
Computers & Operations Research 39 (2012) 3305–3315

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Contents lists available at SciVerse ScienceDirect
Computers & Operations Research
0305-05

http://d

n Corr

E-m

guy.des

jacques
journal homepage: www.elsevier.com/locate/caor
A branch-price-and-cut algorithm for the workover rig routing problem
Glaydston Mattos Ribeiro a, Guy Desaulniers b,n, Jacques Desrosiers c

a Department of Engineering, Federal University of Espı́rito Santo, Brazil
b Department of Mathematics and Industrial Engineering and GERAD, École Polytechnique de Montréal, Canada
c Department of Management Sciences and GERAD, HEC Montréal, Canada
a r t i c l e i n f o

Available online 19 April 2012

Keywords:

Workover rig routing

Vehicle routing

Branch-price-and-cut

Column generation

Tabu search column generator

ng-Paths

Subset-row inequalities
48/$ - see front matter & 2012 Elsevier Ltd. A

x.doi.org/10.1016/j.cor.2012.04.010

esponding author.

ail addresses: glaydstonribeiro@ceunes.ufes.b

aulniers@gerad.ca (G. Desaulniers),

.desrosiers@hec.ca (J. Desrosiers).
a b s t r a c t

In an onshore oil field, the productivity of oil wells decreases when they require maintenance.

To restore full productivity at a well, it must be visited by a specially equipped vehicle, called a

workover rig. Given a set of wells needing maintenance and a heterogeneous fleet of workover rigs, the

workover rig routing problem (WRRP) consists of finding rig routes that minimize the total production

loss of the wells over a finite horizon. The wells have different loss rates, require various services, and

may not be serviced within the horizon due to rig availability. The rigs have initial positions and do not

have the same equipment. This paper presents the first exact algorithm for the WRRP, namely, a

branch-price-and-cut algorithm that relies on some of the most recent techniques introduced for the

vehicle routing problem with time windows. Our computational experiments show that this exact

algorithm can solve practical-sized instances in reasonable computational times.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Onshore oil fields can contain a large number of wells spread
over a wide region (more than 1000 in certain cases). When the
productivity of a well decreases due to a malfunction, a request
for maintenance is issued. This request specifies a production loss
rate and the maintenance services (such as cleaning, reinstate-
ment, or stimulation) required to restore full productivity. To
maintain a well, a specially equipped vehicle, called a workover
rig (or rig, for short), must be sent to the well. Because the
available rigs do not have the same equipment, a request is
serviceable only by a subset of the rigs. The maintenance requests
are issued dynamically, and the rig routes (sequences of wells to
service) are planned periodically at every P time periods in a
rolling horizon fashion. When a planning session is performed, a
finite horizon of H time periods with HZP is considered for
servicing the requests that are known at this time. In particular,
these requests include the portions of the routes previously
planned that will not be completed before the beginning of the
horizon. Given the limited number of rigs available and the
finiteness of the horizon, it might, however, be impossible to
plan the service of all the maintenance requests within the
horizon. The unserved ones are postponed to the next planning
ll rights reserved.

r (G. Mattos Ribeiro),
session together with the requests to be issued in the next P

periods, that is, until the next planning session.
In this paper, we address the static problem, called the work-

over rig routing problem (WRRP), that must be solved in a given
planning session of the rolling horizon. Given a set of wells
requesting maintenance and a heterogeneous fleet of rigs, each
with a specific equipment and an initial position, the WRRP
consists of determining feasible routes for the rigs such that the
total production loss of the wells over the next H time periods is
minimized. A route is feasible for a rig if it starts at the rig’s initial
position, its duration (including service times) does not exceed H

periods, and it services only wells for which the rig is equipped. A
route ends at the location of its last visited well.

Fig. 1 illustrates a 100-well, 10-rig instance of the WRPP and
its computed optimal solution. Part (a) shows the locations of the
wells and the initial positions of the rigs while part (b) depicts the
computed optimal set of routes, where the number of wells
serviced by each route appears in parentheses. Notice the open
aspect of the rig routes and that 10 wells are not planned to be
serviced within the horizon.

The WRRP arises on onshore oil fields and involves enormous
monetary sums. For example, Aloise et al. [1] report that the rental of
10 rigs costs yearly 10 millions USD to Petrobras, a Brazilian
company. In the literature, various heuristics have been developed
for the WRPP: a variable neighborhood search [1]; a tabu search and
an iterated local search [20]; a greedy randomized adaptive search
procedure with path-relinking [21]; and recently, a clustering search
and an adaptive large neighborhood search [22]. To the best of our
knowledge, no exact solution methods have been proposed.

https://core.ac.uk/display/82598353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/locate/caor
www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2012.04.010
dx.doi.org/10.1016/j.cor.2012.04.010
dx.doi.org/10.1016/j.cor.2012.04.010
mailto:glaydstonribeiro@ceunes.ufes.br
mailto:guy.desaulniers@gerad.ca
mailto:jacques.desrosiers@hec.ca
dx.doi.org/10.1016/j.cor.2012.04.010
dx.doi.org/10.1016/j.cor.2012.04.010


0

50

100

150

200

0 50 100 150 200 250 300

Wells
Rigs

0

50

100

150

200

0 50 100 150 200 250 300

Rig 1 (11)
Rig 2 (5)
Rig 3 (8)
Rig 4 (8)
Rig 5 (8)

Rig 6 (11)
Rig 7 (8)

Rig 8 (13)
Rig 9 (8)

Rig 10 (10)
Unserviced

Fig. 1. A 100-well, 10-rig instance and its computed optimal solution. (a) Well and rig locations. (b) Optimal open routes.

G. Mattos Ribeiro et al. / Computers & Operations Research 39 (2012) 3305–33153306
The WRRP has similarities with various vehicle routing pro-
blems (VRPs). In particular, the vehicles do not have to return to a
depot at the end of their routes as in the open VRP [18]. Also,
certain wells may remain unserviced due to the limited horizon
length. The serviced wells are selected on the basis of the travel
time required to reach them and the production losses that can be
saved. This aspect appears in VRPs with profits (equivalent to the
losses saved) such as the team orienteering and the profitable
tour problems [2]. In those VRPs, the profits gained by visiting a
customer is known a priori whereas, in the WRRP, the production
loss saved at a well depends on the time at which it is serviced.
The objective function is, thus, time dependent as in the multi-
depot vehicle scheduling problem with time windows and linear
waiting costs [8]. In this problem, a cost per minute (representing
the driver salary) is charged when a vehicle waits before starting
a task due to a time window restricting its start of service time. In
this case, late arrival times reduce waiting costs. At the opposite,
early arrival times must be favored in the WRRP to minimize the
total production loss. Finally, time plays an important role in the
WRRP, both in the objective function and in the deadline
constraint yielded by the end of the horizon, as in many VRPs
with time windows such as the VRP with time windows (VRPTW)
(see [10] for a recent survey).

The main contribution of this paper is to present the first exact
algorithm for the WRPP, namely, a branch-price-and-cut (BPC)
algorithm. We chose this type of algorithm because it is known to
be a state-of-the-art methodology for solving VRPs involving time-
dependent constraints or objective function. However, when route
feasibility is weakly constrained as in the WRRP, BPC can struggle to
reach and prove optimality because the shortest path labeling
algorithm generating the routes as needed must get rid of numerous
negative (reduced) cost cycles. In our case, the cycles should be easier
to handle because the production loss at a well increases with time,
yielding higher reduced cost cycles as time progresses.

The proposed BPC algorithm relies on some of the most recent
techniques introduced for the VRPTW, including a tabu search
column generator [9], an ng-path relaxation [3], and the
subset-row inequalities [17]. Through a series of computational
experiments, we assess the effectiveness of these techniques and
show that the overall BPC algorithm can solve practical-sized
instances (up to 200 wells and 10 rigs) in reasonable computa-
tional times (less than 1 h).
The rest of this paper is structured as follows. In the next
section, we provide a time-constrained arc-flow model for the
WRRP. Section 3 gives an equivalent set packing path-flow
formulation that is suitable for BPC. We also describe the
subproblems, the algorithms used to generate columns, the
implemented cutting planes, and the branching strategies. Com-
putational results are reported in Section 4, while conclusions are
drawn in Section 5.
2. A time-constrained arc-flow model

In this section, we provide a time-constrained arc-flow model
for the WRRP, a specialization of the unified model proposed by
Desaulniers et al. [7] for deterministic time-constrained VRPs.
Besides precising the WRRP definition, this model is helpful to
define the column generation subproblems to be used in the BPC
algorithm.
2.1. Networks

Let K be the set of available rigs. A network Gk :¼ ðNk,Ak
Þ is

associated with each rig kAK , where Nk and Ak denote its sets of
nodes and arcs, respectively. Set Nk contains three types of nodes:
source, sink, and task. The source node o(k) represents the initial
position of rig k, while the sink node d(k) represents the end of the
horizon. A task corresponds to a maintenance service to be
performed on a well and it is represented by a task node. The
set of task nodes is denoted by W while the subset of task nodes
that can be accomplished by rig k is denoted WkDW . Therefore,
Nk :¼ foðkÞ,dðkÞg [Wk.

