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b Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ap. Postal 61-3 (Xangari), CP 58089,
Morelia, Michoacán, Mexico

Received 16 April 2005; revised 16 August 2006

Available online 5 December 2006

Communicated by Carl Pomerance

Abstract

Let m(n) be the number of ordered factorizations of n � 1 in factors larger than 1. We prove that for
every ε > 0

m(n) <
nρ

exp((logn)1/ρ/(log logn)1+ε)

holds for all integers n > n0, while, for a suitable constant c > 0,

m(n) >
nρ

exp(c(logn/ log logn)1/ρ)

holds for infinitely many positive integers n, where ρ = 1.72864 . . . is the positive real solution to ζ(ρ) = 2.
We investigate also arithmetic properties of m(n) and the number of distinct values of m(n).
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1. Introduction

Let m(n) be the number of ordered factorizations of a positive integer n in factors bigger
than 1. For example, m(12) = 8 since we have the factorizations 12, 2 · 6, 6 · 2, 3 · 4, 4 · 3, 2 · 2 · 3,
2 ·3 ·2, and 3 ·2 ·2. By the definition, m(1) = 0 but we will see that in some situations it is useful
to set m(1) = 1 or m(1) = 1/2. Kalmár [13] found the average order of m(n): for x → ∞,

M(x) =
∑
n�x

m(n) = φxρ
(
1 + o(1)

)
, (1)

where ρ = 1.72864 . . . is the positive real solution to ζ(ρ) = 2 and φ = 0.31817 . . . is given by
φ = −1/ρζ ′(ρ). (As usual, ζ(s) = ∑

n�1 n−s .) Further detailed and strong results on the average
order of m(n) were obtained by Hwang [9].

In contrast, good bounds on the maximal order of m(n) were lacking. Erdős claimed in the
end of his article [4] that there exist positive constants 0 < c2 < c1 < 1 such that

m(n) <
nρ

exp((logn)c2)

holds for all n > n0, while

m(n) >
nρ

exp((logn)c1)

holds for infinitely many n, but he gave no details. To our knowledge, the best proved bounds on
the maximal order state that m(n) < nρ for every n � 1 (Chor, Lemke and Mador [1], a simple
proof by induction was recently given by Coppersmith and Lewenstein [3]), and that for any
ε > 0 one has m(n) > nρ−ε for infinitely many n (Hille [8], [3] gives an explicit construction).
(In Lemma 2.4, we strengthen the argument of [1] and show that m(n) � nρ/2 for every n � 1.)

Here, we come close to determining the maximal order of m(n). We prove that it is, roughly,
nρ/ exp((logn)1/ρ). More precisely, we prove that for every ε > 0,

m(n) <
nρ

exp((logn)1/ρ/(log logn)1+ε)

holds for all n > n0 (Theorem 3.1), while

m(n) >
nρ

exp(c(logn)1/ρ/(log logn)1/ρ)

holds with a certain constant c > 0 for infinitely many positive integers n (Theorem 4.1).
The paper is organized as follows. In Section 2, we give auxiliary results, of which Lemma 2.3

on the speed of convergence ρk → ρ (ρk is a “finite” counterpart of ρ for m(n) restricted
to smooth numbers n with no prime factor exceeding pk , the kth prime number), and Lem-
mas 2.4–2.6 giving explicit inequalities for m(n) and mk(n) (mk(n) = m(n) if n has no prime
factor > pk and mk(n) = 0 else) may be of independent interest. Section 3 is devoted to the proof
of the upper bound. The proof is elementary (uses real analysis only) and is obtained by combin-
ing the combinatorial bounds on m(n) in Lemmas 2.4 and 2.5, standard bounds from the theory
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of prime numbers, and the convergence bound in Lemma 2.3. Section 4 is devoted to the proof of
the lower bound. In the first version of this article, still available at [15, version 1], we proved by
an elementary approach similar to that in Section 3, with the additional ingredient being Kalmár’s
asymptotic relation (1), a weaker lower bound that has (logn)1/ρ in the denominator replaced
with the bigger power (logn)ρ/(ρ2−1)+o(1). Here, we prove in Section 4 a lower bound with the
matching exponent 1/ρ of the logn by a method suggested to us by an anonymous referee. The
method works in the complex domain and combines the uniform version of (1) for mk(n) with er-
ror estimates independent on k, bounds on smooth numbers, and again Lemma 2.3. In Section 5,
we give further references and comments on the history of m(n) and some related problems. We
also investigate arithmetical properties of m(n).

2. Preliminaries and auxiliary results

Let us begin by recalling some notation. For a positive integer n we write ω(n) and Ω(n) for
the number of distinct prime factors of n and the total number of prime factors of n (including
multiplicities), respectively. We use the letters p and q with or without subscripts to denote prime
numbers. We put P(n) for the largest prime factor of n. We write log for the natural logarithm.
In the complex domain (mainly in Section 4), we use s to denote a generic variable and write σ

and τ for its real and imaginary part, respectively, so s = σ + iτ , where i = √−1. We use the
Vinogradov symbols � and � and the Landau symbols O and o with their usual meanings.

The proof of the following estimate is standard and we omit it.

Lemma 2.1. If δ > δ0 > 1, then the estimate

∑
p>t

1

pδ
= (δ − 1)−1

tδ−1 log t
+ O

(
1

tδ−1(log t)2

)
(2)

holds uniformly for t > 2.

