )t0

)2

+ |∇u|2p−4
∣∣D2u(x1, t1)

∣∣2
.

There are two cases:

either
1

2(p − 2 + √
N )2

∣∣∇u(x1, t1)
∣∣2q � 2

(
sup(‖u0‖L∞‖g‖L∞)

(p − 2)(p − 2 + √
N )t0

)2

,

or
1

2(p − 2 + √
N )2

∣∣∇u(x1, t1)
∣∣2q−p+2 � 2|∇u|p−2

∣∣D2u(x1, t1)
∣∣2

.

In both cases we arrive at

1

C(N, p)

∣∣∇u(x1, t1)
∣∣2q−p+2 � C(p,q, N)

(
sup(‖u0‖L∞ ,‖g‖L∞)

t0

) 2q−p+2
q

+ |∇u|p−2
∣∣D2u(x1, t1)

∣∣2
.
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Using this inequality, it follows from (3.10) that, at (x1, t1),

Lz + 1

C(N, p)
ηw

2q−p+2
2 � C(p,q, N)

(
sup(‖u0‖L∞ ,‖g‖L∞)

t0

) 2q−p+2
q

+ C R−2ηα w
p
2 + C R−1ηα w

q+1
2 .

We take α = q+1
2q−p+2 ∈ (0,1) (since q > p − 1). Using Young’s inequality, we have

C R−1ηα w
q+1

2 � C R− 2q−p+2
q−p+1 + 1

4C(N, p)
ηw

2q−p+2
2 ,

C R−2ηα w
p
2 � C R− 2q−p+2

q−p+1 + 1

4C(N, p)
η

q+1
p w

2q−p+2
2 .

Using that η � 1, we get

Lz + 1

C(N, p)
η|∇u|2q−p+2 � C(p,q, N)

(
sup(‖u0‖L∞ ,‖g‖L∞)

t0

) 2q−p+2
q

+ C R− 2q−p+2
q−p+1

+ 1

2C(N, p)
η|∇u|2q−p+2.

Hence

Lz + 1

2C(N, p)
z

2q−p+2
2 � C(p,q, N)

(
sup(‖u0‖L∞ ,‖g‖L∞)

t0

) 2q−p+2
q

+ C R− 2q−p+2
q−p+1 . � (3.11)

Proof of Theorem 1.2. First let us note that by the proof of the local existence there exists t0 ∈
(0, Tmax(u0)) with t0 = t0(M, p,q, N,‖g‖C2 ), such that

sup
0�t�t0

‖∇u‖L∞ � C
(

p,q,Ω, M,‖g‖C2

)
. (3.12)

We also know that ∇u is a locally Hölder continuous function and thus z is a continuous function on
B(x0, R ′) × [t0, T ] = Q , for any T < Tmax(u0). Therefore, unless z ≡ 0 in Q , z must reach a positive
maximum at some point (x1, t1) ∈ B(x0, R ′) × [t0, T ]. Since z = 0 on ∂ B R ′ × [t0, T ], we deduce that
x1 ∈ B R ′ . Therefore ∇z(x1, t1) = 0 and D2z(x1, t1) � 0. Now we have either t1 = t0, or t0 < t1 � T . If
t1 = t0, then

z(x1, t1) �
∥∥∇u(t0)

∥∥2
L∞ � C

(
p,q,Ω, M,‖g‖C2

)
.

If t0 < t1 � T , we have ∂t z(x1, t1) � 0 and therefore Lz � 0. Using (3.11) we arrive at

1

2C(N, p)
z(x1, t1)

2q−p+2
2 � C(p,q, N)

(
sup(‖u0‖L∞ ,‖g‖L∞)

t0

) 2q−p+2
q

+ C R− 2q−p+2
q−p+1 , (3.13)

that is

√
z(x1, t1) � C(p,q, N)

(
sup(‖u0‖L∞ ,‖g‖L∞)

t

) 1
q

+ C(p,q, N)R− 1
q−p+1 . (3.14)
0
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Since z(x0, t) � z(x1, t1) and η(x0) = 1, we get

∣∣∇u(x0, t)
∣∣ � C(p,q, N)

(
sup(‖u0‖L∞ ,‖g‖L∞)

t0

) 1
q

+ C(p,q, N)R− 1
q−p+1 fort ∈ [t0, T ].