Set Ak contains four types of arcs: empty, start, end, and inter-

task. There is an empty arc linking o(k) to d(k) that represents an
empty route when rig k is not required in the solution. There is a
start arc ðoðkÞ,jÞ between o(k) and each task node jAWk. Such an
arc represents the travel of rig k from its initial position to well j

followed by the service at j. There is also an end arc ði,dðkÞÞ
between each task node iAWk and d(k) indicating that the route
of rig k ends at well i. Finally, there is an inter-task arc (i,j)
between each pair of task nodes i,jAWk that represents the
movement of rig k from well i to well j followed by the service



G. Mattos Ribeiro et al. / Computers & Operations Research 39 (2012) 3305–3315 3307
at j. Therefore, Ak :¼ fðoðkÞ,dðkÞÞg [ ðoðkÞ �Wk
Þ [ ðWk

� dðkÞÞ[

ðWk
�Wk

Þ.
The planning horizon is divided into H disjoint time periods,

numbered from 1 to H. With each arc ði,jÞAAk, we associate a
nonnegative parameter tij that specifies the elapsed time (travel
time plus service time, if any) on arc (i,j). We assume that tij is a
nonnegative integer number of time periods and that the para-
meters tij, ði,jÞAAk, satisfy the triangle inequality. Note that any
arc (i,j) such that tij4H can be deleted from its arc set. Finally,
with each node iAWk, we associate a positive parameter ‘i that
indicates the production loss rate per time period at node i.

2.2. Mathematical formulation

The proposed time-constrained arc-flow model relies on two
main types of variables: for each arc ði,jÞAAk, kAK , we define a
binary arc-flow variable Xk

ij that takes value 1 if arc (i,j) is used by
rig k and zero otherwise; for each node iAWk

[ foðkÞg, kAK , we
define a time variable Tk

i A ½0,H� that indicates the time period at
which rig k completes service at node i if it services it. We impose
Tk

i ¼ 0 if i¼o(k) or if iAWk and well i is not serviced by rig k. Note
that no time variables Tk

dðkÞ, kAK , need to be defined at the sink
nodes because ti,dðkÞ ¼ 0 for all kAK .

The time variables allow to determine the production loss at
each well. Indeed, if rig k services well i, that is, if Tk

i 40, then well
i returns to full productivity in period Tk

i þ1 and the production
loss for this well is given by ‘iT

k
i . On the other hand, if well i is not

serviced by any rig during the horizon, that is, if Tk
i ¼ 0 for all

kAK , then its production loss is equal to ‘iH.
To facilitate the presentation of the model, we introduce two

types of auxiliary variables: for each node iAWk, kAK , we define
a binary variable Xk

i :¼
P

j:ðj,iÞAAk Xk
ji that takes value 1 if well i is

serviced by rig k and 0 otherwise; we also define a nonnegative
saving variable Sk

i that is equal to the production loss saved at
well i if serviced by rig k. Imposing the following constraints on
the time variables:

0rTk
i rHXk

i , 8kAK , iAWk,

one can express the saving variables as follows:

Sk
i :¼ ‘iðHXk

i�Tk
i Þ, 8kAK , iAWk:

Notice that Sk
i ¼ 0 if rig k does not service well i, that is, if Xk

i ¼ 0.
With the saving variables, the total production loss is given by

H
X
iAW

‘i�
X
kAK

X
iAWk

Sk
i ,

where the first term corresponds to the maximal production loss
and the second to the total losses saved by the rigs.

Using this notation, the WRRP can be formulated as follows:

Minimize H
X
iAW

‘i�
X
kAK

X
iAWk

Sk
i ¼H

X
iAW

‘i�
X
kAK

X
iAWk

‘iðHXk
i�Tk

i Þ ð1Þ

subject to :
X
kAK

X
j:ði,jÞAAk

Xk
ijr1, 8iAW , ð2Þ

X
j:ðoðkÞ,jÞAAk

Xk
oðkÞ,j ¼

X
i:ði,dðkÞÞAAk

Xk
i,dðkÞ ¼ 1, 8kAK , ð3Þ

X
j:ði,jÞAAk

Xk
ij�

X
j:ðj,iÞAAk

Xk
ji ¼ 0, 8kAK , iAWk, ð4Þ

Xk
ijðT

k
i þtij�Tk

j Þr0, 8kAK , ði,jÞAAk, jadðkÞ, ð5Þ

0rTk
i rHXk

i , 8kAK , iAWk, ð6Þ
Tk
oðkÞ ¼ 0, 8kAK , ð7Þ

Xk
ijAf0;1g, 8kAK , ði,jÞAAk, ð8Þ

Xk
i ¼

X
j:ðj,iÞAAk

Xk
ji, 8kAK , iAWk, ð9Þ

Sk
i ¼ ‘iðHXk

i�Tk
i Þ, 8kAK , iAWk: ð10Þ

Objective function (1) aims at minimizing the total production
loss over the horizon. Constraints (2) ensure that each well (task

node) is serviced at most once by a rig. For each rig k, constraints
(3) and (4) correspond to the classical network flow conservation
constraints of a path originating at source node o(k) and ending at
sink node d(k). The nonlinear constraints (5) express the compat-
ibility requirements between arc-flow and time variables and
ensure subtour elimination. Constraints (6) impose a maximal
duration of H periods to the routes. They also ensure that the time
variables take value 0 when the corresponding well is not
serviced by the corresponding rig. Constraints (7) set the starting
time of all routes to 0. Constraints (8) impose binary values to the
arc-flow variables. Finally, the auxiliary variables are defined in
(9) and (10). They can easily be removed from the model by
replacing them in (1) and (6) with their expressions in terms of
the arc-flow and time variables.

The objective function (1) and constraints (3)–(10) are separ-
able by rig kAK. Therefore, model (1)–(10) is well suited for a
solution method based on a decomposition process, as the one
presented in the following section.
3. Branch-price-and-cut

Model (1)–(8) contains nonlinear constraints (5) that can be
linearized. However, such a linearization typically yields a very
weak linear relaxation. To obtain a stronger relaxation, we
propose to apply the Dantzig–Wolfe decomposition process [6]
on model (1)–(8). This process yields a set packing model that can
be solved by a BPC method. This method (see [19,12]) consists of a
column generation method embedded into a branch-and-cut
method. Column generation is used to compute lower bounds in
the search tree, cuts are added to tighten these bounds, and
branching decisions are imposed to derive integer solutions. All
these components are described below.

3.1. A set packing model

Following the Dantzig–Wolfe decomposition process, the ser-
vice request constraints (2) of model (1)–(10) are kept in the
master problem while the constraints (3)–(10), separable by rig
kAK , define the domain of the 9K9 pricing subproblems. This
decomposition gives rise to an alternative path-flow formulation
for the WRRP that corresponds to a set packing model.

Let Rk be the set of feasible routes for rig kAK. For each route
rARk, denote by sr

k the total production loss saved by this route
and by ak

ir , iAWk, a binary parameter equal to 1 if well i is visited
in route r, and 0 otherwise. Parameter sr

k is computed as the sum
of the loss saved at each serviced well

sk
r :¼

X
iAWk

‘iðHak
ir�tk

irÞ,

where parameter tk
ir is equal to the time period at which rig k

completes service at well i in route r if it services it and to zero
otherwise. Finally, for each rig kAK and each route rARk, define a
binary path variable Yr

k indicating whether or not route r for rig k

is selected in the solution.