Let pk be the kth prime. We shall use the well-known asymptotic relations

∑
p�x

logp = x + O(x/ logx)

(equivalent to the Prime Number Theorem), and

pk = k logk + k log logk + O(k)

(the full asymptotic expansion pk = k(log k + log logk − 1 + · · ·) was found by Cipolla [2]). Let
Nk be the set of positive integers (including 1) composed only of the primes p1 = 2,p2, . . . , pk ,
and mk(n) be the number of ordered factorizations of n in factors lying in Nk \ {1}. We allow
k = ∞, in which case pk = ∞, N∞ = N is the set of all positive integers, and m∞(n) = m(n).
Note that, for k ∈ N, mk(n) > 0 iff n ∈ Nk . Further, if mk(n) > 0 then mk(n) = m(n), and if
n � pk then mk(n) = m(n). Let, for complex s with σ > 1 and k ∈ N ∪ {∞},

ζk(s) =
∏ (

1 − 1

ps

)−1

=
∑ 1

ns
,

p�pk n∈Nk
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and ρk be the positive real solution to ζk(ρk) = 2. For k = ∞, we get the Euler–Riemann zeta
function ζ(s) = ζ∞(s) and the number ρ = ρ∞. Note that for k ∈ N the series for ζk(s) converges
absolutely even for σ > 0. For every s with σ > 1, we have the convergence ζk(s) → ζ(s) as
k → ∞. For k ∈ N ∪ {∞}, one has the identity (setting mk(1) = 1 for every k)

∑
n�1

mk(n)

ns
=

∑
l�0

(
ζk(s) − 1

)l = 1

2 − ζk(s)
,

which implies that mk(n) = o(nρk+ε) for every fixed ε > 0. Our approach to estimating m(n) is
based on approximating the “infinite” quantities m(n), ρ, and ζ(s), with their “finite” counter-
parts mk(n), ρk , and ζk(s) for k ∈ N but k → ∞. We quantify the degrees of approximation in
the following two lemmas. The first lemma is obtained by considering the infinite series defining
ζk(s) and ζ(s) and its easy proof is omitted.

Lemma 2.2. We have

ρ1 = 1 < ρ2 = 1.43527 . . . < ρ3 = 1.56603 . . . < · · · < ρ = 1.72864 . . .

and ρk → ρ as k → ∞. The convergence ζk(s) → ζ(s) as k → ∞ is uniform on every complex
domain σ > σ0 > 1 and the same is true for the convergence ζ ′

k(s) → ζ ′(s) and for all higher
derivatives. Also, for every k ∈ N ∪ {∞}, we have ζ ′

k(ρk) < 0.

We shall use the above lemma to bound various expressions containing ρk , ζk(ρk), ζk(s),
1/ζ ′

k(ρk), etc., by constants independent on k.

Lemma 2.3. The estimate

ρ − ρk = 2

(ρ − 1)|ζ ′(ρ)| · 1

kρ−1(logk)ρ

(
1 + O

(
log logk

logk

))

holds for all k � 2.

Proof. We will assume that k � 2. The equation ζk(ρk)
−1 = ζ(ρ)−1 = 1/2 implies that

∏
2�p�pk

(
1 − 1

pρk

)
=

∏
p�2

(
1 − 1

pρ

)
.

Taking logarithms and regrouping, we get

∑
2�p�pk

(
log

(
1 − 1

pρ

)
− log

(
1 − 1

pρk

))
= −

∑
p>pk

log

(
1 − 1

pρ

)
.

The left side satisfies, by Lagrange’s Mean-Value Theorem (the derivative of the function x �→
log(1 − 1/px) is (logp)/(px − 1)),
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∑
2�p�pk

log

(
1 − 1

pρ

)
− log

(
1 − 1

pρk

)
= (ρ − ρk)

∑
2�p�pk

logp

pσp − 1

> (ρ − ρk)(log 2)/3 (3)

for some numbers σp ∈ (ρk, ρ) ⊂ (1.4,1.8). The right side is

−
∑
p>pk

log

(
1 − 1

pρ

)
=

∑
p>pk

1

pρ
+ O

( ∑
p>pk

1

p2ρ

)

= (ρ − 1)−1

p
ρ−1
k log(pk)

(
1 + O

(
1

logpk

))

= (ρ − 1)−1

kρ−1(log k)ρ

(
1 + O

(
log logk

logk

))
, (4)

where we used Lemma 2.1 and the fact that pk = k(logk + O(log logk)). We get immediately
that

ρ − ρk � 1

kρ−1(log k)ρ
. (5)

To do better, we return to (3) and write

logp

pσp − 1
= logp

pρ − 1

(
1 + pσp

pσp − 1

(
pρ−σp − 1

))
.

We have 1 � pσp/(pσp − 1) � 2 and, using (5),

pρ−σp − 1 � exp
(
(ρ − ρk) logpk

) − 1 � (ρ − ρk) logpk � 1

kρ−1(log k)ρ−1
.

Hence, the right side of (3) equals

(ρ − ρk)
∑

2�p�pk

logp

pσp − 1
= (ρ − ρk)

(
1 + O

(
k1−ρ(log k)1−ρ

)) ∑
2�p�pk

logp

pρ − 1

= (ρ − ρk)
(
1 + O

(
k−1/2)) ∑

2�p�pk

logp

pρ − 1
.

Equating the right sides of (3) and (4), we get the relation

(ρ − ρk)
∑

2�p�pk

logp

pρ − 1
= (ρ − 1)−1

kρ−1(log k)ρ

(
1 + O

(
log logk

logk

))
.

All is left to notice is that
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|ζ ′(ρ)|
ζ(ρ)

=
∑
p�2

logp

pρ − 1
=

∑
p�pk

logp

pρ − 1
+

∑
p>pk

logp

pρ − 1

=
∑

p�pk

logp

pρ − 1
+ O

(
k−1/2),

where the last estimate follows again from Lemma 2.1 via the fact that logp � p1/10:

∑
p>pk

logp

pρ − 1
�

∑
p>pk

1

pρ−0.1
� 1

p
ρ−1.1
k logpk

< k−1/2.

The claimed estimate now follows. �
In the next three lemmas, we prove combinatorial inequalities involving mk(n) and m(n). In

the first lemma, we slightly improve the result from [1, Theorem 5] that mk(n) < nρk for every
n � 1. The second lemma is crucial for obtaining bounds of the type m(n) = o(nρ). The third
lemma gives some lower estimates on m(n).

