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On a Generalization of the Pless Symmetry Codes* 
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Waterloo, Ontario 

A class of  mat r ices  wh ich  are or thogonal  over the  reals and  contain  only the  
e lements ,  0, :l=l, is cons t ruc ted .  For  certain parameters ,  these  matr ices  are 
u sed  to cons t ruc t  a class of  self  dua l  codes over GF(3) .  T h i s  class is shown  to 
conta in  the  class of  s y m m e t r y  codes and  possesses  m a n y  of  their  propert ies.  

1. INTRODUCTION 

In a recent paper Pless (1972) defined the class of symmetry codes over 
GF(3). The codes are self dual and are of combinatorial interest as new 
five-designs were found among the incidence vectors of codewords of certain 
constant weights. The purpose of this note is to show that there is a simple 
generalization of the symmetry codes which possesses many of their properties. 
Unfortunately the smallest code in the generalization, which is not a sym- 
metry code, is too large for its weight enumerator to be determined by the 
methods given in Pless (1972). Thus it is not yet known whether new five- 
designs will be forthcoming. In the next section a class of matrices orthogonal 
over the reals and containing only the elements 0, 4-1 is defined. In Section 3 
these matrices are used to construct and analyze the generalized symmetry 
(GS) codes. The Pless symmetry codes are established as a subclass of the 
GS Codes. 

2. A CLASS OF ORTHOGONAL MATRICES 

In this section a class of matrices, orthogonal over both GF(3) and the reals, 
is constructed. This class will be a generalization of the class used by Pless 
(1972) in her construction of self dual codes. We first give the construction 
of the matrices used in Pless (1972). 
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Let a( ')  be a one-to-one mapping of the integers 0, 1 ..... (q - -  1) onto the 
elements of GF(q) such that a(0) = 0, a(1) = 1. Define the function 

x :GF(q)- -~{0,  1, --1} 

by X(0) = 0, x(a square) = 1 and x(a nonsquare) = --1.  I f  q is the power 
of an odd prime then GF(q) contains (q - -  1)/2 squares and the same number  
of nonsquares. Define the (q q- 1) × (q -J- 1) matrix S(q) = (sij) in the 
following manner: label the rows and columns of the matrix by the elements 
co, 0, 1 ..... (q - -  1) and let 

soo,o~ = O, s,,oo = X ( - - 1 ) ,  s= , ,  = 1, s , j  = x ( a ( ] )  - -  a ( i ) )  

i , j  = o, 1 , . ,  (q - 1). 

I t  can be shown that S(q) has the property S(q)S(q)T=--Iq+ 1 when 
q ~= --1(3). In  this case the matrix [Iq+l, S(q)] is the generator matrix of a 
self dual code with many interesting properties. 

We now give the construction of an orthogonal matrix S(q k-l) which, in 
the case k = 2, will be shown to be equivalent to the matrix S(q) defined 
above. Thus,  although the construction methods are quite different, there is 
no abuse of terminology. 

Let G be a k x (q~--  1) matrix whose columns contain all the distinct 
nonzero k-tuples over the finite field GF(q). In  coding terms the row space 
of  G, denoted by c~, is equivalent to a maximum length cyclic code. It  is 
known (Stiffier, 1971) that the weight of every nonzero codeword in (K is 
(q - -  1) qk-1. I f  G 1 is the k x (qk _ 1) matrix whose rows are any set of k 
linearly independent codewords of c~, then every nonzero k-tuple over GF(q) 
appears as a column of G a. 

Let  H be a k × n submatrix of G, n = (q~ - -  1)/(q - -  1) with the property 
that any two of its columns are linearly independent. We assume that H 
is normalized in the sense that the first nonzero element in each column is 
unity. Let  A be an n × n matrix whose rows are chosen from the nonzero 
vectors of the row space of H and have the property that any two distinct 
rows are linearly independent. Assume for convenience that the first k rows 
of A are rows of H. I t  follows readily from observations on G that every row 
of A has weight qk-X. I t  is not difficult to show that if H 1 is the (0, 1) matrix 
obtained from H by replacing each nonzero element by unity, then the rows of 
H 1 are the incidence vectors of the complements of the hyperplanes of the 
projective geometry PG(k - -  1, q). 
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Let  x 1 and x 2 be two distinct rows of A. Since they are independent, they 
can be extended to a basis x i , i = 1,..., k, each vector of which is a row of A. 
Let  B be the k × n matrix whose ith row is x i ,  i = 1 ..... k.  Assume B has 
been normalized by multiplying each column so that the first nonzero 
element in each column is unity. Let  B '  be the k × qk-1 submatrix of B 
consisting of those columns with unity in the first row. Every (k - -  1)-tuple 
over GF(q), including the all-zeros (k - -  1)-tuple, appears in the columns of  
B in rows 2 through k. Each element of GF(q) appears q~-2 times in the second 
row of B. This fact will be important in the following. 