G. Mattos Ribeiro et al. / Computers & Operations Research 39 (2012) 3305–33153308
With this notation, the WRRP can be formulated as follows:

Minimize H
X
iAW

‘i�
X
kAK

X
rARk

sk
r Yk

r ð11Þ

subject to :
X
kAK

X
rARk

ak
irYk

r r1, 8iAW , ð12Þ

X
rARk

Yk
r ¼ 1, 8kAK , ð13Þ

Yk
r Af0;1g, 8kAK , rARk: ð14Þ

Objective function (11) aims at minimizing the total produc-
tion loss over the horizon, which is again computed as the
maximal production loss minus the sum of the losses saved by
the rigs. Set packing constraints (12) ensure that each well is
serviced at most once by a rig. Convexity constraints (13) indicate
that one route must be determined for each available rig. Finally,
binary requirements (14) are imposed on the path variables. They
are derived from the binary requirements (8) on the arc-flow
variables (see [16]).

3.2. Column generation

In practice, model (11)–(14) contains a huge number of path
variables. To solve its linear relaxation, called the master problem,
we apply column generation. Column generation is an iterative
method that solves, at each iteration, a master problem restricted
to a subset of its variables, called the restricted master problem

(RMP), and one or several pricing subproblems. Solving the RMP
(using the simplex algorithm in our case) provides a pair of
optimal primal and dual solutions. The primal solution is also
deemed optimal for the master problem if there exist no more
negative reduced cost variables among those not considered in
the RMP. The role of the subproblems is to check this condition by
searching for negative reduced cost variables (columns). If no
such columns exist, the solution process stops. Otherwise, nega-
tive reduced cost columns identified by the subproblems are
added to the RMP before starting a new iteration.

For the WRRP, there is one pricing subproblem per workover
rig kAK. It corresponds to an elementary shortest path problem,
defined on network Gk, with an additional constraint that limits
the duration of a route to a maximum of H periods and a time-
dependent objective function that is defined as follows.

Let air0,iAW , and sk,kAK , be the dual variables correspond-
ing to constraints (12) and (13) of the master problem, respectively.
The reduced cost sk

r of variable Yr
k, kAK , rARk, is computed as

sk
r :¼ �sk

r�
X

iAWk

aia
k
ir�s

k ¼�
X

iAWk

‘iðHak
ir�tk

irÞ�
X

iAWk

aia
k
ir�s

k:

The goal of the pricing subproblem for rig k is to find a route rARk

with the least reduced cost sk
r . Using the notation of the time-

constrained arc-flow model (1)–(10), its objective function can thus
be written as

Minimize �
X

iAWk

‘iðHXk
i�Tk

i Þ�
X

iAWk

aiX
k
i�s

k, ð15Þ

or, equivalently

Minimize
X
ði,jÞAAk

ð‘jðT
k
j�HÞ�ajÞX

k
ij, ð16Þ

by defining ‘dðkÞ :¼ 0 and adðkÞ :¼ sk, and exploiting constraints (6).
Its domain is given by the constraints (3)–(10) associated with rig k.
The values of the variables Xk

i , Tk
i , and Sk

i for the routes rARk found
by the subproblem provide, respectively, the parameters ak

ir , tk
ir , and

sk
ir, associated with the variables Yr

k added to the RMP.
Forward labeling algorithm: The elementary constrained short-
est path problem associated with rig kAK can be solved using a
forward labeling algorithm (see [15]). In this algorithm, labels
represent partial paths that are extended, using so-called exten-

sion functions, in network Gk from the source node o(k) toward the
sink node d(k). Each label E (a vector with 2þ9Wk9 components)
stores the reduced cost of the partial path Z(E), the elapsed time
T(E) along this path and, for each well iAWk, a binary component
Vi(E) that takes value 1 if well i has already been visited along the
path associated with E or if it is unreachable from E. A well i is
said to be unreachable from E if time does not allow to visit it
within the planning horizon in any extension of E [14]. The
extension along an arc ði,jÞAAk of a label E representing a partial
path ending at node iANk proceeds as follows to create a new
label E0 representing a partial path ending by the arc (i,j)

TðE0Þ :¼ TðEÞþtij, ð17Þ

ZðE0Þ :¼ ZðEÞþ‘jðTðE
0
Þ�HÞ�aj, ð18Þ

VwðE
0
Þ :¼

VwðEÞþ1 if w¼ jadðkÞ,

maxfVwðEÞ,UwðE
0
Þg otherwise,

(
8wAWk, ð19Þ

where UwðE
0
Þ indicates whether or not w is unreachable from E0

(that is, UwðE
0
Þ is equal to 1 if TðE0Þþtjw4H and 0 otherwise).

Label E0 corresponds to a feasible path if TðE0ÞrH and VwðE
0
Þr1

for all wAWk. It is discarded if this is not the case.
To avoid enumerating all feasible paths in Gk, the algorithm

keeps only the Pareto-optimal labels (i.e., the labels that are not
proven to be dominated by other labels associated with paths
ending at the same node). Because all extension functions are
non-decreasing, the following label dominance criterion can be
used.

Proposition 1 (Desaulniers et al. [7]). Let E and E0 be two labels

representing partial paths ending at the same node. Label E dom-

inates label E0 if

ZðEÞrZðE0Þ, ð20Þ

TðEÞrTðE0Þ, ð21Þ

VwðEÞrVwðE
0
Þ, 8wAWk, ð22Þ

and at least one of these inequalities is strictly satisfied.

Dominated labels are discarded. Furthermore, when equality
holds for all label components in the above criterion, one of the
two labels is discarded.

To speed up the labeling algorithm, two strategies were
developed recently. The first [23] consists of using a bounded

bidirectional search that extends labels both forwardly (from the

source node) and backwardly (from the sink node) before joining

them together to yield feasible source-to-sink paths. In our case,
this strategy cannot be applied because the backward extension
functions are not non-decreasing and a straightforward adapta-
tion of the dominance rule stated in Proposition 1 is not valid.

The second acceleration strategy [5,24], called decremental

search space, is iterative. It starts by solving the pricing subpro-
blem considering labels without the components Vwð�Þ, wAWk,
and a dominance criterion involving only (20) and (21). If no
negative reduced cost paths are generated, then the algorithm
stops without finding any variables to add to the RMP. Otherwise,
it checks whether there exist elementary paths among the
negative reduced cost paths found. If so, the algorithm stops
and the variables associated with these paths are added to the
RMP. Otherwise (all negative reduced cost paths contain cycles),
we select a node iAWk that is visited the most often in a path
with the least reduced cost and add the corresponding



G. Mattos Ribeiro et al. / Computers & Operations Research 39 (2012) 3305–3315 3309
component Við�Þ in the labels and in the dominance rule. A new
iteration then starts by solving the pricing subproblem again. For
our tests, we use decremental search space. However, a compo-
nent Vwð�Þ that is added for a subproblem in a column generation
iteration is never omitted afterwards for the other subproblems
or the subsequent column generation iterations [9].

Path relaxations: Due to the elementary constraints (see, for
example, [13]), the time-constrained pricing subproblems are NP-
hard. They can, therefore, be very difficult to solve in practice.
Relaxations allowing cycles in the paths have been proposed to ease
their solution at the expense of yielding a weaker lower bound at
each node of the search tree. Indeed, in this case, the sets of routes
Rk, kAK , enlarge. Furthermore, if a route r for rig k visits well i

several times, the coefficient ak
ir associated with the variable Yk

r in
model (11)–(14) is set equal to the number of times well i is visited
and the coefficient sk

r cumulates losses saved at each of these visits.
In our computational experiments, we consider two path relaxa-

tions. In the first relaxation, all cycles are allowed except the 2-cycles,
that is, a path cannot contain a subsequence i�j�i where i and j are
task nodes. In this case, no components Vwð�Þ are considered in the
labels and the dominance rule, increasing the number of labels
dominated. The dominance rule must, however, be modified to take
into account the 2-cycle elimination (see [15] for details).

Proposed by Baldacci et al. [4], the second path relaxation,
called the ng-path relaxation, associates a neighborhood Wk

i �Wk

with each task node iAWk. This neighborhood contains node i

and its N ng closest nodes, where N ng is a predefined value. A
feasible ng-path can contain a cycle starting and ending with task
node i if and only if this cycle includes another task node j such
that i=2Wk

j (that is, i is not in the neighborhood of j, thus returning
to i from j is a long detour).