Lemma 2.4. For every k ∈ N ∪ {∞} and n � 1 (with mk(1) = 0),

mk(n) � 1

2
nρk .

Proof. For every r, s � 1 we have (now setting mk(1) = 0),

mk(rs) � 2mk(r)mk(s). (6)

To show this inequality, we assume that r, s � 2 (for r = 1 or s = 1 it holds trivially) and consider
the set X of all pairs (u, v) where u (v) is an ordered factorization of r (s) in factors lying in
Nk \ {1}, and the set Y of the same factorizations of rs. If u is r = d1 · d2 · . . . · di and v is
s = e1 · e2 · . . . · ej , we define the factorizations of rs

F ((u, v)) = d1 · d2 · . . . · di · e1 · e2 · . . . · ej ,

G((u, v)) = d1 · d2 · . . . · di−1 · (die1) · e2 · . . . · ej .

The inequality (6) follows from the fact that the mappings F and G are injections from X to Y

which moreover have disjoint images. We leave a simple verification of this fact to the reader.
Suppose now that mk(n0) > n

ρk

0 /2 for some n0 � 2. Then, for some small δ > 0 we have that

mk(n0) >
(1 + δ)

2
n

ρk

0 .

By repeated applications of inequality (6), we have that for each positive integer i

mk

(
n2i

0

)
� 2

(
mk

(
n2i−1

0

))2 � 21+2mk

(
n2i−2

0

)4 � · · · � 21+2+···+2i−1
mk(n0)

2i

>
(1 + δ)2i

n
2iρk

0 .

2
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Let i be so large such that (1 + δ)2i
> 2. Put n1 = n2i

0 . Then the above inequality implies
that mk(n1) > n

ρk+ε
1 for some small ε > 0. Then, again by repeated applications of (6), we

have mk(n
2j

1 ) � (n
2j

1 )ρk+ε for every j = 1,2, . . . , which is in contradiction with mk(n) =
o(nρk+ε). �
Lemma 2.5. Suppose that q1, . . . , qk are primes, not necessarily distinct, such that the product
q1q2 · · ·qk divides n. Then, with m(1) = 1,

m(n) <
(
2Ω(n)

)k · m(n/q1q2 · · ·qk). (7)

Proof. It suffices to prove only the case k = 1; i.e., the inequality

m(n) < 2Ω(n) · m(n/p), (8)

where p is a prime dividing n, because the general case follows easily by iteration. Let X be
the set of all pairs (u, i) where u is an ordered factorization of n/p (in parts bigger than 1), and
i is an integer satisfying 1 � i � 2r + 1, where r is the number of parts in u. Let Y be the set
of all ordered factorizations of n in parts bigger than 1. We shall define a surjection F from X

onto Y . This will prove (8) because r � Ω(n/p) = Ω(n) − 1, and therefore for every u we have
2r + 1 < 2Ω(n) pairs (u, i), and so

m(n) = |Y | � |X| < 2Ω(n) · m(n/p).

For (u, i) ∈ X, where u is n/p = d1 · d2 · . . . · dr , we define j = i − r and set F((u, i)) to be the
factorization

n = d1 · . . . · di−1 · (pdi) · di+1 · . . . · dr,

if 1 � i � r and

n = d1 · . . . · dj−1 · p · dj · . . . · dr ,

if r + 1 � i � 2r + 1 (for j = 1, p is the first part, and for j = r + 1 it is the last one). It is clear
that F is a surjection. �
Lemma 2.6. If n1, n2, . . . , nk are positive integers such that for no i = j we have ni | nj , then

m(n1n2 · · ·nk) � k! · m(n1)m(n2) · · ·m(nk).

This implies that for every n � 1 we have

m(n) � ω(n)! · 2Ω(n)−ω(n) and m(n) � 2Ω(n)−1.

Proof. Let X be the set of all k-tuples (u1, u2, . . . , uk), where ui is an ordered factorization
of ni in parts bigger than 1 and let Y be the set of these factorizations for n1n2 · · ·nk . For every
permutation σ of 1,2, . . . , k, we define a mapping Fσ :X → Y by

Fσ ((u1, u2, . . . , uk)) = uσ(1) · uσ(2) · . . . · uσ(k),
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i.e., we concatenate factorizations ui in the order prescribed by σ . It is clear that each Fσ is
an injection. Suppose that Fσ ((u1, u2, . . . , uk)) = Fτ ((v1, v2, . . . , vk)) for some permutations σ, τ

and factorizations ui and vi . It follows that uσ(1) is an initial segment of vτ(1) or vice versa, and
hence nσ(1) divides nτ(1) or vice versa. This implies that σ(1) = τ(1) and uσ(1) = vτ(1). Applying
the same argument, we obtain that σ(j) = τ(j) and uσ(j) = vτ(j) also for j = 2, . . . , k. Thus
σ = τ and uj = vj for j = 1,2, . . . , k. We have proved that the k! mappings Fσ have mutually
disjoint images. Therefore

k!m(n1)m(n2) · · ·m(nk) = k!|X| � |Y | = m(n1n2 · · ·nk).

If n = q
a1
1 q

a2
2 · · ·qak

k is the prime factorization of n, applying the first inequality to the k

numbers ni = q
ai

i and using that m(pa) = 2a−1, we obtain

m(n) � k!
k∏

i=1

2ai−1 = k! · 2Ω(n)−k,

which is the second inequality. Using that k!/2k � 1/2 for every k � 1, we get the third inequal-
ity. �

Note that m(n) � 2Ω(n)−1 is tight for every n = pa .

3. The upper bound

We prove the following upper bound on the maximal order of m(n).

Theorem 3.1. We have

m(n) <
nρ

exp((logn)1/ρ/(log logn)1+o(1))

as n → ∞.