The proof of (1.2) follows by taking R = δ(x0), letting T → Tmax(u0) and using (3.12). �
4. Blow-up criterion: proof of Theorem 1.4

Assume that Tmax(u0) = ∞, taking ϕα
1 as test-function, we have for any τ > 0,

τ∫
0

∫
Ω

∂t u ϕα
1 dx dt =

τ∫
0

∫
Ω

|∇u|q ϕα
1 dx dt − α

τ∫
0

∫
Ω

|∇u|p−2 ϕα−1
1 ∇u · ∇ϕ1 dx dt. (4.1)

Set y(t) = ∫
Ω

u(t)ϕα
1 dx. Since by definition ∂t u ∈ L2

loc((0,∞); L2(Ω)), we have y ∈ W 1,1
loc (0,∞) and

y′(t) = ∫
Ω

∂t u ϕα
1 dx. Differentiating (4.1) with respect to τ we have, for a.e. τ > 0,

y′(τ ) =
∫
Ω

∣∣∇u(τ )
∣∣q

ϕα
1 dx − α

∫
Ω

∣∣∇u(τ )
∣∣p−2

ϕα−1
1 ∇u(τ ) · ∇ϕ1 dx. (4.2)

Assume that α >
p−1

(q−p+1)
. Since q > p −1 > 1 and ‖∇ϕ1‖L∞ � C ′ , using Hölder and Young inequalities

we get:

α

∫
Ω

∣∣∇u(τ )
∣∣p−2

ϕα−1
1 ∇u(τ ) · ∇ϕ1 dx � 1

2

∫
Ω

∣∣∇u(τ )
∣∣q

ϕα
1 dx + C

∫
Ω

ϕ
α−q/(q−p+1)

1 dx

� 1

2

∫
Ω

∣∣∇u(τ )
∣∣q

ϕα
1 dx + C .

Here we used the fact that
∫
Ω

ϕ−l
1 dx < ∞ for l < 1. Therefore

y′(τ ) � 1

2

∫
Ω

∣∣∇u(τ )
∣∣q

ϕα
1 dx − C .

Assuming that α < q − 1, we get

∫
Ω

∣∣∇u(τ )
∣∣dx =

∫
Ω

∣∣∇u(τ )
∣∣ϕ α

q

1 ϕ
− α

q

1 dx �
(∫

Ω

∣∣∇u(τ )
∣∣q

ϕα
1 dx

)1/q(∫
Ω

ϕ
−α
q−1

1 dx

) q−1
q

� C

(∫
Ω

∣∣∇u(τ )
∣∣q

ϕα
1 dx

)1/q

.

On the other hand using that
∫
Ω

|u(τ )|dx � C‖u‖L∞(∂Ω) + C
∫
Ω

|∇u(τ )|dx, we have∫
u(τ )ϕα

1 dx �
∥∥ϕα

1

∥∥
L∞

∫
u(τ )dx � C + C

∫ ∣∣∇u(τ )
∣∣dx.
Ω Ω Ω
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Combining these two inequalities we arrive at∫
Ω

∣∣∇u(τ )
∣∣q

ϕα
1 dx � C

(∫
Ω

u(τ )ϕα
1 dx

)q

− C .

Finally we get the blow-up inequality

y′(τ ) � C1 y(τ )q − C2, for a.e. τ > 0,

with C1 = C1(p,q,Ω) > 0 and C2 = C2(p,q,α,Ω,‖g‖L∞).

Remark 4.1. Instead of assuming that
∫
Ω

u0ϕ
α
1 dx is large in Theorem 1.4, it would be sufficient to

assume that ‖u0‖Lr is large for some r ∈ [1,∞). In fact, assuming without loss of generality r �
(2q − p)/(q − p) and denoting y(t) = ∫

Ω
ur(t)dx, the Poincaré and Hölder inequalities can be used in

order to prove the blow-up inequality y′ � C1 y(q+r−1)/r − C2 (see [22]).
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