The ng-paths can be handled in the forward labeling algorithm
described above. To do so, we replace the extension function (19) by:

VwðE
0
Þ :¼

VwðEÞþ1 if w¼ jadðkÞ,

maxfVwðEÞ,UwðE
0
Þg if wAWk

j \fjg,

0 otherwise

8><
>: 8wAWk, ð23Þ

where Wk
dðkÞ :¼ |. Thus, in each label E associated with a path

ending at a task node i, all the components Vw(E), wAWk
\Wk

i , are
equal to 0. At this node, the dominance rule (22) only needs to
compare N ng components Vwð�Þ, increasing the chances of identi-
fying dominated labels if N ng is relatively small. On the other
hand, if N ng is too small, the generated paths might contain many
cycles, yielding very weak lower bounds. When generating ng-
paths, we also apply a 2-cycle elimination procedure. For our
main computational experiments, we set N ng

¼ 10, but we also
tested N ng

¼ 5 and N ng
¼ 15 (see Section 4).

When N ng is not too small, the pricing subproblems remain
somewhat difficult to solve. However, in a column generation
algorithm, there is no need to solve the pricing subproblems
exactly at each column generation iteration. They can be solved
heuristically as long as negative reduced cost columns are found.
When this is not the case, an exact algorithm must be invoked to
prove optimality. We propose two heuristics (described below) for
generating columns rapidly: a heuristic labeling algorithm and a
multi-start tabu search algorithm. At each column generation
iteration, the multi-start tabu search heuristic tries to generate
negative reduced cost columns. If it fails, then the heuristic labeling
algorithm is invoked. If this algorithm also fails for all pricing
subproblems, then the exact labeling algorithm is executed.

Heuristic labeling algorithm: Consider the pricing subproblem
associated with rig kAK. The heuristic labeling algorithm consists
of applying the forward labeling algorithm on a reduced network
obtained by removing inter-task arcs from network Gk :¼ ðNk,Ak

Þ

that does not seem promising. The elimination procedure
depends on the current dual values ai, iAWk, and is applied at
every column generation iteration. Let Amin be a predefined
positive parameter value. For each task node iAWk, a minimum
of Amin outgoing arcs and Amin incoming arcs are kept (unless
there are fewer in Ak) besides the start and end arcs incident to i.
To select the inter-task arcs to remove, we first associate with
each inter-task arc (i,j) a value

nij :¼ ‘jð0:5ðtoðkÞ,iþtijþHÞ�HÞ�aj ¼ 0:5‘jðtoðkÞ,iþtij�HÞ�aj

that simulates the reduced cost of an arc as given in (16). This
estimation is based on the average loss saved at well j when
preceded by the service at well i, where toðkÞ,iþtij (resp. H) is the

earliest (resp. latest) completion time at j, and 0:5ðtoðkÞ,iþtijþHÞ is,

thus, the average completion time (assuming a uniform distribution

on the interval ½toðkÞ,iþtij,H�). Then, for every task node, its incom-
ing arcs and its outgoing arcs are ranked in increasing order of
their nij value. Denote by rout

ij (resp. rin
ij ) the rank of an inter-task

arc ði,jÞAAk as an outgoing (resp. incoming) arc of node i (resp.
node j). Arc (i,j) is removed from Gk if minfrout

ij ,rin
ij g4A

min.
Based on the results of preliminary tests, we chose to set

Amin
¼ 10 for our main computational experiments.

Multi-start tabu search algorithm: As empirically shown by
Desaulniers et al. [9], tabu search can be an efficient heuristic to
generate negative reduced cost columns when there exist many
such columns (that is, in all column generation iterations except
the last few ones). Tabu search, a well-known metaheuristic for
solving combinatorial optimization problems, considers an initial
solution that is gradually modified according to a sequence of
moves. For solving a pricing subproblem, the proposed tabu search
algorithm relies on two types of moves: insertion of a well into the
current solution path (according to a best insertion policy) and
removal of a well from it. At each iteration of the algorithm, all
non-tabu feasible moves are evaluated and the one yielding the
least reduced cost path is retained. This best move is then stored in
a tabu list of length Lmax: its reverse move is forbidden (tabu) for
the next Lmax iterations. However, we apply an aspiration criterion
that consists of also evaluating all tabu moves. If such a move
yields a new overall best solution, it is accepted regardless of the
tabu consideration. To simplify the computations (especially to
avoid handling the ng-path cycle restrictions), the solution space of

the tabu search column generator is restricted to the set of feasible

elementary paths (that is, only the labeling algorithms can generate

paths with cycles when they are allowed). For every insertion
evaluated, path feasibility with respect to its length is checked.
No check is required for removals.

As suggested by Desaulniers et al. [9], we combine the tabu
search algorithm with a multiple start procedure. The tabu search
algorithm is executed for a fixed number of iterations Imax

starting from different initial paths. The set of initial paths is
given by the paths associated with the basic variables in the
current RMP solution. All these path variables are good initial
candidates because they have a zero reduced cost. Note that each
initial path is associated with a pricing subproblem and deter-
mines the network Gk on which to apply the algorithm.

For our tests, the parameters Lmax and Imax were set to 8 and
30, respectively.
3.3. Cutting planes: subset-row inequalities

The subset row inequalities introduced by Jepsen et al. [17] for
solving the VRPTW are a set of valid inequalities directly defined
on the master problem variables, whose dual values cannot be
directly transferred to the arc costs of the pricing subproblems.
These inequalities are special cases of the Chvátal–Gomory rank-1
valid inequalities for the set packing polytope which is defined by



G. Mattos Ribeiro et al. / Computers & Operations Research 39 (2012) 3305–33153310
(12) and the continuous relaxation of (14). They are given by

X
kAK

X
rARk

1

q

X
iAQ

ak
ir

$ %
Yk

r r
9Q9

q

� �
, 8Q DW , 2rqr9Q9, ð24Þ

where Q is a subset of the wells (task nodes). As in Jepsen et al.
[17], we focus on the cuts defined for subsets Q of three task
nodes and q¼2. For elementary paths, this results in a right-hand
side member of 1 and binary coefficients equal to 1 if and only if a
route r for rig k visits at least two of the three wells in the subset
Q defining the cut. The cuts can then be rewritten as follows:

X
kAK

X
rARk

Q

Yk
r r1, 8Q DW such that 9Q9¼ 3, ð25Þ

where Rk
Q DRk is the subset of routes servicing at least two wells

in Q. For paths with cycles, the coefficients bð1=qÞ
P

iAQ ak
irc can be

larger than 1.
As shown by the computational results reported in Jepsen et al.

[17], the use of the subset row inequalities can significantly improve
the lower bound computed at the root node of the search tree.
However, adding these cuts increases the computational complexity
of the pricing subproblems. Indeed, in a label of the labeling
algorithm, each cut requires a specific new component for comput-
ing the number of task nodes in Q visited along the path. This
component is necessary to subtract adequately the dual variable of
the associated cut in the computation of the reduced cost of a route.
For more details about this procedure, see Desaulniers et al. [11].

When a large number of subset row cuts are added to the RMP,
the labeling algorithm can become quite slow. To avoid this
negative impact, we use the following restrictions that were
proposed by Desaulniers et al. [9]. First, a maximum of Cmax cuts
are added simultaneously, the most violated ones that respect the
next condition. Second, a well can be included in at mostWmax of
the subsets defining these cuts. Third, cuts are added only if the
most violated cut is violated by at least Vmin. Finally, cuts are
added only at the root node of the search tree.

For our tests, the parameters Cmax, Wmax, and Vmin were set to
20, 5, and 0.1, respectively.
3.4. Branching strategies

Branching decisions are taken on binary aggregated arc-flow
variables Xij defined as follows:

Xij :¼
X

kAK:ði,jÞAAk

Xk
ij ¼

X
kAK

X
rARk

bijrYk
r , 8ði,jÞA

[
kAK

Ak such that i,jAW , ð26Þ

where bijr is equal to the number of times that arc (i,j) is used in
route r.

Given a fractional solution, the aggregated arc-flow variable Xij

to branch on is selected as the 1 with the value closest to 0.5. The
branching decisions (Xij ¼ 0 and Xij ¼ 1) are treated by modifying
the networks of the subproblems. To impose Xij ¼ 0, we remove
the corresponding arc (i,j) from every network Gk, kAK , contain-
ing it. To impose Xij ¼ 1, we remove all arcs leaving node i or
entering node j, except arc (i,j), from every network Gk, kAK ,
containing at least one of these two nodes. In this case, because i

and j are both task nodes, one of the two set packing constraints
(12) associated with them can be removed from the master
problem. This type of branching decisions reduces the size of
the model and does not change its structure.