Proof. Let ε > 0 be given. To bound m(n) from above, we split the integers n > 0 in two groups,
those with ω(n) � k and those with ω(n) > k, which we shall treat by different arguments; the
optimal value of the parameter k = k(n) will be selected in the end of the proof.

The case ω(n) � k. Let n = q
a1
1 q

a2
2 · · ·qar

r , r � k, be the prime decomposition of n where q1 <

q2 < · · · < qr . We denote by n̄ the number obtained from n by replacing qi in the decomposition
by pi , the ith prime. Then n̄ � n. From the fact that m(n) depends only on the exponents ai and
from Lemma 2.4, we get

m(n) = m(n̄) = mr(n̄) < n̄ρr � nρk .

Thus, by Lemma 2.3,

m(n) < nρk

= nρ exp
(−(ρ − ρk) logn

)
= nρ exp

(
−(

c + o(1)
) logn

kρ−1(logk)ρ

)
, (9)

where c = 2(ρ − 1)−1|ζ ′(ρ)|−1 > 0.
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The case ω(n) > k. Let l(n) be the product of some k distinct prime factors of n; then l(n) �
p1p2 · · ·pk , the product of the k smallest primes. We have the estimates

∑
p�pk

logp = pk + O(pk/ logpk) = k logk + k log logk + O(k),

and

2Ω(n) � (2/ log 2) logn < 3 logn.

By Lemmas 2.4, 2.5 and the above estimates,

m(n) <
(
2Ω(n)

)k
m

(
n/�(n)

)
< (3 logn)k

nρ

�(n)ρ

� (3 logn)k
nρ

(p1 · · ·pk)ρ

= nρ exp
(−k

(
ρ logk + ρ log log k − log logn + O(1)

))
. (10)

To determine the best upper bound on m(n), we begin with k in the form k = k(n) =
(logn)α+o(1) where α ∈ (0,1) is a constant. Necessarily α � 1/ρ, for else the argument of exp
in (10) is eventually positive and we get a useless bound. It follows that the optimum is α = 1/ρ,
when the arguments of both exps in (9) and (10) are −(logn)1/ρ+o(1), provided that

ρ logk + ρ log logk − log logn + O(1) > c′ > 0 (11)

for all sufficiently large n. Now we set, more precisely,

k = k(n) =
⌊

(logn)1/ρ

(log logn)d

⌋

with a constant d > 0. With this k, the function in (11) becomes ρ(1 − d + o(1)) log log logn +
O(1), and we see that condition (11) is satisfied for d < 1 (for d > 1 the argument of the exp
in (10) is again eventually positive). With this k, the arguments of the exps in (9) and (10) are,
respectively,

− (logn)1/ρ

(log logn)1+(ρ−1)(1−d)+o(1)
and − (logn)1/ρ

(log logn)d+o(1)
.

Setting d = 1 − ε/(2(ρ − 1)), we obtain the stated bound with 1 + ε + o(1) for the exponent of
log logn. Since ε > 0 was arbitrary, letting n tend to infinity we get the desired estimate. �
4. The lower bound

We prove the following lower bound on the maximal order of m(n).
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Theorem 4.1. There exists a constant c > 0 such that the inequality

m(n) >
nρ

exp(c(logn/ log logn)1/ρ)

holds for infinitely many integers n > 0.

We shall see that it is possible to take c = 3.02. We begin with explaining the effective
Ikehara–Ingham theorem on Dirichlet series. We then apply it to 1/(2 − ζk(s)) to obtain an
asymptotic relation for the average order of mk(n) with an error estimate independent on k. Fi-
nally, combining this relation with an estimate on the density of smooth numbers, we obtain
Theorem 4.1. For the background on Dirichlet series, we refer to Tenenbaum [27].

Suppose that (an)n�1 is a sequence of non-negative real numbers with the summatory function

A(t) =
∑
n�et

an,

and the Dirichlet series

F(s) =
∞∑

n=1

an

ns
=

∞∫
0−

e−st dA(t).

Suppose that F(s) converges for σ > a > 0. We may assume that a is the abscissa of (absolute)
convergence; then, by the Phragmén–Landau theorem, a is a singularity of F(s). The effective
Ikehara–Ingham theorem, proved by Tenenbaum [27] (who used the method of Ganelius [5]),
extracts an asymptotic relation for A(x) as x → ∞ from the local behavior of F(s) near a and,
moreover, it provides an explicit estimate of the error term in terms of the regularity of F(s) on
the vertical segments a + σ + iτ , −T � τ � T , as σ → 0+. We quote the theorem verbatim
from Tenenbaum [27, p. 234].

Theorem 4.2 (“Effective” Ikehara–Ingham). Let A(t) be a non-decreasing function such that
the integral

F(s) :=
∞∫

0

e−st dA(t)

converges for σ > a > 0. Suppose that there exist constants c � 0, ω > −1, such that the function

G(s) := F(s + a)

s + a
− c

sω+1
(σ > 0)

satisfies

η(σ,T ) := σω

T∫ ∣∣G(2σ + iτ ) − G(σ + iτ )
∣∣dτ = o(1) (σ → 0+) (12)
−T
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for each fixed T > 0. Then we have

A(x) =
{

c

Γ (ω + 1)
+ O

(
ρ(x)

)}
eaxxω (x � 1), (13)

with

ρ(x) := inf
T �32(a+1)

{
T −1 + η(1/x,T ) + (T x)−ω−1}.

Furthermore, the implicit constant in (13) depends only on a, c, and ω. An admissible choice for
this constant is

52 + 1652c(a + 1)(ω + 1) + 69c
(
1 + (ω + 1)e1−ω(ω + 1)ω+2)/Γ (ω + 1).

Note that for a meromorphic F(s) with a simple pole at s = a (so ω = 0), the condition (12)
is satisfied iff F(s) has on the line σ = a no other poles.

