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Communication by sounds requires that the communication channels (i.e. speech/speakers and other
sound sources) had been established. This allows to separate concurrently active sound sources, to track
their identity, to assess the type of message arriving from them, and to decide whether and when to react
(e.g., reply to the message). We propose that these functions rely on a common generative model of the
auditory environment. This model predicts upcoming sounds on the basis of representations describing
temporal/sequential regularities. Predictions help to identify the continuation of the previously discov-
ered sound sources to detect the emergence of new sources as well as changes in the behavior of the
known ones. It produces auditory event representations which provide a full sensory description of the
sounds, including their relation to the auditory context and the current goals of the organism. Event rep-
resentations can be consciously perceived and serve as objects in various cognitive operations.
� 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Communication channels

Communication requires a channel open between the partici-
pants allowing them to exchange information. Communication
by sound typically occurs in environments rich in sound sources.
In order to listen to someone speaking, we have to be able to create
and maintain the channel conveying the information provided by
the speaker. This involves separating the speaker’s voice from all
concurrent streams of sound which themselves are potential alter-
native channels to choose. For example, while driving a car, we can
hear the sound of the car engine, the noise of the tires rolling over
the surface, music from the radio while still being able to conduct a
conversation with another person. Parsing the mixture of sounds
arriving at our ears (termed Auditory Scene Analysis; Bregman,
1990) results in the formation of perceptual units called auditory
objects (e.g. the speaker’s voice; Griffiths & Warren, 2004;
Kubovy & van Valkenburg, 2001; Winkler, Denham, & Nelken,
2009).
Every-day experience tells us that sounds deviating from the
acoustic context often break into our conscious experience even
if previously we did not attend their source. For example, in the
previous mentioned situation (i.e., having a conversation while
driving a car), one typically only notices the sound of the car
engine, if it starts to cough. Deviance detection has been often
studied using electric brain responses elicited by auditory events,
termed auditory event-related potentials (ERPs). Sounds violating
some regular feature of the preceding sequence have been shown
to elicit a specific component within the auditory ERPs, termed
the mismatch negativity (MMN; Näätänen, Gaillard, & Mäntysalo,
1978; for reviews, see Kujala, Tervaniemi, & Schröger, 2007;
Näätänen, Kujala, & Winkler, 2011). Human and animal research
in the past 30 years have revealed many details about how audi-
tory scenes are analyzed, as well as how deviant sounds are
detected within the auditory system. However, the two areas of
research – auditory scene analysis and auditory deviance detection
– have proceeded largely independently from each other. Here, we
provide an integrative research review that develops connections
between these two areas.

One common thread between the two functions is that they
both require some representation of the immediate history of the
stimulation. Such a representation allows discrete sounds to be
linked together to form an auditory perceptual object, as well as
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to assess whether they carry new information with respect to what
we already know about the sound sources in the environment. We
will argue that a second common feature is that both auditory
scene analysis and auditory deviance detection look into the
future. That is, we provide a theoretical framework linking audi-
tory scene analysis and deviance detection via predictive auditory
representations.1

The idea of human information processing and specifically per-
ception operating in a predictive manner has a long tradition both
in psychology and neuroscience. For example, Gregory’s (1980)
influential contemporary empiricist theory likens perception to
scientific hypotheses, which provide the brain’s ‘‘best guess’’ of
the causes (distal objects) of the stimulation reaching the sensory
organs (the proximal stimuli) and can produce extrapolations to
parts of the environment, which are currently not accessible to
the senses. Recent theories following the empiricist tradition,
which started with Helmholtz’s (1867) notion of unconscious
inference and has been arguably the most influential school for
explaining perception (see, e.g., Clark, 2013), posit predictive mod-
els integrating perception, attention, learning, and even actions
(e.g., Ahissar & Hochstein, 2004; Bar, 2007; Friston, 2010;
Hohwy, 2007; Hommel, Musseler, Aschersleben, & Prinz, 2001;
Summerfield & Egner, 2009; Tishby & Polani, 2011). In neuro-
science, Helmholtz’s theory coupled with Bayesian rules for opti-
mal inference generation (Kersten, Mamassian, & Yuille, 2004;
Knill & Pouget, 2004) engendered the predictive coding theories
appearing first in the 1990s (e.g., Mumford, 1992; Rao & Ballard,
1999). Modern versions of predictive coding assume the existence
of a hierarchy of generative models with increasing levels of
abstraction (see e.g., the free energy principle of Friston, 2005,
2010). At each level of the hierarchy, predictions from a generative
model are compared with the input and the difference is treated as
an error signal. The system aims at suppressing (minimizing) the
error by adjusting models, with higher levels governing model
selection at lower levels.

Effects of stimulus predictability have been shown on auditory
scene analysis (e.g., Andreou, Kashino, & Chait, 2011; Bendixen,
Denham, Gyimesi, & Winkler, 2010; Rimmele, Schröger, &
Bendixen, 2012; initially suggested by Jones, 1976; for a review,
see Bendixen, 2014). Regular (predictable) tone patterns embed-
ded separately within two interleaved sequences increased the
probability of hearing two concurrent sound streams as opposed
to a single streams (Bendixen, Denham, et al., 2010; Bendixen
et al., 2013; Szalárdy et al., 2014), while predictable patterns con-
necting tones across the two interleaved sequences that did not
at the same time produce such patterns separately for the two
sequences increased the probability of perceiving a single stream
over two concurrent ones (Bendixen, Denham, & Winkler, 2014).
Further, a predictable pattern (a tune) embedded in one of two
interleaved sound sequences made it easier for listeners to follow
the other sound sequence (Andreou et al., 2011; Rimmele et al.,
2012). Predictive processes probably also play a crucial role in
auditory deviance detection (e.g., Bendixen, Schröger, Ritter, &
Winkler, 2012; Lieder, Stephan, Daunizeau, Garrido, & Friston,
2013; Paavilainen, Arajärvi, & Takegata, 2007; initially suggested
by Winkler, Karmos, & Näätänen, 1996; for a review, see
Bendixen, SanMiguel, & Schröger, 2012). Winkler, Karmos, et al.
(1996; see also Winkler, 2007) have suggested that deviance is
established by comparing incoming sounds against those
1 We do not speculate about the neural implementation of this framework or about
the neural substrate of the processes being described as part of this framework. We
do, however refer to neural markers of these processes, the generators of which have
(to some extent) been localized (see respective references). These locations may serve
as starting points to determine the neural network underlying the process proposed
in our model.
predicted by the representations of previously detected regulari-
ties. For example, when a tone sequence followed the rule ‘‘long
tones are followed by high ones, whereas short tones by low
ones’’, rare low tones following long ones and high tones follow-
ing short ones elicited the MMN response signaling that the rule
violation was detected (Paavilainen et al., 2007; see also
Bendixen, Prinz, Horváth, Trujillo-Barreto, & Schröger, 2008). In
this sequence, deviant tones did not contain any rare feature of
feature combination, per se. Only because the previous tone pre-
dicted a different tone to arrive next in the sequence made these
tones to violate the acoustic regularity of the sequence, and
therefore to be processed as deviants. Bendixen, Schröger, and
Winkler (2009) have also found that differences between ERPs
elicited by the occasional omission of a predictable vs. an unpre-
dictable tone. These and other evidence reviewed by Bendixen,
SanMiguel, et al. (2012) strongly support the notion of the
involvement of predictive processes in MMN generation.

Our theoretical framework linking auditory scene analysis and
deviance detection is compatible with the general idea of predic-
tive coding. We will argue that regularities detected from the rela-
tionship between successive sounds are encoded into generative
models of the acoustic environment. Predictions from these mod-
els help to construct auditory sensory memory representations
and they are compared to the currently dominant interpretation
of the auditory input. The outcome of the comparison is used to
update the model.

Research on speech processing usually focuses on how the
brain decodes spoken messages. The input of most of these
models is a stream of speech. That is, they assume that the com-
munication channel is already established. Here we provide a
conceptual framework for how the auditory system sets the
stage for this. Since using predictions to reduce the amount of
computation required to decode messages have also been sug-
gested for language processing (Federmeier, 2007; Hosemann,
Herrmann, Steinbach, Bornkessel-Schlesewsky, & Schlesewsky,
2013; van Petten & Luka, 2012), the model proposed here fits
seamlessly with such models, specifying some lower levels of
the hierarchy.
2. The building bricks: Regularity, deviance, predictive
information processing

Deviance can only be defined in relation to something regular.
An event is deviant if it does not fit at least one of the relation-
ships connecting the previous events within the environment.
That is, a deviant event violates some existing regularity of the
context within which it appears. By regularity we mean an impli-
cit sequential rule, which is extracted from the series of sound
events by the auditory system. Later, we will specify the types
of regularities involved in auditory deviance detection (e.g., con-
crete and statistical regularities), how they are utilized, and
how such regularities are extracted from a sequence of sound.
In the auditory modality, deviations range from simple cases,
such as breaking the repetition of a discrete sound, to complex
ones, such as violating a harmonic or rhythmic rule in music.
From the above definition follows that within a sequence of
sounds with no regular relationships no sound event can be devi-
ant. Another consequence is that deviance is not equal to physical
(acoustic) change. Let us consider a spoken sentence with mono-
tonously falling pitch (such as is typical in statements spoken in
Hungarian). Although the pitch of each word is different from
the previous one, because it fits the regularity, it is not a pitch
deviant. On the other hand, while a word having the same pitch
as the previous one represents no pitch change it deviates from
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the pitch regularity of the preceding ones (i.e., it is a pitch deviant
event).2

When describing perception, the above definition of deviance
should be further specified in order to take into account the capa-
bilities of the perceiver, that is, the system that would detect
deviance. Because the presence of regularity is a prerequisite of
deviance detection, the system can only detect deviants that break
some regularity that the system ‘‘knows about’’. One can only
detect a rhythmic violation in a poem if one remembers the poem
or if the word violates some general rhythmic convention the per-
son has experience with. This means that for detecting deviance,
the system (in our case the human auditory system) must have
access to some representation of the regular relationships applica-
ble to the current environment as well as mechanisms which allow
it to determine whether or not a given sound matches these regu-
larity representations.

One should also consider the environment. For the perceiver,
the environment is not equal to the physical effects reaching the
senses. Our experience (stored representations) of the environ-
ment co-determines what we detect as deviant. In our previous
example, someone regularly listening to poems in English would
detect violations of meter even in English poems he/she never
heard before. Thus when we refer to the environment, we mean
the combination of two things: the environment and the listeners
pre-existing representations of this environment, the context.

What is common between an acoustic regularity established by
the recently encountered sounds (such as a sequence of two alter-
nating tones) and rhythmic conventions in poems? They both
allow one to predict which sounds are likely to follow the ones just
heard. We shall argue that in the human auditory system, regular-
ity representations are used to generate predictions for future
events and incoming sounds are checked against these predictions.
Consider the situation of crossing a street: We are not only inter-
ested where cars are at the moment, but, rather, where they will
be when we reach their lane. Recent accounts of perception (Bar,
2007; Enns & Lleras, 2008; Ghahramani & Wolpert, 1997;
Gregory, 1980; Schubotz, 2007; Summerfield & Egner, 2009;
Winkler et al., 2009) as well as computational models of sensory
processes (Friston, 2005; Friston & Kiebel, 2009; Tishby & Polani,
2011) emphasize that information processing is directed towards
the future. In the same vein, we term the set of representations
of the known regularities of a given environment the (predictive/-
generative) model of this environment and we suggest that the
auditory system maintains such a predictive model of the acoustic
environment.