The branch-and-bound search tree is explored using a best-
first procedure.
4. Computational experiments

To the best of our knowledge, there are no publicly available
instances of the WRRP with a heterogeneous fleet of rigs and a
finite horizon. However, the instances of Neves [20] for a homo-
geneous fleet are available. These instances provide well loca-
tions, well production loss rates, well service times, travel times
between all pairs of locations, and rig initial positions. From these
instances and for the case with a heterogeneous fleet, we created
80 instances of practical sizes involving 100 or 200 wells, five or
10 rigs, and a horizon length of H¼200 or 300 time periods (10
instances for each possible parameter combination). The missing
data were randomly generated as follows. For each well wAW , a
uniform random integer zw is drawn in [1,5] to assign a service
level required at well w. For each rig kAK , a level of equipment gk

is randomly chosen following a uniform discrete distribution in
[3,5]. Given these service and equipment levels, we consider that
a rig k can service a well w if and only if zwrgk. The horizon
lengths H¼200 and H¼300 correspond to approximately 14 and
21 days, respectively. The instances with H¼300 are identical to
the instances with H¼200 except for the horizon length. All
tested instances can be found on the web page www.gerad.ca/
�guyd/wrrp.html.

All computational tests were run on a Linux PC with an Intel
Quad Core processor of 2.66 GHz, using a customized version of
the Gencol software (version 4.5) which is an implementation of a
branch-and-price algorithm commercialized by Kronos Inc. Gen-
col uses IBM Cplex Solver version 12.2 to solve the RMPs. A 1-h
time limit is imposed for solving the instances. Note that all
reported lower bounds and optimal values do not include the
constant term in objective function (11). Thus, they correspond to
the negative of the total loss saved by the rigs.

4.1. Evaluating algorithm components

In this section, we present computational results that permit
to evaluate the benefits of using certain strategies proposed for
the BPC algorithm. Three series of experiments were conducted to
test: different column generator configurations, different path
relaxations, and the proposed cutting planes. For all these
experiments, we use a subset of 10 instances that were chosen
because they are of large size (200 wells and five rigs) and their
optimal values are known. The horizon length is H¼200 for five of
these instances and H¼300 for the others. Each instance is
associated with an identifier: for example, 200w_5r_300h_4
indicates the fourth instance with 200 wells, five rigs, and H¼300.

Column generators: In the first series of tests, we compare four
configurations of column generators, all ensuring optimality:
exact labeling (ExL), heuristic labeling (HeuL) followed by ExL,
tabu search (Tabu) followed by ExL, and Tabu followed by HeuL
and by ExL. For this comparison, we solved only the linear
relaxation of the 10 test instances using the ng-path relaxation
with N ng

¼ 10. The results obtained are reported in Table 1. For
each instance and each configuration, this table indicates, for each
column generator used, the number of column generation itera-
tions that called it (including those where it did not succeed to
generate negative reduced cost columns) and the computational
time in seconds. Two rows provide averages computed over the
instances with H¼200 (top part) and over those with H¼300
(bottom part).

These results show that Tabu/HeuL/ExL is clearly the best
configuration. With it, the exact labeling algorithm is almost
never invoked except for proving optimality. Using only HeuL/
ExL or Tabu/ExL yields somewhat similar computational times
when H¼300 but faster ones for HeuL/ExL when H¼200. Indeed,
Tabu is less efficient than HeuL for finding negative reduced cost

www.gerad.ca/~guyd/wrrp.html
www.gerad.ca/~guyd/wrrp.html
www.gerad.ca/~guyd/wrrp.html
www.gerad.ca/~guyd/wrrp.html
www.gerad.ca/~guyd/wrrp.html


Table 2
Results for the 2-cycle-free path relaxation and with elementary paths.

Instance 2-cycle-free paths Elementary paths

Gap (%) Time (s) Gap (%) Time (s)

200w_5r_200h_5 3.23 1941.3 0.24 154.3

200w_5r_200h_6 2.92 43600 0.08 43600

200w_5r_200h_7 2.75 43600 0.33 43600

200w_5r_200h_8 0.50 40.9 0.00 48.2

200w_5r_200h_9 3.22 1279.0 0.00 294.8

Average 2.52 42092:2 0.13 41539:5

200w_5r_300h_1 3.77 43600 0.00 43600

200w_5r_300h_2 1.94 1265.3 0.07 43600

200w_5r_300h_3 4.04 43600 o0:01 43600

200w_5r_300h_4 1.79 43600 0.00 43600

200w_5r_300h_10 2.61 43600 0.67 43600

Average 2.83 43133:1 0.15 43600:0

Table 3
Results for three ng-path relaxations.

Instance N ng
¼ 5 N ng

¼ 10 N ng
¼ 15

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

200w_5r_200h_5 0.24 51.5 0.24 55.0 0.24 74.3

200w_5r_200h_6 0.51 287.4 0.18 137.7 0.09 206.7

200w_5r_200h_7 0.08 73.3 0.08 96.8 0.08 168.3

200w_5r_200h_8 0.00 27.1 0.00 20.7 0.00 24.7

200w_5r_200h_9 0.24 67.0 0.00 28.4 0.00 75.1

Average 0.21 101.3 0.10 67.7 0.08 109.8

200w_5r_300h_1 0.00 391.4 0.00 268.1 0.00 638.2

200w_5r_300h_2 0.07 304.1 0.07 262.1 0.07 336.4

200w_5r_300h_3 0.33 994.5 o0:01 686.7 o0:01 788.8

200w_5r_300h_4 0.00 164.6 0.00 243.4 0.00 199.3

200w_5r_300h_10 0.68 1689.4 0.67 1803.6 0.67 3444.8

Average 0.22 708.8 0.15 652.8 0.15 1081.5

Table 1
Linear relaxation results for different column generator configurations.

Instance ExL HeuL/ExL Tabu/ExL Tabu/HeuL/ExL

No. it Time (s) No. it Time (s) No. it Time (s) No. it Time (s)

200w_5r_200h_5 25 160.4 26/2 48.5 30/8 72.2 30/4/1 23.5

200w_5r_200h_6 31 284.7 41/4 113.9 51/11 117.0 43/9/1 47.3

200w_5r_200h_7 26 115.5 27/5 32.3 31/14 95.7 23/6/1 16.9

200w_5r_200h_8 33 175.5 37/5 51.9 37/6 47.0 35/6/1 20.7

200w_5r_200h_9 38 278.8 30/1 37.6 46/17 181.0 29/6/1 28.4

Average 30.6 203.0 32.2/3.4 56.8 39.0/11.2 102.6 32.0/6.2/1.0 27.4

200w_5r_300h_1 461 43600 71/14 707.2 64/13 834.5 58/15/5 268.1

200w_5r_300h_2 40 1300.8 48/5 271.0 74/15 720.3 58/11/1 117.3

200w_5r_300h_3 453 43600 91/16 1696.5 65/16 1422.9 49/9/1 261.1

200w_5r_300h_4 50 2130.2 61/9 638.1 70/15 804.7 64/12/2 243.1

200w_5r_300h_10 33 1098.5 54/9 410.8 64/13 569.3 78/16/2 131.2

Average 447:4 42345:9 65.0/10.6 744.7 67.4/14.4 870.3 61.4/12.6/2.2 204.2

G. Mattos Ribeiro et al. / Computers & Operations Research 39 (2012) 3305–3315 3311
columns when there are not many, yielding more expensive calls
to ExL. On the other hand, the computational effort of HeuL and
ExL increases rapidly with the length of the paths (that is, with H),
while Tabu is less impacted by the value of this parameter.
Finally, we observe that ExL alone takes much more computa-
tional time than the other configurations. In particular, the linear
relaxation of two instances could not be solved within the 1-h
time limit. All subsequent tests in this paper were realized using
the Tabu/HeuL/ExL configuration.
Path relaxations: The second series of experiments concern the
different path relaxations that can be used to ease the solution
process of the pricing subproblems at the expense of weaker lower
bounds. We compare the use of elementary paths with that of
2-cycle-free paths and ng-paths for three values of the neighbor-
hood sizes, namely, N ng

¼ 5;10,15. The results are presented in
Tables 2 and 3. In these tables, we report for each type of paths
and each instance the integrality gap (optimal value minus the lower

bound obtained at the root node before adding any subset-row



Table 5
Summary of the computational results.