We shall apply Theorem 4.2 to the functions

F(s) = Fk(s) =
∑
n�1

mk(n)

ns
= 1

2 − ζk(s)

for k � 2, a = ρk , c = ck = −1/ρkζ
′
k(ρk), and ω = 0. It is not hard to prove (we do this in the

next proposition) that ρk is the only pole of Fk(s) on σ = ρk when k � 2 (this is not true for
k = 1) and thus, by Theorem 4.2,

∑
n�x

mk(n) = (
ck + o(1)

)
xρk (x → ∞)

for each fixed k � 2. (In contrast,
∑

n�x m1(n) = 2r − 1, where 2r � x < 2r+1.) To get a good
lower bound on m(n), we have to strengthen this by obtaining uniformity in k of the error
term o(1). This follows from Theorem 4.2, once we prove that for F(s) = Fk(s) the condi-
tion (12) is satisfied uniformly in k.

Proposition 4.3. Let, for k � 2,

Gk(s) = Fk(s + ρk)

s + ρk

− ck

s
= 1

(2 − ζk(s + ρk))(s + ρk)
− ck

s

and T > 0 be arbitrary but fixed. Then

lim
σ→0+

T∫
−T

∣∣Gk(2σ + iτ ) − Gk(σ + iτ )
∣∣dτ = 0

uniformly in k � 2; that is, the condition (12) holds uniformly in k.
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Proof. Let t (σ ) = σ 1/5; any function t (σ ) > 0 satisfying, as σ → 0+, that t (σ ) → 0 and
σ/t (σ )4 → 0 would do in our argument. For every fixed T > 0, we bound the integrand by a
quantity that depends only on σ and not on τ and k � 2, and that goes to 0 as σ → 0+; this will
prove the statement. We manage to do this by splitting [−T ,T ] in two ranges, t (σ ) � |τ | � T

and |τ | � t (σ ), in which we apply different arguments.
The range t (σ ) � |τ | � T . Denoting by γ the horizontal segment with endpoints σ + iτ and

2σ + iτ , we have the bound

∣∣Gk(2σ + iτ ) − Gk(σ + iτ )
∣∣ =

∣∣∣∣
∫
γ

G′
k(z)dz

∣∣∣∣ � σ
∣∣G′

k(s0)
∣∣,

where s0 is some point lying on γ . The derivative of Gk(s) equals

G′
k(s) = (s + ρk)ζ

′
k(s + ρk) + ζk(s + ρk) − 2

(2 − ζk(s + ρk))2(s + ρk)2
+ ck

s2
.

We bound the numerators and denominators of this expression. As for the numerators, by
Lemma 2.2, there is a constant c = c(T ) > 0 depending only on T such that

∣∣(s + ρk)ζ
′
k(s + ρk) + ζk(s + ρk) − 2

∣∣, |ck| < c

holds for every k � 2 and s with 0 < σ < 1 and |τ | � T . For the second denominator, we have,
in our range and for 0 < σ < 1,

σ

|s0|2 � σ

σ 2 + t (σ )2
= σ 3/5

σ 8/5 + 1
< σ 3/5.

We bound the first denominator. Clearly, |s + ρk|2 � ρ2
k > 1 for every s with σ > 0. For every

k � 2 and every s with 0 < σ < 1 and any τ , we have

∣∣2 − ζk(s + ρk)
∣∣ � Re

(
2 − ζk(s + ρk)

) =
∑
n�1

P(n)�pk

1

nρk+σ

(
nσ − cos(τ logn)

)

and, consequently (recall that k � 2 and 1 < ρk < 2),

∣∣2 − ζk(s + ρk)
∣∣2

>

(
2 − cos(τ log 2) − cos(τ log 3)

27

)2

=: h(τ).

Since 2α = 3 holds for no rational α, h(τ) = 0 only for τ = 0. The function h(τ) is continuous,
increasing in a right neighborhood of 0, and even and h(τ) ∼ βτ 4 as τ → 0 for a constant β > 0.
Thus, there is a constant β1 = β1(T ) < 1 depending only on T such that if 0 < σ < β1, then the
minimum of h(τ) on [t (σ ), T ] is attained at t (σ ) and h(t (σ )) > βt(σ )4/2. Hence, in our range
and for 0 < 2σ < β1,

σ

2 2
<

2σ

4
= 2σ 1/5

.
|2 − ζk(s0 + ρk)| · |s0 + ρk| βt(σ ) β
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Taking together all estimates, we have in our range and for 0 < σ < β1/2 that

∣∣Gk(2σ + iτ ) − Gk(σ + iτ )
∣∣ � σ

∣∣G′
k(s0)

∣∣ < c
(
2σ 1/5/β + σ 3/5),

which is the required bound.
The range |τ | � t (σ ). We prove that there is an absolute constant δ > 0 such that for every

k � 2 and s with |s| < δ we have the expansion

Gk(s) = dk + O(s),

where dk is a constant and the constant implicit in O is absolute. (We need independence on k

both for the constant in O(s) and for the domain of validity of the error estimate.) Then if
0 < σ < δ5/32 and |τ | � t (σ ), both numbers σ + iτ and 2σ + iτ satisfy |s| < δ, and we have
the bound

∣∣Gk(2σ + iτ ) − Gk(σ + iτ )
∣∣ = O

(|σ + iτ | + |2σ + iτ |) = O
(
σ 1/5)

with absolute constants in the Os, which is the required bound.
We begin with the origin-centered closed disc B = B(0,0.1); the point of the radius 0.1 is

only that ρ2 − 0.1 > 1. We define functions fk(s) by

fk(s) = ζk(s + ρk) − 2 − sζ ′
k(ρk) − s2ζ ′′

k (ρk)/2

s3
.

Let ak be the maximum value taken by |ζk(s)| on the circle |s − ρk| = 0.1. By the maximum
modulus principle (fk(s) is holomorphic on B), for every s ∈ B we have

∣∣fk(s)
∣∣ � 103(ak + 2 + 10−1ζ ′

k(ρk) + 10−2ζ ′′
k (ρk)/2

)
.