Let  q be the power of an odd prime. In  the matrix A replace ~ ~ GF(q) 
by X(a) and call the resulting matrix S(q  7~-1) 

LEMMA l. Over  the real  numbers 

Proof.  Since every row of A is of weight qk-1 and each nonzero element 
of GF(q) is either a square or a nonsquare, the inner product over the reals 
of any row of S (q  ~-1) with itself is q~-l. Let  x 1 = (cq ,..., an) , x 2 = ([3~ ,..., fin) 

be two distinct rows of A. I f  yl  = (x(~l),..-, x(~))  and Y2 =- (x([31), ..., g(fin)) 
are the corresponding rows of S(q ~-1) then the inner product of Yl and y~ 
over the reals is the number  of nonzero co-ordinate positions for which 
X(ai) ---X(fli)  less the number of nonzero co-ordinate positions for which 
X(ai) ~ )¢(fli). Since X is a multiplicative function in the sense that 
X(~) X ( f l ) - ~  X(~[3), multiplication of a co-ordinate position by a nonzero 
element of GF(q) does not change the agreement or disagreement between 
coordinate positions of Yl and Y2 • As before, assume that x 1 and xz are the 
first two rows of the matrix B, which is assumed in normalized form. In  the 
nonzero positions of  xl ,  each element of GF(q) appears in x 2 qk-2 times. Thus  
the inner product of the corresponding vectors Yl and Y2 is zero, which 
completes the lemma. 

We now show that, for k ~ 2, the matrices S(q)  used in Pless (1972) can 
be constructed in the above manner. Label the rows and columns of a matrix 
with 0% 0, 1 ..... ( q -  1). Using the mapping a(') introduced previously 
place the elements 0, - -1 in the first and second rows of column oo and 1, a ( j )  

in column j. Denote these first two row vectors by x 1 and x 2 labeled by oo 
and 0, respectively. In  the row labeled i place the row vector - -a ( i )  • x 1 + x 2 . 

Clearly any two rows are linearly independent and this is a particular con- 
struction for the matrix A of the previous section for k = 2. 

643[~7/4-7 
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3. GENERALIZED SYMMETRY CODES 

In this section we take the matrices S(q k-l) as being matrices over GF(3). 
If  q and k are such that qk-1 ~_ --1(3) then, over GF(3) we have 

S(q ~-1) S(qk-1)  T = - - I .  

This occurs iff q = --1(3) and k is even. Using an extension of the notation 
of Pless (1972), denote the GS code generated by the matrix [I, S(qk-1)] by 
C(qe-1), q ~ --1(3) and k even. The GS code C(q ~-1) is, by definition, self 
dual and the weight of every codeword is divisible by 3. The following lemma 
is the image of Lemma 3.1 in Pless (1972) and we merely adapt her proof to 
the present case. 

LEMMA 2 (Pless, 1972). 

(a) The weight of every vector in the basis [I, S(qk-1)] is q~-i + 1. 

(b) The weight of any linear combination of two vectors in the basis 
[I, S(q~-l)] is 2q k-2 ÷ qk-2(q _ 1)/2 q- 2. 

(c) The weight of any linear combination of three vectors in the basis 
[1, S(qk-1)] is >~ q~-~(q --  3)/2 + 5. 

Proof. Part (a) follows from the definition of S(qk-~). For part (b), let yl  
and Y2 be two rows of S(q~-l). Since their inner product is 0 over GF(3) and 
the reals, the number of co-ordinate positions in which both Yl and y~ are 
nonzero and agree is equal to the number in which they are both nonzero 
and disagree. Thus the weight of the sum of any two rows of S(q k-l) is 
precisely 2q k-2 q- (q~-i _ q~-2)/2 and part (b) follows. For part (c) we 
lower bound the weight of the sum of any three distinct rows of S(q ~-1) 
by observing that the sum of a vector of weight q~-I and a vector of weight 
2qr~-~ + (qe-1 _ q~-~)/2 is at least q~-i _ [2q,-2 q_ (q~-X _ qk-2)/2] = 
qe-~(q - -  3)/2. Since this quantity must be divisible by 3 it follows that it 
can be increased to q~-e(q --  3)/2 q- 2. The result of part (c) follows. 

From the comments of the previous section and the definition of a GS 
code, when k = 2 and q ~ --1(3) a GS code reduces to a code equivalent 
to a Pless symmetry code. 

4. COMMENTS 

A class of codes, more general than the symmetry codes of Pless, has been 
constructed. Unfortunately, the smallest such code is of length 312 (q = 5, 
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k = 4), which is too long to be analyzed by techniques known at present. 
T h e  class of {0, + 1 ,  --1} matrices, orthogonal over the reals, constructed 
in Section 2 have applications to other areas of combinatorics. Indeed, the 
class constructed here provides a solution to a problem mentioned in Geramita 
et al. (1973) concerning weighing matrices and orthogonal designs. 

T h e  reviewer of this paper raised the interesting question as to which 
constructions of the matrix A yield S(q ~-:) symmetric. When S(q ~-:) is 
symmetric  then both [I: S(qk-:)] and [--S(q~-:):  I ]  are bases for the code and 
this fact can be useful in the analysis of the code. In  fact S(q k-:) can always be 
made symmetric by the following argument. By reordering columns of the 
k × n matrix H of Section 2, we can assume that the first k columns comprise 
the k × k identity matrix. Label each of the n columns of H by the projective 
k-tuple which it contains. Form an n × n matrix A with rows and columns 
labeled with these k-tuples in an identical manner  and use H as the first k 
rows. Label  these first k rows by x~, i = 1,..., k. In  the row labeled 
,, = (~: ,  c~ 2 ,..., c~k) place the row vector ~ i= :  a ix i .  This  construction satisfies 
the properties required of the matrix A and has the additional property 
that  it is symmetric.  Consider the element placed in row a and column 
[3 = (]~1, fi2 , ' " ,  ilk)" By the construction this will be Zi~:  ~,fii which is also 
the element placed in row [~ and column ¢~. The  matrix S(q k-:) obtained from 
,4 will also be symmetric. 
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