Instance group No.

solved

No. wells

serviced

Gap

(%)

No.

cuts

No.

nodes

Time

(s)

100w_5r_200h 10 41.7 0.10 11.0 1.0 4.2

100w_10r_200h 10 71.6 0.14 25.8 2.2 16.7

100w_5r_300h 9 60.7 0.33 39.2 2.3 140.5

100w_10r_300h 9 92.4 0.22 82.8 1.4 409.8

200w_5r_200h 10 56.5 0.20 19.0 1.0 69.2

200w_10r_200h 9 99.0 0.27 60.0 1.4 534.9

200w_5r_300h 9 83.7 0.14 26.3 1.0 977.2

200w_10r_300h 0 – – – – –

G. Mattos Ribeiro et al. / Computers & Operations Research 39 (2012) 3305–33153312
inequalities) in percentage of the optimal value in absolute value, and
the total computational time (in seconds) to solve the instance
with the BPC algorithm. Average results are reported for the
instances with H¼200 and those with H¼300. Notice that, for
the case with elementary paths, we could compute the lower
bound within the 1-h time limit for only five of the 10 instances.
Nevertheless, we report the lower bounds for all instances for the
sake of completeness.

Table 2 allows to compare the use of the traditional 2-cycle-free
paths with that of the elementary paths. We observe from the Gap

column that the 2-cycle-free paths yield a (much) weaker lower
bound than the elementary paths for each instance. For four of the
10 instances, there is no integrality gap when using the elementary
paths. For the instances with H¼200, the stronger lower bounds
yield a faster computational time on average. However, when the
paths are longer (H¼300), the BPC algorithm struggles at generat-
ing elementary paths and does not succeed to solve any instance
within the 1-h time limit. With 2-cycle-free paths, the algorithm
performs slightly better by solving one instance.

The results obtained with the three ng-path relaxations are
given in Table 3. All instances can be solved within 1 h of
computational time with each of these path relaxations. There-
fore, they yield much better results than the cases with elemen-
tary paths or 2-cycle-free paths. Among these three relaxations,
the one with N ng

¼ 10 produces the best average computational
time for both groups of instances (with H¼200 and with H¼300).
We observe that the ng-paths with N ng

¼ 5;10,15 yield the same
lower bound than with elementary paths for six, eight, and nine
instances, respectively, showing that the ng-paths are, in practice,
elementary when N ng is large enough. On the other hand, setting
N ng to a too large value increases the average computational time
because the (small) gain in the lower bound is not sufficient to
compensate the increased complexity of solving the pricing
subproblems. For all subsequent tests, the ng-path relaxation
with N ng

¼ 10 is used.
Cutting planes: In the third series of experiments, we evaluate

the effectiveness of the subset-row inequalities. All 10 test
instances were solved using the proposed BPC algorithm with the
subset-row inequalities and without them. Table 4 reports the
results obtained. For each instance and each algorithm, it provides
the integrality gap in percentage (using the lower bound obtained after

adding cuts, if any), the total number of subset-row cuts added
(only for the case with cuts), the total number of nodes in the
search tree, and the total computational time (in seconds).
Averages are given for the instances with H¼200 and with H¼300.

From these results, we observe first that four instances were
solved at the root node without adding any cuts. For the
Table 4
Results with and without subset-row cuts.

Instance Without cuts

Gap (%) No. BB Time (s)

200w_5r_200h_5 0.24 11 297.0

200w_5r_200h_6 0.18 7 387.4

200w_5r_200h_7 0.08 7 139.1

200w_5r_200h_8 0.00 1 20.7

200w_5r_200h_9 0.00 1 28.4

Average 0.10 5.4 174.5

200w_5r_300h_1 0.00 1 268.1

200w_5r_300h_2 0.07 11 2039.3

200w_5r_300h_3 o0:01 5 2842.9

200w_5r_300h_4 0.00 1 243.4

200w_5r_300h_10 0.67 416 43600

Average 0.15 46:8 41798:7
remaining six instances, the subset-row inequalities completely
close the integrality gap and no branching is needed. Overall
using these cuts yields much smaller average computational
times. Consequently, the subset-row cuts were used to produce
the main results presented in the next section.

4.2. Main results

With the proposed BPC algorithm, we tried to solve the 80
benchmark instances. The detailed results of these experiments
can be found in Appendix A. Here, we report in Table 5 a summary
of these results. In fact, average results over the instances with
the same number of wells, same number of rigs, and same horizon
length are provided. The groups of 10 instances are identified
similarly as the instances: for example, the group 200w_5r_300h
includes the instances with 200 wells, five rigs, and H¼300. For
each group, Table 5 provides the number of instances solved to
optimality within the 1-h time limit, the average number of wells
serviced in the computed solution, the average integrality gap (%),
the average number of cuts generated, the average number of
branch-and-bound nodes explored, and the average computa-
tional time (in seconds). All averages are computed over the
instances solved to optimality.

The BPC algorithm is highly successful on the 100-well
instances (top part of Table 5), solving to optimality 38 of the
40 instances. For the larger 200-well instances (bottom part), 12
of the 40 instances could not be solved. In particular, all instances
with 200 wells, 10 rigs, and H¼300 were unsolvable. As expected,
increasing the number of wells, or the number of rigs, or the
horizon length yields harder-to-solve instances. For the instances
solved, we observe relatively small average integrality gaps that
can be almost completely closed by the subset-row inequalities,
the number of branch-and-bound nodes being very low. Finally,
With cuts

Gap (%) No. cuts No. BB Time (s)

0.00 20 1 55.0

0.00 30 1 137.7

0.00 35 1 96.8

0.00 0 1 20.7

0.00 0 1 28.4

0.00 17.0 1.0 67.7

0.00 0 1 268.1

0.00 20 1 262.1

0.00 20 1 686.7

0.00 0 1 243.4

0.00 100 1 1803.6

0.00 28.0 1.0 652.8



Table A1
Results for instances with 100 wells, five rigs and H¼200.

Instance Opt.

value

No. wells

served

LB Gap

(%)

No.

cuts

No.

nodes

Time

(s)

1 �32,275 41 �32,284.5 0.03 5 1 3.0

2 �29,068 41 �29,139.8 0.25 15 1 4.8

3 �28,466 45 �28,486.8 0.07 40 1 13.4

4 �27,929 41 �27,929.0 0.00 0 1 1.2

5 �26,398 38 �26,505.8 0.41 30 1 4.1

6 �26,661 42 �26,661.0 0.00 0 1 2.3

7 �26,128 38 �26,128.0 0.00 0 1 0.5

8 �32,912 46 �32,999.4 0.27 20 1 8.6

9 �26,,704 42 �26,704.0 0.00 0 1 1.0

10 �33,521 43 �33,521.0 0.00 0 1 2.6

Average 41.7 0.10 11.0 1.0 4.2

Table A2
Results for instances with 100 wells, 10 rigs and H¼200.

Instance Opt.

value

No. wells

served

LB Gap

(%)

No.

cuts

No.

nodes

Time

(s)

1 �52,034 74 �52,128.0 0.18 42 1 14.9

2 �46,189 69 �46,216.4 0.06 20 1 6.5

3 �47,003 74 �47,205.3 0.43 65 11 85.9

4 �46,513 72 �46,528.0 0.03 14 1 6.6

5 �47,734 71 �47,734.0 0.00 0 1 2.7

6 �41,834 69 �41,999.6 0.39 40 1 10.2

7 �44,703 66 �44,703.0 0.00 0 1 3.5

8 �51,208 74 �51,296.0 0.17 20 1 5.8

9 �45,796 72 �45,876.3 0.18 57 3 26.2

10 �51,279 75 �51,279.0 0.00 0 1 4.8

Average 71.6 0.14 25.8 2.2 16.7

Table A3
Results for instances with 100 wells, five rigs and H¼300.

Instance Opt. value No. wells served LB

1 �71,487 60 �71,609.0

2 �63,737 57 �63,779.1

3 – – �64,624.7

4 �60,144 59 �60,633.1

5 �60,598 59 �61,059.3

6 �60,081 64 �60,194.9

7 �59,372 54 �59,554.2

8 �74,611 68 �74,688.0

9 �61,860 63 �61,874.0

10 �72,805 62 �73,214.1

Average 60.7

Table A4
Results for instances with 100 wells, 10 rigs and H¼300.