Thus, by Lemma 2.2, there is an absolute constant M > 0 such that

∣∣fk(s)
∣∣ < M

holds for every s ∈ B and every k � 2. We rewrite ζk(s + ρk) = 2 + sζ ′
k(ρk) + s2ζ ′′

k (ρk)/2 +
s3fk(s) as

1

(2 − ζ(s + ρk))(s + ρk)
= − 1

sρkζ
′
k(ρk)

× 1

1 + s/ρk

× 1

1 + sζ ′′
k (ρk)/2ζ ′

k(ρk) + s2fk(s)/ζ
′
k(ρk)

= − 1

sρkζ
′
k(ρk)

× 1

1 + s/ρk

× 1

1 + sbk + s2hk(s)
.

It follows, by Lemma 2.2 and the bound |fk(s)| < M valid on B , that there is a δ, 0 < δ < 0.1,
such that |s/ρk| < 1/2 and |sbk + s2hk(s)| < 1/2 whenever |s| < δ and k � 2. Using the estimate
(1 + s)−1 = 1 − s + O(s2), valid for |s| < 1/2, and Lemma 2.2, we obtain for k � 2 and |s| < δ

the expansion
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1

(2 − ζk(s + ρk))(s + ρk)
= ck

s

(
1 − s

ρk

+ O
(
s2))(

1 − s
ζ ′′
k (ρk)

2ζ ′
k(ρk)

+ O
(
s2))

= ck

s
− ck

(
1

ρk

+ ζ ′′
k (ρk)

2ζ ′
k(ρk)

)
+ O(s),

where ck = −1/ρkζ
′
k(ρk) and the constants in the Os are absolute. Now the required expansion

Gk(s) = dk + O(s) (valid for |s| < δ and with an absolute constant in the O) is immediate. �
Corollary 4.4. There is a constant β2 > 2 such that for every x > β2 and every k � 2 we have

∑
n�x

P (n)�pk

m(n) =
∑
n�x

mk(n) > xρk/5.

Proof. By Theorem 4.2 and Proposition 4.3, there is a function e(x) > 0 such that e(x) → 0 as
x → ∞, and for every x � 1 and every k � 2 we have

∣∣∣∣
∑
n�x

mk(n) − ckx
ρk

∣∣∣∣ < e(x)xρk .

The sequence of ck = −1/ρkζ
′
k(ρk), k = 1,2, . . . , monotonically decreases and converges to

c∞ = φ = −1/ρζ ′(ρ) > 0.3. Thus, if x is big enough so that e(x) < 0.1, then the sum∑
n�x mk(n) must be bigger than 0.2xρk . �
We now proceed to the proof of Theorem 4.1. We denote, as usual,

Ψ (x, y) = #
{
n � x: P(n) � y

}
.

By Corollary 4.4, for every k � 2 and x > β2 there exists an n0 � x such that

Ψ (x,pk)m(n0) >
xρk

5
= xρ

5 exp((ρ − ρk) logx)
.

We select k = k(x) so that it satisfies

k = (logx)α+o(1)

as x → ∞, for some absolute constant α ∈ (0,1) (we make our choice of k more precise later).
Then

pk = (
1 + o(1)

)
k logk = (logx)α+o(1).

A theorem due to de Bruijn (see Theorem 2 in Tenenbaum’s book [27, p. 359]), shows that

log
(
Ψ (x,pk)

) = (
1 + o(1)

)
Z,

where
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Z = logx

logpk

log

(
1 + pk

logx

)
+ pk

logpk

log

(
1 + logx

pk

)

= pk

logpk

(
1 + o(1)

) + pk

logpk

log

(
1 + logx

pk

)

= (
1 + o(1)

)
k(log logx − logk).

By Lemma 2.3,

ρ − ρk = c1 + o(1)

kρ−1(logk)ρ
,

where c1 = 2/((ρ−1)|ζ ′(ρ)|). Substituting both estimates in the lower bound on Ψ (x,pk)m(n0),
we get (absorbing the 5 in the denominator in the o(1) terms),

m(n0) >
xρ

exp(c1(1 + o(1))
logx

kρ−1(logk)ρ
+ (1 + o(1))k(log logx − logk))

.

This suggests to choose k so that both terms in the argument of the exponential,

logx

kρ−1(logk)ρ
and k(log logx − logk),

are of the same order of magnitude. This occurs when α = 1/ρ, more precisely when

k = ⌊
d(logx)1/ρ(log logx)−(ρ+1)/ρ

⌋

with any constant d > 0, because then

logx

kρ−1(logk)ρ
= d1−ρρρ

(
1 + o(1)

)( logx

log logx

)1/ρ

,

and

k(log logx − log k) = (
1 − ρ−1)d(

1 + o(1)
)( logx

log logx

)1/ρ

.

Thus, for this selection of k,

m(n0) >
xρ

exp((c + o(1))(
logx

log logx
)1/ρ)

,

where c > 0 is a constant depending only on the choice of d . The lower bound eventually in-
creases monotonically to infinity, and we conclude that there exist infinitely many numbers n0
satisfying

m(n0) >
n

ρ
0

exp((c + o(1))(
logn0

log logn0
)1/ρ)

.

The proof of Theorem 4.1 is complete.
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It is not difficult to find the optimal value of d ; it yields the value

c = (
ρρ+1c1

)1/ρ =
(

2ρρ+1

(ρ − 1)|ζ ′(ρ)|
)1/ρ

≈ 3.01091.

5. Historical remarks and arithmetical properties of m(n)

We continue with a survey of some previous results on m(n). We restrict our attention only to
works dealing directly with this quantity. There are many other variants of factorization counting
functions (with restrictions on factors, counting unordered factorizations, etc.), and for a survey
on these we refer the reader to Knopfmacher and Mays [16].

Kalmár proved in [14] that the error term o(1) in (1) is

O
(
exp(−α log logx · log log logx)

)
, for any α <

1

2(ρ − 1) log 2
≈ 0.98999.

