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Protein modules that bind specific oligosaccharides are found

across all kingdoms of life from single-celled organisms to man.

Different, overlapping and evolving designations for sugar-

binding domains in proteins can sometimes obscure common

features that often reflect convergent solutions to the problem

of distinguishing sugars with closely similar structures and

binding them with sufficient affinity to achieve biologically

meaningful results. Structural and functional analysis has

revealed striking parallels between protein domains with widely

different structures and evolutionary histories that employ

common solutions to the sugar recognition problem. Recent

studies also demonstrate that domains descended from

common ancestors through divergent evolution appear more

widely across the kingdoms of life than had previously been

recognized.
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Introduction
Proteins that seem to have a primary function of binding

sugars are often referred to as lectins, a term used initially

in the context of plant seed proteins and then broadened

to include examples from a wider range of species [1].

However, the names of many proteins that have sugar-

binding activity are based on other biological functions

that they have. For example, plant toxins represent a

group of proteins in which sugar-binding activity in one

part of a protein is used to target killing functions of

another part of the protein. Similarly, sugar-binding

proteins in yeast are usually denoted by their functions

in flocculation and in adhesion. Bacterial proteins that

interact with oligosaccharide ligands include adhesins, on

fimbriae and pili [2], as well as toxins, but there is also
Current Opinion in Structural Biology 2014, 28:14–22 
sugar-binding activity associated with many glycosidases

that contain non-catalytic carbohydrate-binding modules

[3]. It is also common to use alternative designations such

as glycan-binding proteins or glycan-binding receptors,

particularly in the case of animal lectins.

In spite of this diversity of names and functions, a

common feature of all of these proteins is that the sugar

recognition function in each protein is mediated by a

discrete protein module. The term carbohydrate-recog-

nition domain is often used as a general label that

encompasses all of the diverse folds, functions and sites

of expression. However, many of the individual groups

described in this review have other, more common des-

ignations and no systematic revision of the nomenclature

seems appropriate at this point. Nevertheless, it is import-

ant that the diversity of names and categories does not

obscure many evolutionary relationships between carbo-

hydrate-recognition proteins, domains and modules in

different species and kingdoms of life arising through

divergent evolution as well as interesting similarities in

the mechanisms of carbohydrate recognition that have

come about through convergent evolution.

Carbohydrate recognition in multiple protein
fold families
One approach to comparing mechanisms of sugar recog-

nition is to classify carbohydrate-recognition domains

based on their sequences and structures. Two key con-

clusions emerge from such comparisons and the resulting

classifications. First, sugar-binding activity can appear in

the context of many different protein folds. Second, the

protein folds of carbohydrate-recognition domains are not

exclusively associated with sugar-binding activity. The

first of these conclusions reflects independent evolution

of this activity on multiple occasions and means that there

is no simple way to identify sugar-binding proteins by

looking for one particular protein fold [4]. The second

conclusion means that similarity in the fold of a novel

domain to a fold that can support sugar-binding activity

does not necessarily imply that the new domain will bind

sugars.

The principle that fold does not necessarily imply func-

tion is well established in the case of the C-type carbo-

hydrate-recognition domains of animal lectins, which are

a subset of the broader family designated C-type lectin-

like domains that includes many members that lack

sugar-binding activity [5], including some for which

reports of sugar-binding activity have recently been called
www.sciencedirect.com

https://core.ac.uk/display/82598586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sbi.2014.07.003&domain=pdf
k.drickamer@imperial.ac.uk
http://www.sciencedirect.com/science/journal/0959440X/28
http://dx.doi.org/10.1016/j.sbi.2014.09.001
http://dx.doi.org/10.1016/j.sbi.2014.07.003
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.sciencedirect.com/science/journal/0959440X


Modelling of glycan-binding protein specificity Taylor and Drickamer 15
into question [6]. In many cases, other target ligands, such

as lipoproteins or other proteins, are known but in other

instances the functions of these domains remain to be

established. Similar principles are evident for mannose 6-

phosphate receptor homology domains (MRH domains),

only some of which bind sugars, while others have ligands

such as insulin-like growth factor II [7]. The same ideas

emerge again for Fbs proteins that target tagging of

proteins with ubiquitin by binding to the chitobiose core

of N-linked glycans [8]. The Fbs proteins are part of a

larger family of F-box proteins, most of which do not bind

sugars and in fact at least one Fbs protein appears to lack

this activity [9].