Instance Opt. value No. wells served LB

1 �111,649 92 �111,672.1

2 �97,802 90 �98,051.9

3 �100,913 98 �101,390.3

4 �96,886 92 �97,047.8

5 �102,631 92 �102,668.2

6 – – �90,623.8

7 �96,842 82 �97,244.5

8 �108,731 96 �109,078.7

9 �98,843 94 �99,128.8

10 �109,304 96 �109,309.3

Average 92.4

G. Mattos Ribeiro et al. / Computers & Operations Research 39 (2012) 3305–3315 3313
we remark that the number of wells serviced increases with the
number of rigs and the horizon length, but also with the number
of wells. Indeed, more wells to service in the same region reduces
the average travel time between the wells serviced consecutively
on the same rig route, increasing productivity.
5. Conclusions

In this paper, we propose the first exact algorithm for the
WRPP, namely a BPC algorithm that exploits some of the most
recent techniques introduced for solving the VRPTW. In particu-
lar, the column generation process relies on a tabu search
heuristic [9] that is able to provide negative reduced cost columns
efficiently in most iterations, on ng-paths [3], and on exact and
heuristic labeling algorithms. We also use the subset-row
Gap (%) No. cuts No. nodes Time (s)

0.17 20 1 38.1

0.07 20 1 32.9

– Z165 Z1 43600

0.81 98 3 372.7

0.76 65 7 258.0

0.19 25 5 269.5

0.31 40 1 28.1

0.10 30 1 140.0

0.02 15 1 21.4

0.56 40 1 103.7

0.33 39.2 2.3 140.5

Gap (%) No. cuts No. nodes Time (s)

0.02 20 1 56.9

0.26 120 3 363.8

0.47 240 3 2356.3

0.17 65 1 205.0

0.04 20 1 48.4

– Z160 Z3 43600

0.41 60 1 121.4

0.32 80 1 134.3

0.29 120 1 359.5

0.01 20 1 42.6

0.22 82.8 1.4 409.8

Table A5
Results for instances with 200 wells, five rigs and H¼200.

Instance Opt.

value

No. wells

served

LB Gap

(%)

No.

cuts

No.

nodes

Time

(s)

1 �40,257 54 �40,447.3 0.47 60 1 194.8

2 �35,084 55 �35,084.0 0.00 0 1 12.5

3 �40,195 59 �40,272.5 0.19 25 1 85.8

4 �40,523 54 �40,757.0 0.57 20 1 45.4

5 �40,194 57 �40,291.3 0.24 20 1 55.0

6 �42,335 62 �42,411.0 0.18 30 1 137.7

7 �33,070 52 �33,180.3 0.33 35 1 96.8

8 �39,517 60 �39,517.0 0.00 0 1 20.7

9 �45,683 58 �45,683.0 0.00 0 1 28.4

10 �38,036 54 �38,036.0 0.00 0 1 15.2

Average 56.5 0.20 19.0 1.0 69.2



Table A6
Results for instances with 200 wells, 10 rigs and H¼200.

Instance Opt. value No. wells served LB Gap (%) No. cuts No. nodes Time (s)

1 �67,670 98 �67,670.0 0.00 0 1 76.4

2 �61,377 98 �61,591.5 0.35 45 3 290.9

3 �66,032 101 �66,353.0 0.35 80 1 380.7

4 �67,445 97 �67,813.2 0.54 150 3 2734.5

5 �72,658 103 �72,773.3 0.16 40 1 288.8

6 – – �67,601.6 – 255 Z6 43600

7 �60,036 93 �60,087.0 0.09 5 1 51.0

8 �60,350 99 �60,512.2 0.27 120 1 401.8

9 �79,301 107 �79,669.5 0.46 40 1 412.4

10 �61,968 95 �62,089.8 0.20 60 1 177.5

Average 99.0 0.27 60.0 1.4 534.9

Table A7
Results for instances with 200 wells, five rigs and H¼300.

Instance Opt. value No. wells served LB Gap (%) No. cuts No. nodes Time (s)

1 �90,317 86 �90,317.0 0.00 0 1 268.1

2 �83,684 82 �83,739.5 0.07 20 1 262.1

3 �91,981 87 �91,995.0 0.02 20 1 686.7

4 �91,917 84 �91,917.0 0.00 0 1 243.4

5 �91,957 82 �92,051.8 0.32 60 1 2456.1

6 – – �96,756.7 – Z60 Z1 43600

7 �76,049 78 �76,182.5 0.18 37 1 1897.0

8 �89,421 86 �89,421.0 0.00 0 1 632.7

9 �99,962 87 �99,962.0 0.00 0 1 545.3

10 �86,564 81 �87,145.2 0.67 100 1 1803.6

Average 83.7 0.14 26.3 1.0 977.2

Table A8
Results for instances with 200 wells, 10 rigs and H¼300.

Instance Opt. value No. wells served LB Gap (%) No. cuts No. nodes Time (s)

1 – – �149,075.6 – Z80 Z1 43600

2 – – �139,449.6 – Z80 Z1 43600

3 – – �151,256.4 – Z40 Z1 43600

4 – – �152,691.7 – Z40 Z1 43600

5 – – �159,987.7 – Z40 Z1 43600

6 – – �154,020.5 – Z60 Z1 43600

7 – – �134,694.5 – Z100 Z1 43600

8 – – �141,087.1 – Z60 Z1 43600

9 – – �170,977.2 – Z40 Z1 43600

10 – – �144,,644.5 – Z80 Z1 43600

Average – – – – –

G. Mattos Ribeiro et al. / Computers & Operations Research 39 (2012) 3305–33153314
inequalities [17] at the root node to greatly improve the linear
relaxation lower bound. Our computational experiments showed
that the proposed BPC algorithm can solve practical-sized
instances of the WRRP in reasonable computational times.
Acknowledgments

Glaydston Mattos Ribeiro acknowledges Espı́rito Santo
Research Foundation (Process 53630742/11) and National Council
for Scientific and Technological Development (Process 307002/
2011-0) for their financial support. Guy Desaulniers and Jacques
Desrosiers acknowledges the National Science and Engineering
Research Council of Canada for its financial support.

Appendix A. Detailed results

Tables A1–A8 report the detailed results obtained for each
individual instance that were used to compute the average results
of Table 5. In these tables, the columns provide in order: the
instance number, the optimal value (that is, the negative of the
total loss saved), the number of wells served in the computed
optimal solution, the lower bound computed at the root node, the
integrality gap in percentage, the total number of subset-row cuts
generated, the number of nodes explored in the search tree, and
the total computational time in seconds. A dash (–) indicates that
the instance is not solved to proven optimality within the 1-h
time limit. In each table, the last row provides averages over the
instances solved to optimality.
References

[1] Aloise DJ, Aloise D, Rocha CTM, Ribeiro CC, Ribeiro Filho JC, Moura LSS. Scheduling
workover rigs for onshore oil production. Discrete Applied Mathematics
2006;154(5):695–702, http://dx.doi.org/10.1016/j.dam.2004.09.021.

[2] Archetti C, Feillet D, Hertz A, Speranza MG. The capacitated team orienteering
and profitable tour problems. Journal of the Operational Research Society
2009;60(6):831–842, http://dx.doi.org/10.1057/palgrave.jors.2602603.

dx.doi.org/10.1016/j.dam.2004.09.021
dx.doi.org/10.1016/j.dam.2004.09.021
dx.doi.org/10.1016/j.dam.2004.09.021
dx.doi.org/10.1057/palgrave.jors.2602603
dx.doi.org/10.1057/palgrave.jors.2602603
dx.doi.org/10.1057/palgrave.jors.2602603


G. Mattos Ribeiro et al. / Computers & Operations Research 39 (2012) 3305–3315 3315
[3] Baldacci R, Bartolini E, Mingozzi A, Roberti R. An exact solution framework for
a broad class of vehicle routing problems. Computational Management
Science 2010;7(3):229–268, http://dx.doi.org/10.1007/s10287-009-0118-3.

[4] Baldacci R, Mingozzi A, Roberti R. New route relaxation and pricing strategies
for the vehicle routing problem. Operations Research 2011;59(5):1263–1283,
http://dx.doi.org/10.1287/opre.1110.0975.

[5] Boland N, Dethridge J, Dumitrescu I. Accelerated label setting algorithms for
the elementary resource constrained shortest path problem. Operations
Research Letters 2006;34:58–68, http://dx.doi.org/10.1016/j.orl.2004.11.011.

[6] Dantzig GB, Wolfe P. Decomposition principle for linear programs. Operations
Research 1960;8(1):101–111, http://dx.doi.org/10.1287/opre.8.1.101.

[7] Desaulniers G, Desrosiers J, Ioachim I, Solomon MM, Soumis F, Villeneuve D. A
unified framework for deterministic time constrained vehicle routing and
crew scheduling problems. In: Crainic TG, Laporte G, editors. Fleet manage-
ment and logistics. Kluwer; 1998. p. 57–93.