Ikehara devoted three papers to the estimates of M(x). In [10], he gave weak bounds of the type
M(x) > xρ−ε on a sequence of x tending to infinity, and M(x) < xρ+ε for all large enough x.
In the review of [10], Kalmár pointed out a gap in the proof and sketched a correct argument.
In [11], Ikehara gave a proof of (1) with an error bound O(exp(q log logx)) for some constant
q < 0, which is slightly weaker than Kalmár’s result. Finally, in [12], he succeeded to get a
stronger error bound

O
(
exp

(−α(log logx)γ
))

, for 0 < α < 1/2 and any γ < 4/3.

Hwang [9] obtained an improvement of Ikehara’s last bound by replacing 4/3 with 3/2.
Rieger proved in [23], besides other results, that for all positive integers k, l with (k, l) = 1

one has

∑
n�x,n≡l (k)

m(n) = 1 + o(1)

ϕ(k)
M(x) = −1

ϕ(k)ρζ ′(ρ)
· xρ

(
1 + o(1)

)
.

Warlimont investigated in [28] variants of m(n) counting ordered factorizations with distinct
parts and with coprime parts and estimated their summatory functions. Hille in [8] proved that
m(n) = O(nρ) and that m(n) > nρ−ε for infinitely many n. We already mentioned in Sec-
tion 1 the remark of Erdős on m(n) in [4] and we mentioned (and improved) the result of Chor,
Lemke and Mador [1] that m(n) < nρ for all n. Other elementary and constructive proofs of
the bounds m(n) � nρ and lim supn m(n)/nρ−ε = ∞ were recently given by Coppersmith and
Lewenstein [3].

We now turn to recurrences and explicit formulas. The recurrence m(1) = 1 and

m(n) =
∑

d|n,d<n

m(d) for n > 1 (14)

is immediate from fixing the first part in a factorization. If we set m∗(1) = 1/2 and m∗(n) = m(n)

for n > 1, then 2m∗(n) = ∑
d|n m(d) holds for all n � 1. By Möbius inversion, m(n) =
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2
∑

d|n μ(d)m∗(n/d) for all n � 1. For n = q
a1
1 q

a2
2 · · ·qar

r > 1, this can be rewritten as the re-
currence formula

m(n) = 2

(∑
i

m

(
n

qi

)
−

∑
i<j

m

(
n

qiqj

)
+ · · · + (−1)r−1m

(
n

q1q2 · · ·qr

))
, (15)

in which we must set m(1) = 1/2. Formulas (14) and (15) are from Hille’s paper [8]. In fact, (15)
is stated there incorrectly with m(1) = 1, as was pointed out by Kühnel [17] and Sen [24].

Clearly, m(pa) = 2a−1 because ordered factorizations of pa in parts > 1 are in bijection with
(additive) compositions of a in parts > 0. If p = q are primes and a � b � 0 are integers, we
have the formula

m
(
paqb

) = 2a+b−1
b∑

k=0

(
a

k

)(
b

k

)
2−k

that was derived in [1] and before by Sen [24] and MacMahon [21]. In particular,

m
(
paq

) = (a + 2)2a−1 and m
(
paq2) = (

a2 + 7a + 8
)
2a−2. (16)

In general, for n = q
a1
1 q

a2
2 · · ·qar

r , and a = a1 +a2 +· · ·+ar , MacMahon [21] derived the formula

m
(
q

a1
1 q

a2
2 · · ·qar

r

) =
a∑

j=1

j−1∑
i=0

(−1)i
(

j

i

) r∏
k=1

(
ak + j − i − 1

ak

)
.

A more complicated summation formula for m(q
a1
1 q

a2
2 · · ·qar

r ) but involving only non-negative
summands was obtained by Kühnel in [17,18]. Let dk(n) be the number of solutions of n =
n1n2 · · ·nk , where ni � 1 are positive integers; so d2(n) is the number of divisors of n. Sklar [25]
mentions the formula

m(n) =
∞∑

k=1

dk(n)

2k+1
. (17)

Somewhat surprisingly, m(n) has an additive definition in terms of integer partitions. We say
that a partition (1a1 ,2a2 , . . . , kak ) of n is perfect, if for every m < n there is exactly one k-tuple
(b1, . . . , bk), 0 � bi � ai for all i, such that (1b1 ,2b2, . . . , kbk ) is a partition of m. MacMahon
[19] proved the identity

m(n) = # perfect partitions of (n − 1).

For example, since m(12) = 8, we have 8 perfect partitions of 11, namely (12,3,6), (1,22,6),
(15,6), (1,2,42), (13,42), (12,33), (1,25), and (111).

In the conclusion of the survey of previous results, we should remark that from an enumerative
point of view it is natural to consider m(n) as a function of the partition λ = (a1, a2, . . . , ak) of
Ω(n), where n = q

a1
1 q

a2
2 · · ·qak

k with a1 � a2 � · · · � ak , rather than n. Then m(λ) is defined
as the number of ways to write λ = v1 + v2 + · · · + vt , where each vi is a k-tuple of non-
negative integers, the order of summands matters, and no vi is a zero vector. So m(λ) is naturally
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understood as the number of k-dimensional compositions of λ. This approach was pursued by
MacMahon in his memoirs [19–21] (see also [22]).

The sequence

(
m(n)

)
n�1 = (1,1,1,2,1,3,1,4,2,3,1,8,1,3,3,8,1,8,1,8,3,3,1,20,2, . . .)

forms entry A074206 of the database [26]. Continuing the sequence a little further, we notice that
m(48) = 48 and that n = 48 = 24 · 3 is the smallest n > 1 such that m(n) = n. The first formula
in (16) produces infinitely many n with this property: setting n = 22q−2q with a prime q > 2, we
get m(n) = n. We record this observation as follows:

Proposition 5.1. There exist infinitely many positive integers n such that m(n) = n.