Convergence on shared features in
monosaccharide-specific sites
A further consequence of these insights is that common

features in the mechanisms of recognition of sugars that

transcend fold families reflect convergent evolution. Two

such features that crop up remarkably often are packing of

sugars against aromatic residues and involvement of Ca2+.

The former type of interaction, particularly between the

apolar B face of galactose and a tryptophan residue, has

been extensively discussed [10]. Ligation of sugars to

Ca2+ ions was first described for the C-type carbohydrate-

recognition domains in animal lectins [11], but has

recently been identified in several other groups of

sugar-binding proteins with carbohydrate-recognition

domains from different fold families (Figure 1). Examples

include yeast flocculation proteins [12] and adhesins

[13��,14��] and at least two families of bacterial carbo-

hydrate-binding modules [15], as well as the processing

mannoside from the endoplasmic reticulum [16]. Other

sugar-binding proteins that employ a pair of Ca2+ in sugar-

binding sites are the pentraxin serum amyloid protein [17]

and the lectin from Pseudomonas aeruginosa [18]. The

convergent use of Ca2+ ligation in different structural

contexts reflects the fundamental chemistry of the sugars,

which are known to bind free Ca2+ [19].

In contrast to the cases noted above, Ca2+ and other

divalent cations are sometimes indirectly involved in

sugar binding, because they stabilize the sugar-binding

conformation of a carbohydrate-recognition domain, for

example in legume lectins [20], calnexin and calreticulin

[21,22] and at least one family of bacterial carbohydrate-

binding modules [23]. An interesting recent example of

such an arrangement is seen in the mammalian L-type

lectins ERGIC-53 and VIP36. On the basis of recent

structural analysis of ERGIC-53, also known as LMAN1,

it has been suggested that modulation of binding by

different Ca2+ concentrations occurs in various luminal

compartments in cells [24��]. This phenomenon appears

to be a more subtle form of modulation of sugar-binding

activity than that observed for the endocytic C-type

lectins, in which loss of Ca2+ binding at endosomal pH

results in loss of sugar binding activity, which provides a
www.sciencedirect.com 
means of separating endocytic cargo from the receptors

[25,26].

A proliferation of secondary binding sites
A further interesting comparison of convergent sugar-

binding sites is that, within fold families, there are often

common mechanisms of binding to a core monosacchar-

ide in a primary binding site, but diversity in binding of

oligosaccharide and glycoconjugate ligands is achieved

through extended and secondary binding sites that are

unique to individual members of the family. Such exten-

sions can involve interactions with additional sugar resi-

dues in an oligosaccharide ligand, but an increasing

number of examples demonstrate binding to other modi-

fications of the sugars.

Differences in secondary or extended binding sites often

provide specificity for different oligosaccharides in closely

related proteins. For example, the sorting lectins ERGIC-

53 and VIP36 bind to distinct groups of high mannose

oligosaccharides using a common primary mannose bind-

ing site that is extended in different ways. Because of

these differences, ERGIC-53 binds to any Mana1-2Man

disaccharides, including one bearing Glca1-3 substitution

on the non-reducing terminus [24��] compared to the

selectivity of VIP36 for the unglucosylated Mana1-2Man-

a1-2Mana1-3 arm of high mannose oligosaccharides [27].

In the C-type lectin family, multiple examples of sec-

ondary interactions with sugars are common, leading to

binding of high mannose and Lewisx motifs, for example

[28] and non-sugar substituents such as sulfate can also be

accommodated in secondary binding sites [29]. In a novel

twist, the macrophage receptor mincle has recently been

shown to bind trehalose, the glucose a1-1 glucose dis-

accharide, through such a mechanism, but further speci-

ficity for mycobacterial glycolipids that bear this

headgroup is achieved through interactions with the

attached hydrophobic acyl chains, apparently through

an adjacent hydrophobic groove [30��] (Figure 2).