Why is it advantageous to establish such a model? Living organ-
isms require information for reaching their goals and to success-
fully adapt their behavior to the environment. Deviance is of
special importance as it represents new information that may
require some response from the organism. In fact, deviance in
the above defined sense is equal to new information for the organ-
ism, because sounds conforming to previously detected regulari-
ties could be predicted by the organism. Having a model of the
environment allows the organism to predict a part of the input
and thus prepare to take appropriate action. The larger the part
of the input, that the sensory systems can predict, the fewer the
information that requires detailed evaluation. As a consequence,
fewer resources are needed for processing the actual sensory input.
In other words, it is advantageous for the organism to invest into
building a good model as the model will permit it to successfully
2 Note that although syntactic rule violations and semantic mismatches also fit the
above definition, they will not be discussed here as these deviations are not of
auditory nature and they are processed at higher levels of the hierarchy; for models of
speech perception explaining syntactic and semantic violation phenomena, see e.g.,
Friederici, 2002; Hagoort, 2008.
adapt to the environment while conserving resources. The pre-
dicted part of the input does not require further processing, unless
the event is actively monitored (e.g., one wishes to synchronize an
action with an expected event). No information is lost by this type
of filtering. At the same time, by identifying deviance, new, possi-
bly important information gets a better chance to receive detailed
processing.

Such generative models may perhaps be even more important
in the auditory modality than in vision, because the acoustic envi-
ronment is ephemeral; it lacks elements which can be revisited at
will. An important characteristic of sound is that it unfolds in terms
of temporally varying signals. Even the most elementary acoustic
features, such as pitch or the direction of the sound source require
the processing of sound segments of some duration. Moreover, any
meaningful analysis of the acoustic environment involves connect-
ing discontinuous segments of the incoming sound flow. How else
could we understand prosodic information or tell whether or not
the footsteps we hear signal that someone approaches us.
Therefore, in order to establish perceptual events, the system must
take into account the temporal behavior of the input. The genera-
tive model of the environment to be described here serves this pur-
pose. We shall outline the various processes involved in
establishing, maintaining, and utilizing a predictive model of the
acoustic environment. The information within the model serves
multiple purposes, deviance detection being only one of them.
We shall argue that the model provides the basis of organizing
the acoustic input into perceptual units (objects), which represent
the concurrently active independent sources in the environment.
That is, the model to be described here is an essential element of
auditory scene analysis (Bregman, 1990).
3. An overview of detecting new information in the auditory
modality

We regard the set of processes and memory resources involved
in detecting new auditory information a system with functional
module-like properties.3 The input to this functional module is sen-
sory data analyzed for basic auditory features. On its output, it deliv-
ers a sensory event representation, which, in addition to describing
the sensory features of the incoming sound, also specifies the rela-
tion of this sound to the auditory context including an evaluation
of how well it conforms to the regularities detected from the preced-
ing sounds. Therefore, we term this functional module the Auditory
Event Representation System (AERS).4 AERS is module-like in the
sense that it can properly function based on the auditory input alone
(i.e., without voluntary effort or focused attention). For this reason,
deviance detection has often been described as pre-attentive in the
literature. However, the notion of pre-attentiveness assumes a strict
serial order between stimulus-driven and attentive processing,
which most likely does not hold for auditory deviance detection
(see, e.g., Haroush, Hochstein, & Deouell, 2010; Sussman, Winkler,
Huotilainen, Ritter, & Näätänen, 2002). These studies have shown
that top-down effects, especially those biasing how the auditory
input is structured into streams and patterns affect which regulari-
ties are extracted and, as a consequence, which sounds are detected
as deviants (for a review, see Sussman, 2007). Thus deviance detec-
tion is not pre-attentive. However, many deviations are detected
even when attention is not focused on the sound sequence (for a
review, see Näätänen, 1990). Moreover, even when the auditory
input is generally unattended, AERS relies on a memory store, which
3 Module-like properties refer to the set of functions, as opposed to the neural
substrate. In fact, it is quite likely that these functions are implemented by distributed
neural networks, which may include several distinct loci in the brain.

4 Some essentials of AERS and the extraction of computational principles can be
found in Schröger et al. (2014).



Fig. 1. An overview of the auditory event representation system (AERS). The primary input to AERS is the incoming sound with its basic features established. The main
components of the system include a Predictive Model of the auditory environment storing representations of regularities extracted from the preceding sounds. This model
generates predictions for upcoming sounds, thus helping to establish Auditory Sensory Representations of the incoming sounds. The resulting representation is compared
with the predictions. The outcome of the Comparison is used to (1) update the model and (2) evaluated together with information regarding the current goals of the organism.
The result is an Auditory Event Representation (the main output of AERS), which can enter various mental operations and be consciously perceived. Also, the model is
influenced by the Evaluation process, which can initiate the building of new or reactivate old but inactive regularity representations.
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interacts with other forms of memory, including long-term memory
representations (for a review, see, Näätänen, Tervaniemi, Sussman,
Paavilainen, & Winkler, 2001). These studies have shown that infor-
mation learned on-line (such as a difficult discrimination or the
structure of short trains; see e.g., Näätänen et al., 2001; Schröger,
Tervaniemi, & Huotilainen, 2004; Winkler & Cowan, 2005) or previ-
ously (such as representations of the phonemes of a language spoken
by the listener; see e.g., Näätänen et al., 1997; Winkler et al., 1999),
and even automatized processing strategies (such as those learned
by musicians; see e.g., Brattico, Winkler, Näätänen, Paavilainen, &
Tervaniemi, 2002; van Zuijen, Sussman, Winkler, Näätänen, &
Tervaniemi, 2004, 2005) modulates the processing of sounds.
Although the memory representations and processes of AERS are
not necessarily consciously experienced (i.e., they are of implicit nat-
ure) as there are deviations registered in the brain, which do not
appear in conscious perception (see Paavilainen et al., 2007;
Sussman, Winkler, Kreuzer, et al., 2002; van Zuijen, Simoens,
Paavilainen, Näätänen, & Tervaniemi, 2006), this is a weaker form
of modularity compared with that defined by Fodor (1983), because
of the possibility of outside access and modification of some internal
processes.

Fig. 1 shows an overview of AERS. For the sake of simplicity, let
us first consider the detection of deviance within a single coherent
sound sequence (a single auditory stream typically delivered by a
single sound source – for a discussion of the relationship between
auditory streams and sound sources, see Bregman, 1990). Later we
shall consider the case of multiple sound streams (complex audi-
tory scenes; see Section 5). Let the sequence consist mostly of
sounds that conform to some regularity: For example, a sequence
of sounds with a common timbre, such as would be produced by
a person speaking in a neutral voice. Sounds meeting the regularity
are termed ‘‘standard’’ sounds, whereas sounds violating the regu-
larity are termed ‘‘deviants’’ (e.g., a high-pitched sound of surprise
in the above example). With such a simple acoustic regularity in
mind, we now describe the four major constituents of AERS.
3.1. Forming auditory sensory memory representations

Some characteristics of the incoming sound (proto-features:
such as, the possible periodicity of the signal, spectral energy max-
ima, binaural differences, etc., such as the speech landmarks;
Stevens, 2002)5 are extracted early within the afferent pathways
5 One set of candidates which could serve as the input to AERS are spectrotemporal
response patterns observed at subcortical and cortical levels (e.g., Schönwiesner &
Zatorre, 2009; Versnel, Zwiers, & van Opstal, 2009). For speech, phonetic-level
features for vocal tract control are also viable candidates as an input to AERS (Chang,
2014; Leonard & Chang, 2014).
of the auditory system. The traditional view suggests that these fea-
tures are then bound together to form unitary sound representa-
tions6 (the ‘‘feature binding problem’’: Bertrand & Tallon-Baudry,
2000; Treisman, 1993, 1998; Treisman & Gelade, 1980; Zhuo & Yu,
2011). This feed-forward account is overly simplistic because even
discrete sounds can be quite complex and, when two or more sounds
overlap each other correctly establishing the features requires that
they are first separated from each other. However, unfortunately,
the literature currently provides little evidence regarding the details
of the interaction between feature extraction and sound separation
beyond establishing the ubiquitous presence of descending path-
ways throughout the auditory system (Schofield, 2010). Therefore,
by necessity, we only note the probable existence of such interac-
tions and focus on how auditory features are utilized in deviance
detection and sound grouping.

Thus auditory features are bound together to form unitary audi-
tory sensory memory representations (Fig. 1). There is good reason
to suggest that the formation of these representations can be
affected by the context. An example is the phonemic restoration
effect, when the phoneme correctly completing a spoken word is
heard even when the actual phoneme sound is omitted and the
gap is filled with a sound spanning a broad frequency band
(Samuel, 1981; Shinn-Cunningham & Wang, 2008). In the phone-
mic restoration effect, we hear a sound that is not present as such
in the acoustic input. Thus, this percept must be derived from
memory, as somebody unfamiliar with the given language will
not correctly restore the phoneme. The memory representation
does not have to be previously learned as similar restoration
effects can be observed for sounds with a predictable pitch contour
(see, e.g., the continuity illusion, Riecke, van Opstal, & Formisano,
2008). This suggests that establishing unitary auditory sensory
memory representations rests on the construction of predictions
from memories that persist over different time scales.

There is no consensus on whether or not feature binding
requires focused attention (see Treisman, 1993, 1998; Treisman
& Gelade, 1980; vs. Duncan & Humphreys, 1989). Based on the
results of deviance detection studies (see, Näätänen, 1992;
Näätänen & Winkler, 1999; Sussman, 2007), we assume that such
representations are formed even outside the focus of attention.
On the other hand, we will note throughout the description of
AERS how its output, termed Auditory Event Representation
(Fig. 1) can be affected by attention.
6 The notion of feature binding and unitary sensory memory representations
assumes that there is a period of time during which auditory features are established
and that features established earlier are stored in temporary feature traces until the
rest of the features become available (c.f. Cowan, 1984; Näätänen & Winkler, 1999).
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3.2. Predictive model

The model (‘‘Predictive Model’’ box in Fig. 1) stores representa-
tions of the currently applicable auditory regularities (e.g., in our
above example, sounds having a common timbre). The regularity
representations produce predictions for upcoming classes of sound
(e.g., the next sound should have the same timbre) (Baldeweg,
2006, 2007; Bendixen et al., 2009; Grimm & Schröger, 2007;
Winkler, 2007; Winkler, Karmos, et al., 1996; Winkler et al.,
2009; and also specifically to speech sounds, see Bendixen,
Scharinger, Strauss, & Obleser, 2014). These predictions (a) guide
the formation of auditory sensory memory representation of the
incoming sound and (b) are compared with the emerging sensory
memory representation of the sound (see below).

Existing regularity representations are updated when the
incoming sound mismatches the predictions of the model
(Schröger, 2007; Winkler, 2007; Winkler, Karmos, et al., 1996)
whereas new regularities are extracted once the predictable part
of the auditory input is accounted for. Modulating effects on the
model reflect structural information encoded in longer-term stores
such as long term experience with certain types of sounds as well
as explicit knowledge about the current sound sequence. The for-
mer has been shown by studies comparing ‘‘experts’’ and naive lis-
teners: players of a given instrument detect smaller pitch
deviations for their own instrument compared to listeners playing
other instruments (Tervaniemi, Just, Koelsch, Widmann, &
Schröger, 2005) and speakers of a language are superior in detect-
ing phoneme category (Näätänen et al., 1997; Winkler et al., 1999)
and word changes (Jacobsen et al., 2004; Pulvermüller et al., 2001)
relevant in the given language than listeners, who don’t speak that
language. The effect of explicit knowledge on deviance detection
was demonstrated in an experiment in which listeners did not
notice that the sound sequence consisted of a cyclically repeating
pattern until they were informed about it; their brain response
to rare sounds within the pattern reflected that they structured
the sequence differently afterwards (e.g., Sussman, Winkler,
Houtilainen, et al., 2002).