This result was obtained independently also by Knopfmacher and Mays [16].
We look at periodicity properties of the numbers m(n). The recurrence (15) implies easily the

following result.

Proposition 5.2. The number m(n) is odd if and only if n is square-free.

It would be interesting to characterize the behavior of m(n) with respect to other moduli
besides 2. In the next proposition, we give a partial result in this direction. Recall that an integer
valued function f (n) defined on the set of positive integers is called eventually periodic modulo k

if there exist integers n0 and T such that f (n) ≡ f (n + T ) (mod k) for all n > n0. We show that
m(n) is not eventually periodic modulo k by proving a stronger result that m(n) is not eventually
constant modulo k on any infinite arithmetic progression with coprime difference and first term.

Proposition 5.3. The function m(n) is not eventually constant modulo k, where k � 2, on any
infinite arithmetic progression n ≡ A (mod K), K � 2, with coprime A and K .

Proof. By Dirichlet’s theorem, this arithmetic progression contains infinitely many prime num-
bers and therefore m(n) = 1 for infinitely many n ≡ A (mod K). We select a prime q not dividing
K and an integer z (coprime with K) such that qz ≡ A (mod K). Since there are infinitely many
prime numbers congruent to z modulo K , there are also infinitely many n ≡ A (mod K) of the
form qp, where p is a prime. Thus, there are infinitely many n ≡ A (mod K) with m(n) = 3.
Because 1 ≡ 3 (mod k) for k > 2, we are done if k > 2. For k = 2, m(n) ≡ 1 (mod 2) for in-
finitely many n ≡ A (mod K) as before. As we noted, m(n) is even iff n is not square-free. It
follows that m(n) ≡ 0 (mod 2) for infinitely many n ≡ A (mod K) as well, which settles the case
k = 2. �

For (A,K) > 1, Proposition 5.3 in general does not hold. For example, by Proposition 5.2 we
have n ≡ 4 (mod 8) ⇒ m(n) ≡ 0 (mod 2) and therefore m(n) is constantly 0 modulo 2 on the
progression n ≡ 4 (mod 8).

Recall now that a sequence (f (n))n�1 is holonomic if there exist positive integer polynomials
g0, . . . , gk , not all zero, such that

gk(n)f (n + k) + gk−1(n)f (n + k − 1) + · · · + g0(n)f (n) = 0 for all n � 1. (18)
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Proposition 5.4. The sequence m(n) is not holonomic.

Proof. Dividing (18) by one of the (non-zero) coefficients gj with the largest degree, we obtain
the relation

f (n + j) =
∑

0�i�k,i =j

hi(n)f (n + i),

where the hi ’s are rational functions such that each hi(x) goes to a finite constant ci as x → ∞
(we may even assume that |ci | � 1 for every i). Hence there is a constant C > 0 (depending only
on k and the polynomials gi ), such that

∣∣f (n)
∣∣ � C max

{∣∣f (n + i)
∣∣: −k � i � k, i = 0

}
for every n � k + 1.

We show that (m(n))n�1 violates this property.
We fix two integers k, a � 1 with the only restriction that a is coprime to each of the numbers

1,2, . . . , k. It is an easy consequence of the Fundamental Lemma of the Combinatorial Sieve
(see [6]) that there is a constant K > 0 depending only on k so that

Ω
(
(an − k)(an − k + 1) · · · (an − 1)(an + 1) · · · (an + k)

)
� K

holds for infinitely many integers n � 1. For each of these n’s, the 2k values m(an + i), −k �
i � k and i = 0, are bounded by a constant (depending only on k) while the value m(an) is at
least m(a) and can be made arbitrarily large by an appropriate selection of a. This contradicts
the above property of holonomic sequences. �
Remark 5.5. The above proof can be adapted in a straightforward way to show that other number
theoretical functions such as ω(n), Ω(n) and τ(n), where τ(n) is the number of divisors of n,
are not holonomic.

We present two more estimates related to the function m(n).

Proposition 5.6. The estimate

#
{
m(n): n � x

}
� exp

(
π

√
2/ log 8

(
1 + o(1)

)
(logx)1/2)

holds as x → ∞.

Proof. Because m(n) depends only on the partition a1 + · · ·+ ak = Ω(n), where n = q
a1
1 · · ·qak

k

(q1, . . . , qk are distinct primes and a1 � a2 � · · · � ak > 0 are integers), we have that

#
{
m(n): n � x

}
� p(1) + p(2) + · · · + p(r) � rp(r),

where p(n) denotes the number of partitions of n and r = maxn�x Ω(n). The result follows from
r � logx/ log 2 and the classic asymptotic relation p(n) ∼ exp(π

√
2n/3 )/(4n

√
3 ) due to Hardy

and Ramanujan [7]. �
We show that the same bound on the number of distinct values of m(n) holds when the con-

dition n � x is replaced with m(n) � x.
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Proposition 5.7. The estimate

#
{
m(n): m(n) � x, n � 1

}
� exp

(
π

√
2/ log 8

(
1 + o(1)

)
(logx)1/2)

holds as x → ∞.

Proof. As in Proposition 5.6, we have

#
{
m(n): m(n) � x, n � 1

}
� p(1) + p(2) + · · · + p(r) � rp(r),

where now r = maxm(n)�x Ω(n). By the third inequality in Lemma 2.6, 2r−1 = 2Ω(n)−1 �
m(n) � x for some n. Thus, r � 1 + logx/ log 2, and the result follows as in the proof of Propo-
sition 5.6 using the asymptotics of p(n). �

In conclusion we mention some research directions. It would be nice to gain more information
on the modular behavior of m(n). There is still a small gap between our bounds on the maximal
order—can one lower the exponent 1 + o(1) in Theorem 3.1 to 1/ρ + o(1)? What can be said
about the structure of highly factorable numbers, i.e., numbers satisfying m(n) > m(u) for all u,
1 � u < n?
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