In the case of the mannose 6-phosphate receptors, a

mechanism involving a mannose-binding site extended

by secondary interactions with a phosphate substituent is

well established [31]. Elaboration of the secondary bind-

ing site, leading to selectivity for a GlcNAc residue

attached to mannose through a phosphodiester linkage,

can be achieved by a combination of removing potential

hindrance to binding of the GlcNAc residues with

addition of favourable secondary interactions between

the protein and the added sugar [32]. The MRH domain

in the OS-9 protein, which forms part of the quality

control system of the endoplasmic reticulum, provides

an alternative variation on the binding site in which a pair

of tryptophan residues extends the primary mannose-

binding site, making it selective for oligosaccharides

containing Mana1-6Man units [33]. In contrast, recent
Current Opinion in Structural Biology 2014, 28:14–22
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Figure 1

(a) Mannose-binding protein

4 3 4 3 3 2

(b) Yeast Flocculin Flo5 (c) CBM60
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Involvement of Ca2+ in sugar-binding sites in the context of multiple different protein folds. Top panels show close-up views of sugar-binding sites and

lower panels show overall folds of carbohydrate-recognition domains. (a) Human serum mannose-binding protein (2MSB) with Man5 oligosaccharide.

(b) Yeast flocculin Flo5 (2XJS) with bound mannobiose. (c) Family 60 carbohydrate-binding module (CBM60) from Cellvibrio japonicus xylanase (2XFD)

with bound cellobiose. Ca2+ is indicated as a magenta sphere in each panel and water is represented as a red sphere. Coordination bonds from

adjacent equatorial hydroxyl groups to the Ca2+ are indicated as dashed lines.
analysis of the MRH domain in endoplasmic reticulum

glucosidase II reveals an open binding site that lacks any

of these extensions and thus represents a more proto-

typical mannose-binding site [34��].

Common approaches to combining binding
sites
In addition to convergence in the way that binding sites in

individual domains work, the arrangement of these

domains within proteins shows some interesting parallels

between different groups of sugar-binding proteins. The

phenomenon of enhanced binding to multivalent ligands

through clustering of binding sites in oligomers is well
Current Opinion in Structural Biology 2014, 28:14–22 
established and has been extensively investigated for

many types of sugar-binding proteins [35,36].

Somewhat less appreciated has been the generality of an

arrangement in which a carbohydrate-recognition domain

targets and enhances the activity of an enzyme that builds

or degrades carbohydrates (Figure 3). The most exten-

sively studied examples of such an arrangement are the

carbohydrate-binding modules linked to the catalytic

domains of many polysaccharide hydrolases [37�]. The

recent demonstration of how an MRH domain linked to

the catalytic domain of endoplasmic reticulum glucosi-

dase II enhances the activity of this enzyme on nascent

N-linked glycans demonstrates that similar pairings of
www.sciencedirect.com
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Figure 2

(a) Mannose-binding protein (b)  DC-SIGN

(c) E-selectin (d) Mincle

Sulfotyrosine

Acyl
chain
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Multiple different ways in which binding specificity of C-type carbohydrate-recognition domains is enhanced by extended and accessory binding sites.

Each of the binding sites involves a primary interaction between the Ca2+, shown in magenta, and two adjacent hydroxyl groups on a monosaccharide

residue. (a) The relatively open binding site in mannose-binding protein binds only a terminal mannose residue, so only this residue interacts with the

protein (2MSB). (b) DC-SIGN binds a more complex Man3GlcNAc2 oligosaccharide through an extended binding site that accommodates sugars on

either side of the mannose residue in the primary binding site (1K9J). (c) In addition to ligation of fucose to Ca2+, the sialyl Lewisx oligosaccharide

interacts with an extended binding site in E-selectin, which also has an accessory binding site for sulfated tyrosine residues on a glycoprotein ligand

(1G1S). (d) Mincle binds to the disaccharide trehalose as a result of one glucose residue binding in the Ca2+ site and the second glucose residue

contacting an adjacent site. In addition, glycolipid binding is enhanced through an accessory site that forms a hydrophobic grove which can interact

with acyl chains on the 6-OH groups of the glucose residues (4KZV). Primary binding sites are highlighted in pink, extended oligosaccharide-binding

sites are indicated in green and accessory sites for other modifications are shaded yellow.
sugar-binding and catalytic domains can be achieved

using completely different structural elements [34��].
The same principle is seen in the large family of poly-

peptide N-acetylgalactosaminyltransferases, but in these

cases it is R-type carbohydrate recognition domains

coupled to synthetic enzymes that target the enzymes

to sites adjacent to already glycosylated residues [38,39�].
Recent examples also illustrate how a carbohydrate-bind-

ing module can effectively extend the active site of a
www.sciencedirect.com 
hydrolase [40] and that PA14 carbohydrate-binding

modules can be inserted into the hydrolase domains

rather than just being appended to them [41,42].