3.3. Comparing model predictions with the sensory representation of
the current sound

Depicted at the center of the overview of AERS is the compar-
ison between the sensory representation of the incoming sound
and the predictions derived from the model of the acoustic envi-
ronment (Fig. 1). That is, we assume an explicit comparison func-
tion (cf. comparator-based deviance-detection; Opitz, Schröger, &
von Cramon, 2005; Siddle, 1991), although, previously implicit
solutions to the comparison function have also been suggested
(Näätänen, 1984). Unlike in laboratory settings, under everyday
circumstances, no sound can be fully predicted. Acoustic variability
is introduced by (a) variations in the sound source, (b) changes in
the relative position of perceiver and the source (i.e., as they move
with respect to each other) as well as by (c) various concurrent
changes in the physical environment (e.g., movement of
sound-reflecting objects). Therefore, (a) the models stores the dis-
tributions of feature values and its predictions are adapted to the
experienced variability of the preceding sound sequence by refer-
ring to ranges of the feature space and classes of sounds, rather
than to a specific sound (see, e.g., Winkler et al., 1990, who found
that intensity and pitch deviations were detected despite varia-
tions in the intensity of the regular sounds); and (b) the compar-
ison output signal (MMN) may reflect the amount of deviation
(Näätänen & Alho, 1997; Schröger & Winkler, 1995; Tiitinen,
May, Reinikainen, & Näätänen, 1994; see, however Horváth et al.,
2008), as the MMN amplitude increases and the peak latency
decreases with increasing amounts of deviance (however, due to
overlap between MMN and other ERP responses, it is possible that
a large part of this effect originates from a different source).

The outcome of the comparison, which describes the relation
between the sensory representation of the incoming sound and
the regularities stored by the model, is passed on to the evaluation
process (see below). If predictions from the model failed, the model
needs to be corrected. Thus the outcome of the comparison feeds
back to the model via an updating process. The updating process
is reflected by the MMN (Winkler, 2007; Winkler & Czigler,
1998; Winkler et al., 2009). This does not, however, rule out that
the MMN signal can also serve as an indicator that new informa-
tion has been encountered by the perceiver (Escera, Alho,
Schröger, & Winkler, 2000; Näätänen, 1990; Schröger, 1997).
Thus, the MMN can be seen as one (though not the only) indicator
of new information, a brain index of prediction error, which drives
the updating of the model.

3.4. Evaluation

This is the point, at which the incoming auditory information
can be fully assessed and prepared for possible further processing
(outside AERS) for attention control (e.g., orienting), determining
the real-life event that gave rise to this sound, and assessing its rel-
evance for the current or some pre-planned actions of the organ-
ism. Evaluation takes into account the context set up by the
current goal-directed processes (top-down effects). Consider the
case of timbre constancy as a detected regularity. Usually, small
variation in any stimulus parameter is tolerated. If, however, some-
one were looking for signs of emotional stress in another person’s
voice, he/she would very likely notice even very small timbre devi-
ations. Another possible reason for marking a sound for further
processing is when it or its relation to the preceding auditory con-
text meets some preset pattern (Formby, 1967; Roye, Jacobsen, &
Schröger, 2007) such as hearing one’s own name (Perrin,
Garcia-Larrea, Mauguiere, & Bastuji, 1999). On the other hand, even
relatively large sound deviations could go unnoticed, when one’s
attention is strongly focused somewhere else. Thus the evaluation
of a sound takes into account those aspects of the context which
are outside the auditory environment. The resulting information
package is the primary output of AERS. We term this an auditory
event representation, because it describes the sound together with
its relation to both the auditory and the general context.

The other main function of the evaluation processes is to initi-
ate the search for new regularities. Successive deviant events
may signal a change of the sound source or its behavior. The full
description of the acoustic event can be used to find new regular-
ities within the acoustic environment. Furthermore, this is the
point at which the unpredicted part of the input (the residue)
can be assessed. The residue may reflect the emergence of a new
sound source in the environment. For example, typically, no pre-
dictions exist for the emergence of a new voice (a new instrument
or person) within the auditory input. Such sounds remain unac-
counted by the active generative models, forming the residue, after
all predictions are checked. Note that although both deviations
from the predictions of existing regularity representations and
the residue are de facto prediction errors, the former is specific
to a given regularity representation, the latter is general to the
whole model and they are utilized differently in AERS: updating
a regularity representation vs. initiating the formation of a new
one.

The P3a ERP response may reflect the assessment of the infor-
mation value of the incoming sound by the evaluation process.
The currently most widely accepted interpretation of P3a is that
it reflects a call for further processing of highly deviant or other-
wise unexpected stimulus events (e.g., a sound delivered after a
long silent interval; Friedman, Cycowicz, & Gaeta, 2001; Polich,
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2007). However, this interpretation has been challenged (Horváth,
Winkler, & Bendixen, 2008; Rinne, Sarkka, Degerman, Schröger, &
Alho, 2006; Wetzel, Schröger, & Widmann, 2013), because some
features of P3a suggest that it reflects the assessment of the ‘‘sig-
nificance’’ of sensory events, combining the information carried
by the stimulus with its relevance within a wider context. The lat-
ter interpretation is compatible with the assumed function of
‘‘evaluation’’ within AERS.
4. Initial build-up of an auditory model

It has to be asked how a representation of an auditory regularity
is established, such as when the sound sources in the environment
have been inactive for some time and, therefore, previously
detected regularities may not be available, or when a new regular-
ity comes into play. We will illustrate this for simple regularities,
before we consider more complex ones.
4.1. Simple regularities

When a sound arriving after a longer silent period repeats a few
times, each sound reaching the ears receives initial analysis in the
afferent auditory pathway (Carney, 2002). Units of the input are
typically separated by abrupt spectrotemporal changes (onsets
and offsets), which may be indexed by the elicitation of the
onset- and offset-related ERPs, such as the N1 response
(Näätänen & Picton, 1987). Markers for the start of sound-units
serve as temporal reference points, allowing the auditory system
to compare sound patterns with the corresponding representations
along the temporal axis, such as distinguishing the A-B tone pair
from B-A tone-pair. Evidence shows that the later parts
(>350 ms) of long sounds only affect the building of regularity rep-
resentations when the sound includes abrupt spectrotemporal
changes (Schwartze, Tavano, Schröger, & Kotz, 2012; Weise,
Grimm, Müller, & Schröger, 2010). This suggests that representa-
tions are based on the initial segment of long continuous sounds.
However, abrupt spectrotemporal changes within a long sound
(such as most consonants) initiate the formation of a new unit,
thus enabling a segmented, but precise description of the full
sound. Our notion of the basic unit is compatible with that of the
literature of auditory sensory memory (see Cowan, 1987;
Demany & Semal, 2008) as well as with the notion of parallel anal-
ysis of sound on multiple times scales within the human auditory
cortex (Nelken, Fishbach, Las, Ulanovsky, & Farkas, 2003; Poeppel,
2003).

Because we assumed that no competing regularity representa-
tions preexist, the established sound features are conjoined unless
they contain some spectral or temporal cue indicating the presence
of multiple concurrent sound sources, such as a mistuned har-
monic within a complex tone or asynchronous onset of different
spectral components (for reviews of the cues supporting the
instantaneous segregation of concurrent sounds, see Alain, 2007;
Carlyon, 2004; Ciocca, 2008; de Cheveigné, 2001). Note, that we
postpone discussing multi-source sound configuration till later.
Here we assume that a unitary representation of a single sound
is formed through projecting the different auditory features onto
temporal coordinates, thus constructing a description encoding
both static and dynamic aspects of the discrete sound (Näätänen
& Winkler, 1999). The resulting representation may then be con-
sciously perceived.

Because we consider the (rare) case that no regularity represen-
tations were available when the sound was encountered, no pre-
dictions could have been formed for this sound. Thus the whole
auditory input becomes ‘‘residue’’ within AERS and thus the forma-
tion of a new regularity representation is triggered. Because sounds
delivered after a long silent period elicit very large responses in
auditory cortex (as characterized by the P1 and N1 ERPs), some
part of these auditory cortical responses may be related to the pro-
cess initiating the formation of a new regularity representation
(Winkler et al., 2009). One possibility is that the search for a new
regularity is initiated when the strength of these responses exceeds
some threshold (for a similar idea referring to memory traces, see
Näätänen, 1984). However, a single sound is not sufficient for
establishing a regularity representation. This has been demon-
strated by the lack of any deviance-related ERP response when
the second sound of a train differed from the first one while the
train was preceded by a long silent period and no compatible reg-
ularity had been established in the preceding train (Cowan,
Winkler, Teder, & Näätänen, 1993; Winkler et al., 2002).

When the same sound occurs for the second time, it receives the
same initial processing than the first sound. However, because the
previous sound initiated the formation of a new regularity repre-
sentation, the relation between this sound and the representation
of the first sound is also determined. Their temporal relationship
as well as their relationship along the established features is
encoded into an episodic representation connecting the two
events. Detecting the repetition of a sound could already give rise
to the prediction that the next sound will also be the same, as was
shown by the elicitation of the MMN response for the 3rd sound of
a train that differed from the two previous (identical) sounds
(Bendixen, Roeber, & Schröger, 2007). However, in other studies,
two repetitions were required before a deviant could trigger a
deviance-detection response (Cowan et al., 1993; Winkler,
Karmos, et al., 1996). A possible explanation is that when partici-
pants attend to the sounds (as in Bendixen et al.’s study), a single
repetition can give rise to a regularity representation. This account
is compatible with Bayesian inference rules in model selection
(Kersten et al., 2004; Knill & Pouget, 2004; Yuille & Kersten,
2006) with priors determined by higher-level models, which may
be directly related to behavioral goals (and thus would be regarded
as voluntary or attentive in the terminology of cognitive
psychology).

For unattended sequences, in which MMN was only elicited by a
sound after two repetitions of a different sound, the relationship
between the 3rd and the 2nd sound is compared with that between
the 2nd and the 1st sound. Note that relationships between succes-
sive sounds are compared as opposed to representations of individ-
ual sounds (Winkler, 2007). When the two relationships are found
to be matching, a regularity representation connecting successive
sounds is formed. This representation can now predict future
events. Enabling the ability of a regularity representation to predict
upcoming sounds can also be regarded as an activation process.
Taking this notion, we can distinguish ‘‘active’’ and ‘‘dormant’’ reg-
ularity representations. Thus an established regularity representa-
tion can be dormant (i.e., does not affect the processing of sounds).
It can then be activated either by an additional confirming sound
event or by attention directed to the sounds (see above). Thus
AERS can learn and react fast to emerging patterns in the environ-
ment without forsaking prudence (i.e., wasting processing capacity
on chance patterns).

Although auditory regularities are detected even when partici-
pants focus their attention on a different modality (for reviews,
see Haroush et al., 2010; Sussman, 2007), it is less clear whether
strong focusing within the auditory modality can prevent or at
least modulate the formation of regularity representations.
Modulating effects on deviance detection have been observed by
Haroush et al. (2010), whereas Sussman, Winkler, and Wang
(2003) showed that the ERP response for deviance in a given fea-
ture is suppressed in an unattended sound sequence when partic-
ipants detect deviants in the same feature in a separate but
attended sound stream (for compatible evidence, see Näätänen,
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Paavilainen, Tiitinen, Jiang, & Alho, 1993; Woldorff, Hackley, &
Hillyard, 1991; Woldorff, Hillyard, Gallen, Hampson, & Bloom,
1998). Either way, attention focused strongly on one stream of
sound does not in general prevent the detection of deviations in
an unattended stream.