[8] Desaulniers G, Lavigne J, Soumis F. Multi-depot vehicle scheduling problems with
time windows and waiting costs. European Journal of Operational Research
1998;111:479–494, http://dx.doi.org/10.1016/S0377-2217(97)00363-9.

[9] Desaulniers G, Lessard F, Hadjar A. Tabu search, partial elementarity, and
generalized k-path inequalities for the vehicle routing problem with time
windows. Transportation Science 2008;42(3):387–404, http://dx.doi.org/
10.1287/trsc.1070.0223.

[10] Desaulniers G, Desrosiers J, Spoorendonk S. The vehicle routing problem with
time windows: state-of-the-art exact solution methods. In: Cochran JJ, Cox Jr.
LA, Keskinocak P, Kharoufeh JP, Smith JC, editors. Wiley encyclopedia of
operations research and management science, vol. 8. New York, NY: Wiley;
2010. p. 5742–5749, http://dx.doi.org/10.1002/9780470400531.eorms1034.

[11] Desaulniers G, Desrosiers J, Spoorendonk S. Cutting planes for branch-and-
price algorithms. Networks 2011;58(4):301–310, http://dx.doi.org/10.1002/
net.20471.

[12] Desrosiers J, Lübbecke ME. Branch-price-and-cut algorithms. In: Cochran JJ,
Cox Jr. LA, Keskinocak P, Kharoufeh JP, Smith JC, editors. Wiley encyclopedia
of operations research and management science, vol. 8. New York, NY:
Wiley; 2010http://dx.doi.org/10.1002/9780470400531.eorms0118.

[13] Dror M. Note on the complexity of the shortest path models for column
generation in VRPTW. Operations Research 1994;42:977–979, http://dx.doi.o
rg/10.1287/opre.42.5.977.
[14] Feillet D, Dejax P, Gendreau M, Gueguen C. An exact algorithm for the
elementary shortest path problem with resource constraints: application to
some vehicle routing problems. Networks 2004;44(3):216–229, http://dx.do

i.org/10.1002/net.v44:3.
[15] Irnich S, Desaulniers G. Shortest path problems with resource constraints. In:

Desaulniers G, Desrosiers J, Solomon MM, editors. Column generation.
Springer; 2005. p. 33–66, http://dx.doi.org/10.1007/0-387-25486-2_2.

[16] Jans R. Classification of Dantzig–Wolfe reformulations for binary mixed
integer programming problems. European Journal of Operational Research
2010;204(2):251–254, http://dx.doi.org/10.1016/j.ejor.2009.11.014.

[17] Jepsen M, Petersen B, Spoorendonk S, Pisinger D. Subset-row inequalities
applied to the vehicle-routing problem with time windows. Operations

Research 2008;56(2):497–511, http://dx.doi.org/10.1287/opre.1070.0449.
[18] Letchford AN, Lysgaard J, Eglese RW. A branch-and-cut algorithm for the

capacitated open vehicle routing problem. Journal of the Operational Research
Society 2007;58(12):1642–1651, http://dx.doi.org/10.1057/palgrave.jors.2602345.

[19] Lübbecke ME, Desrosiers J. Selected topics in column generation. Operations
Research 2005;53(6):1007–1023, http://dx.doi.org/10.1287/opre.1050.0234.

[20] Neves TA. Heuristics with adaptive memory applied to workover rig routing

and scheduling problem. Master’s thesis. Fluminense Federal University,
Niterói, Brazil; 2007.

[21] Pacheco AVF, Ribeiro GM, Mauri GR. A GRASP with path-relinking for the
workover rig scheduling problem. International Journal of Natural Comput-

ing Research 2010;1(2):1–14, http://dx.doi.org/10.4018/jncr.2010040101.
[22] Ribeiro GM, Laporte G, Mauri GR. A comparison of three metaheuristics for

the workover rig routing problem. European Journal of Operational Research

2011 doi:10.1016/j.ejor.2012.01.031.
[23] Righini G, Salani M. Symmetry helps: bounded bi-directional dynamic

programming for the elementary shortest path problem with resource
constraints. Discrete Optimization 2006;3(3):255–273, http://dx.doi.org/

10.1016/j.disopt.2006.05.007.
[24] Righini G, Salani M. New dynamic programming algorithms for the resource

constrained elementary shortest path problem. Networks 2008;51(3):155–209, ht
tp://dx.doi.org/10.1002/net.20212.

dx.doi.org/10.1007/s10287-009-0118-3
dx.doi.org/10.1007/s10287-009-0118-3
dx.doi.org/10.1007/s10287-009-0118-3
dx.doi.org/10.1287/opre.1110.0975
dx.doi.org/10.1287/opre.1110.0975
dx.doi.org/10.1287/opre.1110.0975
dx.doi.org/10.1016/j.orl.2004.11.011
dx.doi.org/10.1016/j.orl.2004.11.011
dx.doi.org/10.1016/j.orl.2004.11.011
dx.doi.org/10.1287/opre.8.1.101
dx.doi.org/10.1287/opre.8.1.101
dx.doi.org/10.1287/opre.8.1.101
dx.doi.org/10.1016/S0377-2217(97)00363-9
dx.doi.org/10.1016/S0377-2217(97)00363-9
dx.doi.org/10.1016/S0377-2217(97)00363-9
dx.doi.org/10.1287/trsc.1070.0223
dx.doi.org/10.1287/trsc.1070.0223
dx.doi.org/10.1287/trsc.1070.0223
dx.doi.org/10.1287/trsc.1070.0223
dx.doi.org/10.1002/9780470400531.eorms1034
dx.doi.org/10.1002/9780470400531.eorms1034
dx.doi.org/10.1002/9780470400531.eorms1034
dx.doi.org/10.1002/net.20471
dx.doi.org/10.1002/net.20471
dx.doi.org/10.1002/net.20471
dx.doi.org/10.1002/net.20471
dx.doi.org/10.1002/9780470400531.eorms0118
dx.doi.org/10.1002/9780470400531.eorms0118
dx.doi.org/10.1002/9780470400531.eorms0118
dx.doi.org/10.1287/opre.42.5.977
dx.doi.org/10.1287/opre.42.5.977
dx.doi.org/10.1287/opre.42.5.977
dx.doi.org/10.1287/opre.42.5.977
dx.doi.org/10.1002/net.v44:3
dx.doi.org/10.1002/net.v44:3
dx.doi.org/10.1002/net.v44:3
dx.doi.org/10.1002/net.v44:3
dx.doi.org/10.1007/0-387-25486-2_2
dx.doi.org/10.1007/0-387-25486-2_2
dx.doi.org/10.1007/0-387-25486-2_2
dx.doi.org/10.1016/j.ejor.2009.11.014
dx.doi.org/10.1016/j.ejor.2009.11.014
dx.doi.org/10.1016/j.ejor.2009.11.014
dx.doi.org/10.1287/opre.1070.0449
dx.doi.org/10.1287/opre.1070.0449
dx.doi.org/10.1287/opre.1070.0449
dx.doi.org/10.1057/palgrave.jors.2602345
dx.doi.org/10.1057/palgrave.jors.2602345
dx.doi.org/10.1057/palgrave.jors.2602345
dx.doi.org/10.1287/opre.1050.0234
dx.doi.org/10.1287/opre.1050.0234
dx.doi.org/10.1287/opre.1050.0234
dx.doi.org/10.4018/jncr.2010040101
dx.doi.org/10.4018/jncr.2010040101
dx.doi.org/10.4018/jncr.2010040101
doi:10.1016/j.ejor.2012.01.031
dx.doi.org/10.1016/j.disopt.2006.05.007
dx.doi.org/10.1016/j.disopt.2006.05.007
dx.doi.org/10.1016/j.disopt.2006.05.007
dx.doi.org/10.1016/j.disopt.2006.05.007
dx.doi.org/10.1002/net.20212
dx.doi.org/10.1002/net.20212
dx.doi.org/10.1002/net.20212
dx.doi.org/10.1002/net.20212

	A branch-price-and-cut algorithm for the workover rig routing problem
	Introduction
	A time-constrained arc-flow model
	Networks
	Mathematical formulation

	Branch-price-and-cut
	A set packing model
	Column generation
	Cutting planes: subset-row inequalities
	Branching strategies

	Computational experiments
	Evaluating algorithm components
	Main results

	Conclusions
	Acknowledgments
	Detailed results
	References