Some old distinctions becoming less clear
It is increasingly difficult to delineate well defined sub-

groups of sugar-binding proteins based on any features

other than sequence similarity. For example, as noted in

the previous section, a domain organization linking a
Current Opinion in Structural Biology 2014, 28:14–22
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Figure 3

(a) Bacterial hydrolases

(b) Endoplasmic reticulum glucosidase II

(c) Polypeptide GalNAc transferases

R-type carbohydrate-
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Association of carbohydrate-recognition domains with enzymatically

active domains. (a) One or more carbohydrate-binding modules are

often linked to bacterial glycosidases and cellulose-degrading enzymes

in a single polypeptide. The carbohydrate-binding modules localize the

activity on substrates and enhance the activity of enzymes. (b) The a

subunit of endoplasmic reticulum glucosidase II contains the

glucosidase active site, but the activity of the enzyme on high mannose

oligosaccharides that bear terminal glucose residues on one branch is

enhanced by the b subunit, which contains an MRH domain that binds

mannose on another branch of the oligosaccharide. (c) R-type

carbohydrate-recognition domains in many of the polypeptide GalNAc

transferase proteins direct the enzyme to regions of substrate

glycoproteins that already bear one or more GalNAc residues.
domain that recognizes sugars with one that catalyses

modification of the sugar is no longer just a feature of the

carbohydrate-binding module/glycosidase family. At the

same time, some of the carbohydrate-binding modules

linked to hydrolase domains are structurally related to

lectins that are separate from catalytic domains [43].

Thus, a particular domain organization is not uniquely

associated with a particular structural group of carbo-

hydrate-recognition domains. Similarly, while hydro-

lase-associated carbohydrate-binding modules are often

associated with binding of internal sugars in polysacchar-

ide chains, a significant subgroup of these domains are

now known to bind non-reducing terminal residues [37�].
Current Opinion in Structural Biology 2014, 28:14–22 
Conversely, not all proteins referred to as lectins bind

terminal residues, since the ability of galectins in interact

with residues within a polypeptide is now well estab-

lished [44].

Perhaps the most interesting recent change in the percep-

tion of different groups of carbohydrate-recognition

domains is the finding that many of the families, for

which sequence similarity provides strong evidence of

divergence from a common ancestor, appear in a more

diverse range of species and even kingdoms of life than

was previously appreciated (Figure 4). It was previously

recognized that structurally related domains used for

different functions appear across the animal and plant

kingdoms, since L-type carbohydrate-recognition

domains are found in the legume lectins in plants as well

as the sorting lectins such as ERGIC-53 and VIP36 in

animal cells [24��,27]. It is now clear that structurally

related carbohydrate-binding domains are present in both

eukaryotes and prokaryotes. One of the most widely

spread type of domain is the R-type carbohydrate-recog-

nition domain, originally described in plant toxins such as

ricin [45] and more recently recognized in polypeptide N-

acetylgalactosaminyltransferases [39�] and the mannose-

receptor family of proteins in animals [46] as well as the

bacterial glycoside hydrolases containing CBM13

modules [47]. A second widely represented family of

domains is the monocot mannose B-lectin type domain,

widely studied in plants but also described in fish and

fungi [48,49] and more recently in bacteria, including

bacteriocins from Pseudomonas [50��,51��]. A third family

that spans from prokaryotes to eukaryotes is the PA14

domain, which exhibits carbohydrate binding activity

both as a carbohydrate-binding module in bacterial gly-

cosidases and in yeast adhesions and flocculation factors

[52]. A further unexpected sequence relationship is that

between the endoplasmic reticulum sorting lectin mal-

ectin [53] and the CBM57 family of carbohydrate-binding

modules of bacterial glycosidases and similar domains in

putative plant kinases [54�], although in the latter case the

apparent sequence similarities remain to be followed up

with evidence for structural similarity and sugar-binding

activity. These observations reflect the role of divergence

of sugar binding domains as well as importance of con-

vergence on similar recognition principles.