When the model contains at least one (active) regularity repre-
sentation, predictions for incoming sounds are produced. In our
simple case, the model predicts that the next sound is probably
identical to the three previous ones. These predictions have an
immediate impact on the processing of the input. The sensory
memory representations of further sounds are compared with
the representation of the sound predicted by the model. In case
of a match the regularity representation may be further strength-
ened. One possible interpretation is that stimuli conforming to
the predictions may increase the weight the system attaches to
the predictions from the given regularity (i.e., the ‘‘confidence’’ of
the system regarding the given prediction). This notion is similar
to Friston’s predictive coding theory according to which predic-
tions do not only send down contents to the lower level, but also
their inferred precision (Feldman & Friston, 2010). Indeed,
change-related neural activity has been reported to increase with
increasing number of repetitions preceding a change (Javitt,
Grochowski, Shelley, & Ritter, 1998). Some studies found a similar
effect for the ERP amplitude difference between deviant and stan-
dard responses (Bendixen et al., 2007; Haenschel, Vernon, Dwivedi,
Gruzelier, & Baldeweg, 2005), although others failed to observe a
significant effect (Cowan et al., 1993). On the other hand,
Winkler, Karmos, et al.’s (1996) results suggest that stimuli con-
firming the predictions make the related regularity representations
more resistant to elimination. These authors delivered to partici-
pants short trains starting with six presentations of tone ‘A’ fol-
lowed by 0, 2, 4, or 6 presentations of tone ‘B’. The train ended
with tone ‘C’, which differed from both ‘‘A’ and ‘B’’. Tone ‘C’ elicited
an MMN with respect to tone ‘A’ even after 4 intervening presen-
tations of tone ‘B’, showing that the repetition regularity of tone
‘A’ was not eliminated by repeated presentations of tone ‘B’.
Although there is no unequivocal proof for the existence of these
processes, it stands to reason that regularities, whose predictions
are often confirmed, have increased utility for AERS. Haenschel
et al. (2005) found an ERP response elicited by regular sounds
which increased together with the number of preceding regular
sounds (repetition positivity, RP; see also Baldeweg, 2006). The
neural process generating RP may be involved in strengthening
(sharpening) or making more resistant the corresponding regular-
ity representation(s).

In case a difference is detected between the incoming sound
and the prediction from the regularity representation (a prediction
error), the stimulus is marked as containing new information. This
increases the chance that the stimulus representation receives
more detailed processing. The representation of the violated regu-
larity (which predicted the reoccurrence of the same sound in our
simple example) is then updated. There is evidence showing that
the primary function of the process reflected by the MMN compo-
nent is related to the regularity representation, as opposed to the
deviant sound itself (Winkler & Czigler, 1998). Winkler and
Czigler (1998) found that a deviant sound violating two separate
regularities within 200 ms elicited two successive MMN responses.
In contrast, a deviant sound violating the same regularity two
times within 200 ms elicited only a single MMN response. This pat-
tern of results suggests that MMN is primarily related to the regu-
larity violated as opposed to the sound that violates it. We
hypothesize that the updating process makes the affected regular-
ity representation (1) carry less weight (confidence) and (2) less
resistant to elimination in the future. Several studies (e.g.,
Winkler, Cowan, Csépe, Czigler, & Näätänen, 1996; Winkler,
Karmos, et al., 1996) showed that a single deviant does not prevent
a consecutive deviant from eliciting MMN. This means that regu-
larity representations are never eliminated by a single
non-conforming auditory event. On the other hand, several devi-
ants in a row or a long silent interval following the last regular
sound prevent further deviants from eliciting the
deviance-related MMN response. The longest silent interval after
which a deviant elicited the MMN was found to be ca. 10–12 s
(Sams, Hari, Rif, & Knuutila, 1993; Winkler, Schröger, & Cowan,
2001), thus placing an upper bound on the temporal extent of pre-
dictions. However, even in these cases, a single regular sound (ter-
med ‘‘reminder) can ‘‘reactivate’’ the regularity representation.
That is, a deviant sound following a single regular sound (termed
the reminder) will again elicit the MMN (for review of the reactiva-
tion phenomenon, see Winkler & Cowan, 2005). Reactivation was
observed with the reminder separated from the previous regular
sound by 30 s (Winkler et al., 2002). Furthermore, reactivation also
occurred when the reminder followed six consecutive different
deviant sounds (Winkler, Cowan, et al., 1996). Thus it is yet
unknown when or how auditory regularity representations are
truly eliminated. They only become dormant (not affecting the pro-
cessing of sounds) by long silent periods or by repeated failure to
correctly predict the incoming sound. A similar ‘‘dormant’’ state
can be assumed for regularity representations under construction
with the third presentation of the standard activating the regular-
ity representation (i.e., making it produce predictions in the
future).

Note that once a regularity representation has been established,
it starts producing predictions for upcoming sounds in the
sequence – that is, it acts as a (possibly partial) generative model
of a putative perceptual object (for a description of how some of
these ‘‘proto-objects’’ can emerge as perceptual objects that can
be consciously experienced, see Section 6.3). However, the
build-up of a regularity representation, as described above, is not
a predictive process itself. Predictions are about (possible) objects.
Therefore, no prediction can be made before a possible object is
detected.

It is easy to see, how the system benefits from this mode of
operation. Immediate elimination of the regularity representations
would be disadvantageous as random fluctuations, which often
occur in everyday acoustic environments, and discrete deviant
events (exceptions) would reset the system (returning it to the ini-
tial non-predicting state), even when the majority of the stimuli
follow the detected rule. The existence of a dormant state for reg-
ularities further improves the chances of rapidly finding adequate
regularity representations for incoming sounds. Together, these
features make AERS a robust system in terms of maximizing its
predictive capabilities under natural, noisy and variable
circumstances.
4.2. More complex regularities

So far, we focused on how a regularity representation is
formed for a sequence of a repeating sound. However, there is
evidence that no sound repetition is needed for establishing a
regularity representation. For example, if some feature or features
are constant within a sequence while other features randomly
vary, deviations from the common feature(s) elicit the MMN
(Gomes, Ritter, & Vaughan, 1995; Huotilainen et al., 1993;
Winkler et al., 1990). From this, we infer that regularity represen-
tations have been constructed for the common (invariant) fea-
tures. Furthermore, when a regularity representation based on
feature repetition becomes dormant, it can be reactivated simi-
larly to that described for fully repeating sounds (Ritter,
Sussman, Molholm, & Foxe, 2002). This suggests that the relation-
ships between successive sounds are established for each
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stimulus feature (Nousak, Deacon, Ritter, & Vaughan, 1996; Ritter,
Deacon, Gomes, Javitt, & Vaughan, 1995).

Identity is a special case of the possible inter-sound relation-
ships. Therefore, one should expect that regularity representations
are also established for regular non-repetitive inter-sound rela-
tionships. Indeed, this is the case. For example, the regularity of
successive sounds continuously increasing or decreasing in pitch
is detected similarly to sound repetition (Tervaniemi, Maury, &
Näätänen, 1994). Our description of the processes involved in
establishing a new regularity representation takes into account
this and similar non-repetitive inter-sound relationships. When
any detectable relationship between successive sounds repeats
(such as, pitch increases from sound 1 to 2 and from sound 2 to
3, etc.) the corresponding regularity representation is activated.
Viewed this way, the rising-pitch regularity is no more complex
than feature repetition. Studies showing that sounds violating dif-
ferent feature-regularities of the same sound sequence elicit some-
what different MMN responses (e.g., Deacon, Nousak, Pilotti, Ritter,
& Yang, 1998; Giard et al., 1995) suggest that several regularities
are maintained in parallel in AERS.

In the above discussed regularities, inter-sound relationships
repeated immediately (i.e., the length of the repeating cycle
was one: the inter-sound relationship was always the same).
However, everyday sound sequences often include repeating
cycles consisting of several sounds with a characteristic pattern
of inter-sound relationships (such as bird trills). Indeed, for
example, exchanging two segments within a repetitive cycle of
five tones elicits the MMN response (Winkler & Schröger,
1995). Furthermore, Sussman et al. (Sussman, Ritter, &
Vaughan, 1998a; Sussman, Winkler, Houtilainen, et al., 2002)
demonstrated that when a sound sequence is perceived in terms
of a repeating pattern, the regularity representations underlying
deviance detection are also based on the same pattern. These
authors presented repeating cycles consisting of five tones, the
first four of which was identical and the last different from them
(AAAABAAAAB. . .). When listeners perceived the repeating cycle,
no MMN was elicited by the fifth sound, even though MMN
was elicited by this sound when the same sounds were presented
in a randomized order or when the listener did not detect the
repeating cycle. These results suggest that when the repeating
cycle was not present or perceived, the listener’s brain treated
each sound as a separate unit and predicted the repetition of
the more frequent (0.8 probability) sound. However, when the
cyclic repetition was detected, the pattern of five sounds became
the unit and the ‘‘rare’’ sound was part of this predictable
standard.

In order to accommodate repeating cycles with >1 length, we
need to extend our previous description of establishing a regular-
ity representation. One possible algorithmic approach assumes
that when the formation of a new regularity has been initiated
the regularity building process opens a chain of inter-sound rela-
tionships (i.e., a sequence of relationships between consecutive
sounds). The chain is then either completed when two full repe-
titions are encountered (establishing a new regularity representa-
tion) or discarded when no full repetition is reached before
exceeding the capacity of the memory involved in building regu-
larity representations. In support of this hypothesis, Sussman,
Ritter, and Vaughan (1998b) found that the five-tone repeating
cycle described above is processed in terms of the repeating tone
pattern when the presentation rate was sufficiently fast so that
two full repetitions of the pattern fit into 10 s. In contrast, regu-
larities of the same sequence were processed in terms of individ-
ual sounds, when the presentation rate was slower (cf. Scherg,
Vajsar, & Picton, 1989; Sussman, Winkler, Houtilainen, et al.,
2002). Further evidence for a temporal capacity limitation in
finding repeating cycles has been obtained in studies
investigating cyclically repeating noise segments (Kaernbach,
2004).7 In a recent study, Barascud, Pearce, Griffiths, Friston, and
Chait (personal communication by Maria Chait, 10.07.2014)
revealed that it is not necessarily needed that the full pattern is
repeated in order to for the auditory system to predict its reoccur-
rence. In one condition studied by Chait and colleagues, the pat-
tern consisted of 10 tones and the listener could detect the
regularity after the presentation of only 14 tones as was indicated
by an enhancement of the magnetic brain response elicited when
the continuation of the pattern was terminated and tones of ran-
dom pitch were presented instead. This result suggests that the
threshold for activating a regularity representation (i.e., making it
affect the processing of upcoming sounds) is not two full cycles
of the pattern; rather, it is possibly a few (perhaps two or three)
hits after the initial pattern has been closed. The simplest form
of closure (cf. the gestalt term) comes from encountering again
the first sound of the pattern whose representation is being
constructed.

There are also regularities which cannot be described by a
repeating chain of inter-sound relationships. The simplest example
of this type is a sequence with two frequent sounds (‘A’ and ‘B’).
Such a sequence includes four frequent inter-sound relationships
(A -> A, A -> B, B -> A, and B -> B), each of which is represented.
Because, as we argued above, the respective representations
(memory traces) are not eliminated by the emergence of other
relationship, they can be reinforced by conforming evidence.
After a few repetitions of the same relationship, a
regularity-representation can be formed. In order to account for
this types of regularities, the simplified description of building reg-
ularity representations described in the previous paragraphs needs
to be extended by relaxing the constrain of regularity building
requiring immediate repetition of an inter-sound relationship.
Instead, we suggest that repetition must come within the
life-time of such traces. Based on studies of testing the temporal
limits of rhythm perception (Duke, 1989; van Norden, 1975), we
tentatively suggest that the life-time of these traces is in the order
of 1–2 s. Further, there is no specific evidence regarding how many
times such an inter-sound relationship must be encountered for
the corresponding regularity representation to be activated.
Given that the repetitions are not immediate, we assume that more
than two recurrence of the same inter-sound relationship is
needed.