Polymorphism analysis
A number of interesting patterns have been observed in

the evolution of several of the families of glycan-binding

receptors. Within the mammalian families, some types of

receptors, such as those involved in intracellular traffick-

ing of glycoproteins, are often relatively conserved across

species, but some of the cell surface receptors tend to be

more divergent. Extreme examples of such divergence

include the DC-SIGN homologs [55] and the CD33-

related siglecs [56]. Evolution of variability in receptors

of the innate immune system probably reflects selective
www.sciencedirect.com
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Figure 4

Current Opinion in Structural Biology

Prokaryotes

R-type carbohydrate
  recognition domains

B-lectin domains

Malectin domains

L-type carbohydrate
  recognition domains

CBM13 family
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A summary of some of the types of carbohydrate-recognition domains that are found in a wide range of species. Other types of domain not shown are

expressed only in more restricted groups of organisms. For example, galectins, siglecs and C-type lectins are expressed only in animals and several

classes of adhesins are specific to bacteria.
pressure from rapidly changing pathogens, many of which

can exploit glycan-binding receptors as a means of enter-

ing cells.

In addition to variation between species, selection pres-

sure from pathogens has led to establishment of poly-

morphisms in some of the receptors. The best studied

example of a balanced polymorphism is in serum man-

nose-binding protein, in which several variants that have

reduced capacity to activate complement have been

identified [57]. The structural basis for how changes in

the structure of the collagen-like domains in mannose-

binding protein affect the interaction with complement is

at least partially understood [58]. There is strong genetic

evidence that other polymorphisms that result in amino

acid substitutions in glycan-binding receptors of the

innate immune system can affect susceptibility to in-

fection. For example, polymorphisms in the C-type

carbohydrate-recognition domains of the mannose recep-

tor are linked to susceptibility to leprosy [59] and varia-

bility in the number of repeats in the neck region of DC-

SIGNR, the endothelial paralog of DC-SIGN, may
www.sciencedirect.com 
impact on transmission of human immunodeficiency virus

[60]. However, in these latter cases, the molecular mech-

anisms that underlie the phenotypic consequences of

changes to the amino acids sequences of these proteins

remain to be established.

Other variations in the sequences of glycan-binding

receptors have been more directly linked to changes in

the sugar-binding activity of these proteins. Recent stu-

dies on langerin reveal that a form of the protein contain-

ing two amino acid changes compared to the most

common reference form undergoes a major change in

ligand binding, in which the ability to bind glycans

terminated with galactose 6-sulphate is lost, while the

affinity for glycans terminating in N-acetylglucosamine is

increased [61��]. In this case, the amino acid changes are

directly in the binding site and a structural basis for the

changes in sugar binding has been demonstrated. The

langerin results provide a paradigm for a novel way in

which the diversity of glycan-binding receptors can be

increased. In contrast, although there is increasing genetic

evidence for linkage of risk of coronary artery disease with
Current Opinion in Structural Biology 2014, 28:14–22
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variants in the epidermal growth factor domain adjacent

to the C-type carbohydrate-recognition domain of E-

selectin [62], recent attempts to verify previous sugges-

tions that these changes alter the sugar-binding activity of

the receptor have been unsuccessful [63�]. From a struc-

tural perspective, this outcome is probably not surprising,

given that the polymorphism is distant from the ligand-

binding site and in a separate domain.

Conclusions
It is clear that there is no single set of unifying principles

that describe carbohydrate recognition across all the king-

doms of life. Nevertheless, the examples described in this

short review illustrate that some of the solutions to the

sugar recognition problem go back very far in evolution

and that mechanisms for binding sugars based on the

chemical properties of the sugar ligands can be imple-

mented in the context of many different protein folds.

The first of these conclusions provides a useful basis for

identifying potential sugar recognition systems from

genomic sequence data. However, the second point

means that novel carbohydrate-recognition domains

which utilize different protein scaffolds may still remain

to be discovered.
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