The regularity representations based on the various frequently
encountered inter-sound relationships are built and become active
in parallel. Each covers a certain percentage of the incoming
sounds, but as long as no inter-sound relationship disappears for
long period from the sequence, they will coexist and, as we will
show later (see Section 6) by being compatible with each other,
they can form a common sound organization. Results showing that
even when two sounds have equally high global probability, either
one appearing after a longer micro-sequence of the other elicits the
MMN (Sams, Alho, & Näätänen, 1983; Winkler, Paavilainen, &
Näätänen, 1992) are compatible with the above description.

The results of many deviance detection studies are compatible
with the extended description of forming predictive regularity rep-
resentations. For example, when pitch increases between the two
tones in a tone pair (Ahveninen et al., 2000; Saarinen,
Paavilainen, Schröger, Tervaniemi, & Näätänen, 1992) or when
tones follow the rule linking different auditory features
(Bendixen et al., 2008; Paavilainen et al., 2007) regularity
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representations can be formed based on a few frequently occurring
inter-sound relationships. Indeed, violating these rules results in
the elicitation of MMN.

Finally, recent evidence suggests that regularities can also be
extracted for non-adjacent sounds, but only when the sounds
intervening between successive sounds of one regularity formed
a separate regularity themselves (Bendixen, Schröger, et al.,
2012). It should be noted that the paradigm did not allow the
two sets of sounds to be segregated by any primitive cue. This is
important, because after stream segregation, the sounds forming
the two regularities would have become separately adjacent to
each other (for other effects related to auditory stream segregation,
see Section 6). This result suggests that the auditory system not
only registers the relationship between adjacent sounds, but possi-
bly also between non-adjacent ones. However, the fact that such
regularities are only detected when the intervening sounds give
up a separate regularity suggests that such regularity representa-
tions are quite weak normally and require to helping each other
to become active. Such help from the other regularity is possible,
as these regularities are also compatible with each other (see, again
Section 6).

So far, we only considered regularities in which auditory fea-
tures could be predicted with high accuracy. However, this rarely
is the case in real-life situations. Dealing with natural variance
involves constructing categories and defining regularities by rela-
tionships between stimulus categories instead of between concrete
stimuli. Such regularities can be considered as abstract rules as
opposed to concrete rules, which are based on relationships
between concrete sounds. The categories can be pre-existing (i.e.,
stored in long-term memory), such as the phoneme set of a lan-
guage, or episodic, such as for example elements of a bird thrill
we get adapted to when spending some time in the vicinity of
some birds belonging to the same species. In terms of AERS, cate-
gories are distributions of feature values and, as was already
described, predictions (a) refer to such distributions and (b) are
adapted to the experienced variability of the preceding sound
sequence.

Indeed, there is evidence that regularities based on categories
are processed within AERS. For example, a generalized version of
the pitch-alternation regularity can be constructed if every second
tone is set higher in pitch than the preceding one whereas every
other tone is set lower than the preceding one. Evidence that this
extended regularity of pitch alternation is detected and applied
by AERS was obtained by Horváth, Czigler, Sussman, and Winkler
(2001; see further evidence for other category-based regularities
in Paavilainen, Jaramillo, Näätänen, & Winkler, 1999; Phillips
et al., 2000; Saarinen et al., 1992; Tervaniemi, Rytkönen,
Schröger, Ilmoniemi, & Näätänen, 2001). There is also evidence
that, similarly to concrete regularity representations, representa-
tions of abstract regularities can be reactivated (Korzyukov,
Winkler, Gumenyuk, & Alho, 2003). It is thus highly likely that con-
crete and abstract regularity representations are one and the same
within AERS. That is, the auditory system is always prepared for
constructing representations for ‘‘abstract’’ (non-exact) regulari-
ties, treating concrete regularities as abstract ones with very small
feature variance, because concrete regularities can seldom be
found outside the laboratory.

In summary, it is clearly advantageous for the auditory system
to establish representations of the acoustic regularities of the
sounds encountered within the environment. Such representations
can absorb a large part of the incoming sound, acting as filters for
new information (Schröger, 1997; Sinkkonen, 1999; Winkler,
Reinikainen, & Näätänen, 1993). To this end, AERS registers the
inter-sound relationships as well as their sequential order. Once
the same order of inter-sound relationships has been detected at
least a few times (possibly with other relationships intervening),
a regularity representation is formed. Thus regularity representa-
tions are formed quite fast. In contrast, elimination of these repre-
sentations is slow. The latter is important, because, it is clear that
in any realistic environment, each of the regularity representations
of AERS will often fail to correctly predict upcoming sounds, as
even the most complex regularity representations cannot capture
alone the complexity of a real-life scene. However, as will be dis-
cussed in the next sections, continuously summing the predictions
of a large set of such simple and fallible regularity representations
can produce a robust and flexible representation system, maximiz-
ing the predictive power of the model of the acoustic environment.
5. Auditory regularity representations, auditory streams,
auditory perceptual objects

In every-day auditory environments, most of the time, one
encounters several concurrent and intermittent sounds originating
from different sources. Due to the physical nature of sounds, the
acoustic information arriving from various sources interact with
each other within the air according to the mathematical laws
applying to waves. If we assume that the auditory system has
evolved to find out information about distal objects (the sound
sources) and events that gave rise to the sounds, then one of the
most important functions of the central auditory system is to break
down the incoming signal according to their sources. This is not a
trivial task, because there are no simple cues separating the contri-
butions of different sound sources that would work in most situa-
tions. In fact, an analysis of natural auditory scenes suggest that
there is no unique mathematical solution to finding moving sound
sources by the information available to the auditory system
(Stoffregen & Bardy, 2001). According to the empiricist point of
view (Helmholtz, 1867), the auditory system must, therefore use
heuristic computational processes, which are based on assump-
tions regarding the nature of the sound sources to determine the
actual source configuration (see, however, the contrasting view
of direct perception; Gibson, 1979). This function has been termed
the ‘‘auditory scene analysis’’ by Bregman (1990; for recent
reviews, see Ciocca, 2008; Denham & Winkler, 2014; Haykin &
Chen, 2005; Shinn-Cunningham & Wang, 2008; Snyder & Alain,
2007). Many of these assumptions have been described as the laws
of perception by the Gestalt school of psychology (Köhler, 1947).
Some of them rely on the spectrotemporal configuration of short
auditory segments (e.g., co-occurrence of harmonics of a common
base and common onset for sounds produced by the same source),
but the majority of these constraining assumptions is concerned
with the sequential/temporal relationship between sounds coming
from a single source (e.g., smooth continuation, common behavior
of the sound components originating from the same source, etc.).
In order to utilize these principles, the auditory system must store
the recent history of the various active sound sources, representing
their characteristic acoustic features as well as their dynamic
behavior. We propose that the regularity representations described
in the previous sections serve also this purpose and that deviance
detection and auditory object formation are two tightly interwo-
ven functions of the auditory system.

Before detailing the role of AERS in auditory object formation,
here we argue that the features described for the regularity build-
ing functions in the previous sections are fully compatible with
known properties of auditory streaming, the most widely studied
phenomenon within auditory scene analysis (for a detailed analy-
sis, see, Winkler, 2010; Winkler et al., 2009). The auditory stream-
ing paradigm (van Norden, 1975) consists of a sound sequence
mixing together two sets of sounds. The typical sequence takes
the form of ABA-ABA-. . ., where ‘A’ and ‘B’ denote two tones differ-
ing in frequency and ‘-’ represents a silent period equal to the
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common duration of the two tones (Fig. 2). Depending on the fre-
quency separation between ‘A’ and ‘B’ and the presentation rate
(usually characterized by the time between the onsets of consecu-
tive sounds, the stimulus onset asynchrony [SOA]), this sequence is
most likely to be experienced either in terms of repeating ABA tri-
plets producing a galloping rhythm in perception (the ‘integrated
percept’) or as two concurrent isochronous streams of sound, a fas-
ter paced one consisting of the ‘A’ and a slower one of the ‘B’ tones
(the ‘segregated percept’). Note, however, that other relatively
stable percepts are also possible (Denham et al., 2014). With large
separation between the two tones and/or fast sound presentation
rates, segregation is perceived more commonly, whereas with
small frequency separation and/or slow presentation integration
is the more common percept (Bregman, 1990; van Norden,
1975). Streams can be segregated by separation in a variety of
auditory features (e.g., Akeroyd, Carlyon, & Deeks, 2005;
Grimault, Bacon, & Micheyl, 2002; Roberts, Glasberg, & Moore,
2002; Vliegen & Oxenham, 1999) suggesting that auditory stream-
ing is generally based on perceptual dissimilarity (Moore & Gockel,
2002), or rather, taking also into account the effect of presentation
rate, auditory streaming is based on rate of perceptual change
(Mill, B}ohm, Bendixen, Winkler, & Denham, 2013; Winkler,
Denham, Mill, Böhm, & Bendixen, 2012). With longer sound
sequences, perception inevitably fluctuates between the possible
percepts (Anstis & Saida, 1985; Bendixen, Denham, et al., 2010;
Denham, Gyimesi, Stefanics, & Winkler, 2010; Denham &
Winkler, 2006; Leopold & Logothetis, 1999; Pressnitzer & Hupe,
2006; Rahne & Sussman, 2009; Roberts et al., 2002; Schadwinkel
& Gutschalk, 2011; Wessel, 1979). Thus auditory streaming is a
multistable perceptual phenomenon (Winkler et al., 2012).
Although perceptual multistability is quite rare under everyday
circumstances, this phenomenon is very important for perceptual
theories (e.g., Gregory, 1980), as it provides insights into the under-
lying mechanisms. In short, theories and models of perception
need to account for bi-/multistable phenomena (Schwartz,
Grimault, Hupe, Moore, & Pressnitzer, 2012). Multistability in audi-
tory streaming suggests that alternative sound organizations are
maintained in parallel. Indeed, Horváth et al. (2001) found that
in an alternating sequence of two tones, representations for both
the regularity of ‘‘A is followed by B and vice versa’’ and also for
the rule of ‘‘every second tone is A, every other is B’’ have been
maintained in parallel. This was shown by MMN being elicited
by violating either one of these rules, only. On this basis, Winkler
et al. (2009, 2012) suggested that the multistability observed in
the auditory streaming paradigm stems from competition between
alternative regularity representations describing a sound sequence.
Fig. 2. Schematic diagram of the auditory streaming paradigm (van Norden, 1975). Short
horizontal axis marks the passing of time), where A and B denote two sounds differing
position). With small feature separation between the two sounds (marked by D on the
interval, the Stimulus Onset Asynchrony on the figure), this sequence of sound is typical
with gray lines on the leftmost and the third segment of the figure). However, when feat
vertical arrow before the segment) or the presentation rate is increased (rightmost segm
the rightmost segments), then listeners tend to perceive the sequence as two separa
connecting the sounds of each stream by gray lines).
On this hypothesis, the properties of auditory regularity repre-
sentations should be compatible with the phenomena observed for
auditory streaming. One can easily draw parallels between the for-
mation of auditory regularity representations (as described in
Section 4) and the temporal course of perception at the beginning
of an auditory streaming sequence. On the
regularity-representation hypothesis, the initial percept is decided
by which regularity is discovered first. In the auditory streaming
paradigm, with most, but not all combinations of the parameters,
the first percept is the integrated one (Denham, Gyimesi,
Stefanics, & Winkler, 2013; Hupe & Pressnitzer, 2012; Winkler
et al., 2012). Once a second regularity is discovered, then competi-
tion begins. It has been shown that whereas the choice and dura-
tion of the first percept reported for an auditory streaming
sequence is highly sensitive to stimulus parameters, the effects
of these parameters on the probability and duration of the percepts
reported after the first perceptual switch is much more modest
(Deike, Heil, Böckmann-Barthel, & Brechmann, 2012; Denham
et al., 2013). The competition between alternative regularity repre-
sentations is likely based on adaptation and noise (Mill et al.,
2013), as was also suggested for bistable visual phenomena
(Shpiro, Moreno-Bote, Rubin, & Rinzel, 2009).

Several studies showed that deviance detection, as indexed by
the MMN ERP component, goes hand-in-hand with the segregation
of auditory streams. That is, violations of regularities specific to
one or another stream only elicit MMN, when separate streams
are perceived (e.g., Sussman, Ritter, & Vaughan, 1999; Winkler,
van Zuijen, Sussman, Horváth, & Näätänen, 2006; Winkler et al.,
1993), whereas violations of regularities specific to the whole
sequence only elicit the MMN when listeners experience the inte-
grated percept (e.g., Sussman, 2005; Winkler & Cowan, 2005; Yabe
et al., 2001). For example, Winkler et al. (2006) presented tones of
intermediate pitch that could join only one of the separate streams
formed by the intervening high and low tones, forming different
repeating temporal patterns with them. Participants were
instructed (and checked on) to voluntarily hold either the
high-middle or the low-middle patterns. MMN was elicited when
infrequent changes in the timing of the intermediate tones violated
the voluntarily held pattern, but not when they violated the possi-
ble alternative pattern. Note that deviations only occurred on the
tones of intermediate pitch, which were attended all the time.
Therefore this effect cannot be explained by attentional filtering.
Rather, this is an effect of grouping biased by attention.
Furthermore, both bottom-up (Rahne & Sussman, 2009; Winkler,
Sussman, et al., 2003; Winkler, Takegata, & Sussman, 2005) and
top-down (Sussman, Winkler, Houtilainen, et al., 2002; Winkler
sounds (depicted by black rectangles) are presented in a repeating ABA-pattern (the
in at least one stimulus feature, such as the tone frequency (marked by the vertical

figure) and slow-to-medium presentation rates (marked with the onset-to-onset
ly experienced as a single coherent stream (marked by connecting adjacent sounds
ure separation is increased (second segment, the change marked by the dotted gray
ent, the change marked by the dotted gray horizontal arrow between the third and
te sound streams, each consisting of similar sounds, only (marked by separately



I. Winkler, E. Schröger / Brain & Language 148 (2015) 1–22 11
et al., 2006) biasing of the sound organization have parallel effects
on deviance detection. The previous example also illustrates a
top-down effect on auditory stream segregation. As for a
bottom-up effect, Winkler, Sussman, et al. (2003) presented two
random tones that intervened between consecutive tones of a
repetitive sequence. In one condition, the pitch range of the inter-
vening tones included the pitch of the repeating tone; in the other,
the pitch range of the intervening tones was far removed from the
pitch of the repeating tone. Occasional intensity deviations of the
repeating tone only elicited the MMN in the latter sequences which
listeners perceived as segregated into a stream of the repeating
tone and a separate stream of the intervening tones. Newborn
infants also showed a similar effect, suggesting that this primitive
form of stream segregation is already functional at birth (Winkler,
Kushnerenko, et al., 2003).

Are auditory streams the true building bricks of sound percep-
tion? Cognitive operations are thought to involve objects. Modern
theoretical descriptions of auditory objects emphasize similarities
between processing principles as opposed to equating features
across different modalities (Griffiths & Warren, 2004; Kubovy &
van Valkenburg, 2001; Winkler, 2010; Winkler et al., 2009).
Winkler et al. (2009; see, also Winkler, 2010) suggested four defin-
ing criteria for (auditory) object representations. Object represen-
tations (1) bind together auditory features as well as possibly
multiple temporally distinct acoustic events; (2) are separable
from other (possibly concurrent) objects; (3) generalize across dif-
ferent instances of the same object; (4) can extrapolate to object
parts of which no information reached the senses. The first three
criteria are probably self-evident. The last one refers to our experi-
ence that even when the information from the distal object that
reaches our senses does not cover all parts of the object, the repre-
sentation formed of this object gives us a reasonable assessment of
the missing information (Gregory, 1980). Taking one of Gregory’s
examples, one almost never sees all four legs of a table. Even so,
the table we see does not miss the unseen legs. Because the acous-
tic signal is ephemeral (i.e., there are no still sounds, which could
be revisited at will), the missing information typically awaits us
in the future. Therefore, for auditory object representations, the
criterion of extrapolation primarily means temporal predictions.

Do auditory streams act as sound objects? Bregman (1990) lists
plenty of evidence showing that auditory streams meet the first
three of the above-listed criteria for auditory object representa-
tions (for a point-by-point listing of psychophysiological evidence,
see, Winkler et al., 2009). We suggested that predictive auditory
regularity provide the basis for auditory streams. Therefore, we
regard auditory streams as auditory object representations.8
6. How AERS works when the model has been set up

Under everyday circumstances, the model in AERS is almost
never ‘‘empty’’; rather, it contains a mixture of regularity represen-
tations that are currently under construction, ones that are active,
and ones that are becoming (or already are) dormant, but can still
be accessed. The following description of the functioning of AERS
discusses how the hypothesized generative models of the auditory
environment may be involved in operations necessary for deviance
detection as well as in forming auditory streams.
6.1. Simultaneous stream segregation

Fig. 3 illustrates the sequence of processes establishing auditory
sensory representations in AERS up to and including deviance
8 The notion of perceptual object representation does not include that the object is
recognized.
detection. As was discussed in Section 3.1, the first estimation of
sound features is marked by the box titled ‘‘Initial Feature
Analysis’’. This analysis may already separate components of the
input based on frequency and ear of origin, since these information
are available from the moment the incoming sounds start affecting
the receptor surfaces. A first assessing of the sources is denoted by
the box titled ‘‘Initial Grouping by Simultaneous Cues’’. This oper-
ation can separate sounds by static features, such as outstanding
spectral cues, onset relationship, etc. (Bregman, 1990; de
Cheveigné, 2001; Micheyl & Oxenham, 2010). Establishing segrega-
tion by such cues does not require information about previous
sounds (represented in the model) but can rather be performed
instantaneously using only information from the current sound.
For example, two concurrent sounds having distinct narrow fre-
quency bands or different harmonic structures may be separated
from each other (Bregman, 1990). An ERP component reflecting
segregation by various instantaneous cues has been discovered
by Alain and his colleagues (the ‘‘Object-Related Negativity’’,
ORN; Alain, Arnott, & Picton, 2001; Alain, Schuler, & McDonald,
2002; Hautus & Johnson, 2005; Johnson, Hautus, & Clapp, 2003;
McDonald & Alain, 2005).

Grouping/segregation by simultaneous cues occurs within a
short time from the onset of a sound and it is one source producing
candidates for perceptual sound organization. These candidate
groups also provide information for sequential/temporal grouping
processes (to be discussed in the next subsection). Finally, these
grouping processes allow active monitoring of a given feature
and thus the detection of deviance within that feature. This opera-
tion is depicted by the box titled ‘‘Feature-based Target Detection’’.
As was shown by Näätänen and colleagues, a target feature level
can be voluntarily maintained in the brain and target sounds can
be detected by comparing all incoming sound to this memory trace
(for reviews, see e.g., Näätänen, 1990; Näätänen, Alho, & Schröger,
2002; Näätänen et al., 2011). The comparison with a voluntarily
maintained memory trace is reflected in an ERP component termed
processing negativity (PN). PN is terminated when a sound is found
to be different from the target feature or when the target identity is
established (reflected by another ERP component, the N2b – see
Näätänen, 1990; Näätänen & Gaillard, 1983).

Thus separation by instantaneous cues is done early within
AERS. However, sounds separable only by temporal/sequential
cues or by a combination of two or more features cannot be segre-
gated by these stream-segregation mechanisms.

6.2. Temporal heuristic analysis

The temporal/sequential heuristic processes hypothesized by
Bregman (1990) attempt to account for the contribution of the pre-
viously detected active sound sources and identify the onset of
new streams from the residual signal. This mode of processing
has been termed the old + new strategy. Consequences of the pri-
macy of accounting for the continuation of previously detected
streams are demonstrated by the continuity illusion (Riecke
et al., 2008) and the phonemic and other auditory restoration
effects (Samuel, 1981; Shinn-Cunningham & Wang, 2008). The
heuristic processes summarized in the box titled ‘‘Temporal
Heuristic Analysis’’ (Fig. 3) receive their input from initial sound
analysis (as suggested by, e.g., the continuity illusion) and from
the grouping processes evaluating simultaneous cues.
Temporal/sequential grouping processes utilize the predictions
generated by the representations of previously detected regulari-
ties depicted in the ‘‘Predictive Model’’ component.
Temporal/sequential processing occurs probably in parallel with
the initial grouping by simultaneous cues as was suggested by
the results of Bendixen et al. (2009), who found that during the ini-
tial 50 ms following the onset of a fully predictable tone, electrical



Fig. 3. Functional model of the formation of Auditory Sensory Representations. The feature-analyzed sound input enters the processes grouping sounds by (a) Simultaneous
Cues and (b) Temporal/Sequential Heuristics. The outcome of initial grouping can serve Target Detection based on a single feature. Also, the same information is passed onto
the temporal/sequential grouping process. The two types of grouping processes produce candidate groups. Competition between these groups is Resolved, which allows for
Finalizing Streams and Integrating Features. The output of Sensory Stimulus Representation is compared with predictions from the Model and Evaluation within the context
(see Figs. 1 and 4).
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brain potentials were similar irrespective of whether the sound
was actually presented or not. In contrast, the omission of an only
temporally predictable tone (i.e., one’s whose pitch was not pre-
dictable) elicited an ERP response that differed from the response
elicited by the actual sound. Compatible results were obtained by
Friston and Kiebel’s (2009) whose hierarchical dynamic Bayesian
model yielded a (simulated) percept for an expected but omitted
chirp that mimicked the (simulated) percept when the chirp was
actually presented to the model. These results indicated the func-
tioning of an early temporal grouping process utilizing predictions
for upcoming sounds.

There is also evidence for interaction between the two types of
grouping processes (Bendixen, Jones, Klump, & Winkler, 2010;
Dyson & Alain, 2008a, 2008b; Dyson, Alain, & He, 2005). For exam-
ple, Bendixen, Jones, et al. (2010) found that the amplitude and
scalp topography of the ORN elicited by complex tones with one
mistuned partial was modulated by the probability of mistuned
complex tones in the sequence. Interactive processing of simulta-
neous and temporal cues was also demonstrated by studies using
behavioral measures (e.g., Ciocca & Darwin, 1999; Darwin, Hukin,
& Alkhatib, 1995; Lee & Shinn-Cunningham, 2008a, 2008b;
Steiger & Bregman, 1982; Teki, Chait, Kumar, von Kriegstein, &
Griffiths, 2011).

Thus the old + new strategy could be implemented by compar-
ing predictions from the previously detected regularity representa-
tions with the incoming sound. Predictions from the model are set
on a number of different time scales, in accordance with the
diverse temporal basis of the simultaneously active regularity rep-
resentations. Each of the regularities sets up its own ‘‘unit’’ or tem-
poral chunk of the auditory input. For example, segmental and
syllabic units of speech are in the range of 20-80 and 150-300 ms
(Poeppel, Idsardi, & van Wassenhove, 2008), whereas the melodic
and stress patterns of speech may extend to much longer periods.
Thus the analysis of the input must use different temporal chunks
or integration periods (Boemio, Fromm, Braun, & Poeppel, 2005;
Grimm & Schröger, 2007; Hickok & Poeppel, 2007; Nelken et al.,
2003; Poeppel, 2003; Poeppel et al., 2008). One well-known inte-
gration period, which is ca. 200 ms long, is termed the temporal
window of integration (TWI). A large number of perceptual phe-
nomena have been related to this TWI, such as loudness summa-
tion, detection masking, etc. (for a review, see Cowan, 1984; for a
quantitative model, Zwislocki, 1969). It is thus no surprise that
deviance detection also shows effects related to the TWI, such as
the detection of omissions from more or less isochronous sound
sequences (Yabe et al., 1998) and the integration/separation of clo-
sely spaced deviating events (Czigler & Winkler, 1996; Sussman,
Winkler, Ritter, Alho, & Naatanen, 1999). Studies contrasting audi-
tory streaming and temporal integration demonstrated that
streaming precedes temporal integration (Sussman, 2005; Yabe
et al., 2001). That is, temporal integration occurs within, but not
across streams.

6.3. Competition and establishing the perceived sound organization

Bregman (1990) likened the process of selecting one of the alter-
natives to ‘‘voting’’, where the decomposition of the input that
receives the most support from the grouping processes (i.e., many
of the grouping processes lead to computing this solution) becomes
dominant and it is embraced by the system. This process is marked
in Fig. 3 as ‘‘Resolving Competition between Alternative Sound
Organizations’’. Considering the structure of this competition,
Winkler et al. (2012) suggested that regularity representations (ter-
med proto-objects by Winkler et al., 2012) compete when they pre-
dict the same sound at the same time (termed collision). This local
form of competition allow the emergence of full sound organiza-
tions (coalitions of proto-objects), which are compatible with each
other in the sense Bregman (1990) suggested. Assuming that when
two proto-objects collide, they mutually inhibit each other, Mill
et al. (2013) showed that compatible proto-objects become
‘‘weak/strong’’ (see below) together in the auditory streaming
sequences. That is, whereas the proto-object describing the inte-
grated percept (A-B-A) collides with both of the proto-objects
describing the two segregated streams (A---A and B-------B), the
latter never collide with each other. Thus, when the integrated
proto-object is dominant (i.e., it is perceived), it suppresses both
segregated proto-objects; when it is weakened (by adaptation
and noise), the two segregated proto-objects become stronger and
together they suppress the integrated proto-object (as suggested
by Bregman, 1990). One or the other of them becomes dominant
(perceived in the foreground) while the other is perceived in the
background (i.e., it is not suppressed, as opposed to when the inte-
grated proto-object is dominant). These features of Mill et al. (2013)
computational model fully match the perception of the auditory
streaming sequences. Further, this notion is also compatible with
results suggesting that both redundant and contradictory predic-
tions can be generated for some stimulus sequences (Horváth
et al., 2001; Pieszek, Widmann, Gruber, & Schröger, 2013;
Widmann, Kujala, Tervaniemi, Kujala, & Schröger, 2004).

The voting process (competition) is based upon some ‘‘strength’’
(termed activation by Mill et al., 2013) measure of the alternative
groupings (proto-objects). Strength is provided by the regularity
representation supporting the given alternative. It may depend



Fig. 4. Functional model of sound evaluation and model maintenance.
Continuations of streams found during the formation of Auditory Sensory
Representations are compared with predictions from the currently Active
Regularity Representations of the Model. The outcome of the Comparison process
updates the corresponding regularity representations as well as informing the
Evaluation process. Sounds for which no predictions existed Initiate the formation
of a new regularity representation, which is initially in a dormant state, until its
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on the type of regularity (representing learning through evolution
and individual experience) and also on the ‘‘reliability’’ of each
solution: solutions based on regularity representations whose pre-
dictions have often been met in the recent past are stronger than
alternatives based on regularity representations whose predictions
have not always been confirmed by the incoming sounds (for an
analysis of the MMN literature on this issue, see Winkler, 2007).
Thus prediction error influences the selection between alternative
groupings/organizations by decreasing the strength of the related
alternatives in the competition. This notion is also compatible with
the ‘‘model optimization by minimizing prediction errors’’ princi-
ple of predictive coding theories, specifically with a
Bayes-optimal (Robert, 2007) variant of model selection (i.e., the
winning model provides the greatest evidence or minimum sur-
prise, such as that described by Friston & Kiebel, 2009).9

In AERS, the output of the ‘‘Finalizing Streams and Feature
Integration by Streams’’ box can be consciously perceived
(Fig. 3). In many cases, the solution is (almost) unequivocal (unam-
biguous auditory scenes). That is, one of the alternatives receives
far greater support than any of the others. However, it is also pos-
sible that two or more alternative solutions get substantial support
from the grouping processes (ambiguous auditory scenes). In this
case, perception will fluctuate between the alternatives and, unlike
in unambiguous cases, one may voluntarily choose one perception
over the other. Thus voting can be biased by top-down effects, but
only to a certain degree; that is, one cannot choose an arbitrary
solution against an existing dominant stimulus-driven one. This
is supported both by results of a large number of behavioral (e.g.,
van Norden, 1975) and electrophysiological studies (e.g.,
Sussman, Winkler, Huotilainen, et al., 2002; Winkler et al., 2006).

6.4. Finalizing feature integration

Once the dominant sound organization is selected, the
feature-combinations making up the sounds appearing in the dom-
inant organization are bound together, separately for each of the
concurrent sounds, thus creating sound representations, which
are inherently linked to auditory streams. Although some influen-
tial theories based on visual experiments suggest that feature inte-
gration requires focused attention (e.g., Treisman, 1998; see,
however, e.g., Duncan & Humphreys, 1989; Winkler, Takegata, &
Sussman, 2005), several studies investigating auditory feature
binding found that it can occur even in the absence of focused
attention (Gomes, Bernstein, Ritter, Vaughan, & Miller, 1997;
Sussman, Gomes, Nousak, Ritter, & Vaughan, 1998; Takegata,
Huotilainen, Rinne, Näätänen, & Winkler, 2001; Takegata,
Paavilainen, Näätänen, & Winkler, 1999; Takegata et al., 2005;
Winkler et al., 2005). However, there is also evidence showing that
under some circumstances, the integration of auditory features
may not work correctly and illusory feature conjunctions emerge
(Hall, Pastore, Acker, & Huang, 2000; Thompson, Hall, & Pressing,
2001). For example, when two or more sounds differing both in
pitch and timbre are presented in a concurrent array, listeners
may identify sounds as being part of the array that have the pitch
of one sound and the timbre of another sound from the array.
Takegata et al.’ (2005) results suggest that correct automatic inte-
gration of features occurs also in such cases. Therefore, miscombi-
nation of the features may occur during task-related processes.
One possible explanation is that listeners use strategies relying
on the processes of ‘‘feature-based target detection’’. That is, when
the sounds can be segregated by one of the two features, this fea-
ture may become the primary cue for the listener in performing a
9 Note that Bayes-optimal model selection alone does not explain the
bi-/multistable phenomena found in auditory streaming. Adaptation and noise are
also required for dominance switches (Mill et al., 2013; Shpiro et al., 2009).
conjunction-search task. A comparison between the results of
Thompson et al. (2001) and those of Woods and colleagues
(Woods & Alain, 2001; Woods, Alain, & Ogawa, 1998) supports this
interpretation.

At this point in auditory processing, the sensory representation of
the incoming sound(s) is complete and it now enters the processes
establishing which regularity representations accurately predicted
the behavior of the auditory environment (‘‘Comparison’’ in Figs. 1,
3 and 4). Furthermore, the sensory description of the auditory input
can now be evaluated with respect to the current goals of the organ-
ism (see ‘‘Evaluation’’ in Figs. 1 and 4) and those parts of the acoustic
input for which no prediction existed (residue) can be identified.

6.5. Deviance detection

The output of the feature-integration operation is compared
with the predictions produced by the active regularity representa-
tions. The outcome of this comparison is used (1) for adjusting the
reliability value of the regularity representations (thus affecting
their weight in the competition between alternative sound organi-
zations) and (2) for providing the sensory representation of the
incoming sound with information about its relationship with the
auditory context (i.e., how well it fit the various regularities
detected for the acoustic environment). Although the two func-
tions are compatible, as was noted earlier, Winkler and Czigler
(1998) showed that the deviance detection signal reflected by
MMN is primarily related to adjusting the regularity
representations.

In terms of information, deviation from what has been inferred
from the generative model represents the new information content
of the acoustic event. Thus the sound representations produced by
AERS carry with them a description of how much acoustic informa-
tion they contain. Of crucial importance to the above description of
predictive value is confirmed). Dormant regularity representations can also be
(re)activated by their behavioral relevance through the evaluation process. In turn,
active regularity representation become dormant through updating, if their
prediction is violated several times or if no corresponding auditory input is
received for a longer period of time (relative to the predicted timing).



10 Note, however, that as of yet no evidence relates these ERP components directly
to the formation of new regularity representations. Furthermore, P1, N1, and P2 are
elicited by all sounds with a sufficiently abrupt onset; although as was noted, their
amplitude is higher, when the incoming sound largely differs from previous sounds.
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deviance detection is that the sound events separated in the audi-
tory sensory representation are only compared with the regulari-
ties that apply to the stream they belong to. This was confirmed
by Ritter and colleagues (Ritter, de Sanctis, Molholm, Javitt, &
Foxe, 2006; Ritter, Sussman, & Molholm, 2000), who presented a
sound sequence made up from two distinct sets of tones differing
from each other on several features, among them tone duration.
The two sets of sounds segregated in perception. Occasional
sounds with a duration differing from the regular sound durations
in either stream only elicited MMN with respect to the stream with
which they shared all other auditory features. In contrast, a tone
differing in duration from both of two frequently presented tones
within the same stream elicits two separate MMNs, one for each
of the regular tones (Sussman, Sheridan, Kreuzer, & Winkler,
2003; Winkler, Karmos, et al., 1996). Studies delivering sound
sequences with some regularity that could only be discovered
when the sound sequence was organized in a specific way found
that MMN was only elicited, when participants perceived the
sound sequence in the given way (Sussman, Horváth, Winkler, &
Orr, 2007; Sussman, Ritter, et al., 1999; Sussman, Winkler,
Huotilainen, et al., 2002; Winkler, Kushnerenko, et al., 2003;
Winkler, Sussman, et al., 2003; Winkler et al., 2006). These results
strongly support the hypothesis that deviance detection occurs
separately within each stream. Furthermore, Bendixen, Denham,
et al. (2010), Bendixen et al. (2013) and Bendixen, Denham, et al.
(2014) found that when a regularity is only discovered when the
sounds are organized in a given way, but not within the alternative
sound organizations, the presence of this regularity extends the
dominance periods of the given organization. Bendixen, Denham,
et al. (2010) interleaved two tone sequences separated in pitch.
Listeners reported perceiving segregation for longer periods of
time when separately, each sequence consisted of repeating tone
patterns as compared with when the order of the tones was ran-
domized separately in each sequence. Together, the MMN and per-
ceptual data suggest that repeating patterns are only extracted for
streams segregated by other regularities. But once such regularities
are discovered, they further support stream segregation and
deviance detection.

In summary, the output of AERS not only provides a finely
resolved description of the sound event, but also places this event
into the context of currently known auditory streams and marks
how well it fits the sounds preceding it. That is, the deviance detec-
tion system functions as a filter, flagging each sound that carries
new information about its source.

6.6. Maintenance of the model

The acoustical environment is in constant flux. New sources
become active, whereas active sources may discontinue or change
their emission; sources may synchronize or fall out of synchrony.
Thus the regular characteristics of the input change all the time.
Therefore, the model of the auditory environment requires con-
stant maintenance.

Fig. 4 depicts the functions involved in maintaining and updat-
ing the model of the auditory environment. Of crucial importance
is the separation of the continuation of streams for which the
model already contains representations and the residue, the
sounds which did not fit into any of the previously detected
streams. When streams are finalized, after competition between
the alternative groupings has been resolved, the two types of infor-
mation are separated. Fig. 4 depicts the two types of information as
‘‘Old’’ (continuation of a known stream) and ‘‘New’’ (residue). The
continuation of previously detected streams is used to adjust the
regularity representations of the corresponding stream. Just
because the given sound has been found to continue the stream,
it does not mean that all the regularity representations of the given
stream correctly predicted this sound. Therefore predictions for
each regularity representation belonging to the stream are com-
pared with the sound continuing the stream in parallel and adjust-
ments are made accordingly. The residue requires the formation of
new regularity representations or the reactivation of an existing
but dormant one (Fig. 4). This process is modulated by contextual
information through the ‘‘Evaluation’’ function.

As was already mentioned in Section 4, the representations of
those regularities whose predictions are met by the incoming stim-
ulus acquire additional weight as their validity extended in time. In
contrast, when a given prediction is not met, then the generative
model needs to be updated, as its value for successfully anticipat-
ing auditory events has been reduced (Fig. 4). Regularity represen-
tations referring to the same sound stream may be fully
independent of each other; that is, they describe different aspects
of the sound stream. The updating of such regularity representa-
tions takes place independently. For example, when two tones
with different pitch but uniform duration are alternated, a tone
may fit both regularities, violate the constancy of duration, but cor-
rectly continue the pitch alternation and vice versa or, violate both
regularities. In such cases, multiple regularity violations have been
shown to elicit additive MMN components (Alain, Achim, & Woods,
1999; Levänen, Hari, McEvoy, & Sams, 1993; Schröger, 1995, 1996;
Takegata, Huotilainen, et al., 2001; Takegata, Paavilainen,
Näätänen, & Winkler, 2001; Takegata et al., 1999; Winkler &
Czigler, 1998; Winkler, Karmos, et al., 1996). In contrast, violating
regularities based on related auditory features, such as multiple
temporal or spectral regularities, interfere with each other, typi-
cally resulting in subadditivity between the MMN components
(Alain, Cortese, & Picton, 1999; Czigler & Winkler, 1996;
Takegata, Paavilainen, et al., 2001).

New regularity-representations are created for the newly
emerging sound sources, the emission of which shows up as resi-
due after the continuation of the known regularities have been
accounted for (Fig. 4). Bendixen et al.’s (2009) results shed some
light on the possible timing of the onset of this process. These
authors found that when an exact prediction is available for the
incoming sound, the ERP response elicited by omitting this sound
is not significantly different from that elicited by the sound itself
within ca. 50–80 ms from the (expected) onset of the sound. This
suggests that the continuation of known regular streams is
assessed within this period of time and the residue becomes avail-
able by the end of this period. Starting at about this time, a series of
auditory cortical ERP components (P1, N1, and P2) can be recorded
from the scalp, all of which are sensitive to large acoustic changes
in a sequence or sounds presented after long silent periods
(Näätänen, 1992; Näätänen & Picton, 1987). We tentatively suggest
that these ERP components may reflect processes involved in
building a representation for new auditory objects.10 In agreement
with this notion, a part of the N1 wave is known to be elicited with
quite large amplitude by a stimulus delivered after a long silent per-
iod then sharply decreasing within the first few sounds of a new
train and reaching an asymptotic level after 4–5 sounds (Cowan
et al., 1993; Näätänen & Picton, 1987). This sequence of events is
compatible with the assumed phases of establishing a new regularity
representation (see Section 4). Furthermore, stimuli eliciting an N1
of high amplitude are likely to capture attention (Näätänen, 1990;
Näätänen et al., 2011), which agrees with one’s everyday experience
of noticing new sound sources. Also, N1 is increased for familiar
sounds (Kirmse, Jacobsen, & Schröger, 2009). Familiar sounds are
more likely to enter consciousness (see e.g., hearing one’s own name
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in an unattended channel; Cherry, 1953). Finally, the N1 response is
highly sensitive to the direction of focused attention, which is com-
patible with the assumed top-down influence on detecting new
sound sources (Hillyard, Hink, Schwent, & Picton, 1973).

As was described in Section 4, regularity representations can be
in a dormant state either because the number of sounds conform-
ing to the given regularity has not yet reached the required level or,
because no sounds meeting the regularity have been encountered
for some time. The residue may, however, contain a sound con-
forming to a dormant regularity. In this case, the regularity is reac-
tivated (Winkler & Cowan, 2005; Fig. 4).

Both the formation of new regularity representations and the
reactivation of a dormant one can be influenced by top-down pro-
cesses, including attentional effects (for the interaction of predic-
tion and attention in audition, see Schröger, Marzecová, &
SanMiguel, 2015). The relation of the incoming sound to the con-
text is part of the auditory event representation, the outcome of
AERS. This includes how well it fit the existing regularities (possi-
ble prediction errors) thus allowing evaluation of the sound infor-
mation with respect to the larger context (including behavioral
goals). In response, higher levels of the perceptual/cognitive sys-
tem can adjust the functioning of AERS by forcing it to look for cer-
tain regularities or to reactivate ones, which have become dormant
based on stimulus (bottom-up) information alone. Note that the
output of the ‘‘Comparison’’ function as specified here is not iden-
tical to prediction error in predictive coding models. We separated
prediction error into two parts: mismatch between the prediction
and the actual continuation of the stream (the ‘‘-’’ branch in the
‘‘Old’’ route; MMN ERP response) and the residue triggering the
formation of a new or reactivating a dormant regularity (the
‘‘New’’ route; possibly related to some subcomponent of the N1
ERP response). Within a hierarchical predictive coding model, the
former can be addressed locally (within the same level in the hier-
archy), whereas the latter requires intervention from higher levels.

Overall, the maintenance of the generative model must ensure
that the functional module can quickly adapt to changes in the
acoustic environment while keeping its predictive value high all
the time. Redundancies in the model, the possibility to reuse out-
dated regularities, as well as maintaining each of the regularity
representations in parallel allows AERS to mark new information
for subsequent processing.
7. Comparison with existing models of predictive processing in
perception

The assumption of predictive processing is not unique to AERS.
For example, predictive modeling theories are based on the same
assumption. Garrido and colleagues’ (Garrido, Kilner, Stephan, &
Friston, 2009; Lieder et al., 2013) and Wacongne and colleagues
model (Wacongne, Changeux, & Dehaene, 2012) of ERP responses
elicited in the auditory oddball paradigm come closest to the cur-
rent description. These models have been created to explain the
observable MMN response in some specific cases of deviance
detection basing on the known neurophysiological properties of
the auditory system. However, while these models might be rela-
tively easily extended to cover different auditory features and
some additional regularities, as of yet, no attempt has been made
to generalize them to the large variety of regularities, whose viola-
tion elicits the MMN response. Further, neither model addresses
most of the other issues covered by AERS (model build-up, reacti-
vation, separating the updating of existing models from the forma-
tion of a new one, or auditory stream segregation, in general) and
does not provide a psychological interpretation of the assumed
processes. In contrast, AERS covers all of the known regularities,
at the cost of relinquishing the neural specificity of the models
mentioned above. Thus the two approaches are complementary
and may provide synergy in the future. One possible link has been
suggested by Winkler and Czigler (2012), who suggested that
deviance detection, as reflected by MMN may fit as an intermediate
level into a hierarchical predictive coding model. Pre-MMN ERP
responses elicited by simpler forms of deviations (for reviews,
see Malmierca, Sanchez-Vives, Escera, & Bendixen, 2014, and
Grimm & Escera, 2012) may reflect lower levels of the hierarchy.

Kiebel, von Kriegstein, Daunizeau, and Friston (2009) developed
a predictive-coding based computational model online recognizing
tokens in a hierarchically structured continuous sound. This model
has some of the capabilities we assume for the initial build-up of
an auditory model including segmentation of continuous sounds,
a feature not addressed in (but obviously necessary for) AERS.
Thus we regard this model as a possible implementation of some
of the functions of AERS. However, again, this model does not con-
sider auditory stream segregation. In contrast, no previous theory
or model of auditory stream segregation (Anstis & Saida, 1985;
Bregman, 1990; Carlyon, 2004; Jones & Boltz, 1989; Schwartz
et al., 2012; Shamma, Elhilali, & Micheyl, 2011; Snyder & Alain,
2007) allocates a role for predictive processing. Recently, Mill
et al. (2013) based their computational model on the ideas
described here; we have already referred to their work in previous
sections. Finally, the notion that predictions are an essential aspect
of information processing has been considered by modern theo-
rists, such as Bar (2004, 2007), Summerfield and Egner (2009),
and elements of it also appear in Gregory’s (1980) and Ahissar
and Hochstein’s (2004) work. Our description is compatible with
many of these ideas. Unfortunately, these general theories are lar-
gely based on visual perception, providing little guidance for solv-
ing the special problems of auditory perception.

Results of a series of studies suggest that predictive confidence
(our term) or precision (Feldman & Friston, 2010) do not fully
describe the stimulus-driven determinants of the MMN amplitude.
Todd and colleagues (Mullens et al., 2014; Todd, Heathcote,
Mullens, et al., 2014; Todd, Heathcote, Whitson, et al., 2014;
Todd, Provost, & Cooper, 2011; Todd, Provost, Whitson, Cooper, &
Heathcote, 2013) have repeatedly observed that when the roles
of two sounds as frequent standard and rare deviant are periodi-
cally exchanged, only the configuration encountered first follows
the principle of improved predictive confidence/precision with
greater stability of the configuration (i.e., longer periods within
which the same standard-deviant configuration remains the same)
but not the reversed role configuration, which initially appears
after the first role change between the two sounds. The authors
refer to this asymmetry as ‘‘primacy bias’’. It probably stems from
the different relevance attached to the repetitive and the rare
sound by the brain, as the bias can also be manipulated by assign-
ing behavioral relevance to one or the other sound, even when they
are first encountered by the listener in a sequence in which the two
sounds appear with equal probability (Mullens et al., 2014). If this
was the case, then within AERS, primacy bias appears through the
evaluation function, which takes into account the contextual rele-
vance attached to each sound by higher-level functions.
8. AERS issues related to communication by sound

We started our review by pointing out that communication
requires the maintenance of an open channel between the parties.
Here we break down this general function for the auditory modal-
ity and describe the role of AERS in implementing them in humans.

First, one should consider that often multiple sources are active
concurrently and the listener needs to distinguish them in order to
being able to follow one (or a few) of these communication chan-
nels. Segregating sound sources, including speakers, is the primary
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function of AERS. As was suggested before, we regard the regularity
representations as forming the core of auditory perceptual objects
(Winkler et al., 2009). They encode the characteristic auditory fea-
tures detected for the sound source, allowing the system to deter-
mine which part of the incoming sound was likely generated by
this source. The output of AERS is the earliest internal sound repre-
sentation that can be identified, monitored, processed as a speech
stream, etc.

Once the sources are distinguished, they can be identified.
Identification of sound sources naturally lies outside AERS.
However, it affects the AERs as it allows learned information about
the given type of source to fine-tune the predictive model. For
example, if the source is a bird, we expect chirping sounds (expe-
rience with the exact species may allow even more specific predic-
tions). This knowledge can affect AERS via the Evaluation function,
biasing the build-up and reactivation of models. Source (speaker)
identity is even more crucial for speech perception. Typically,
coherent messages come from a single speaker (or, possibly, sev-
eral speakers speaking in concert – such as a choir; which can be
regarded as single sound source). The acoustic features identifying
the speaker are encoded in the regularity representations of AERS.
This information is relied on by the semantic processes of speech
perception. In turn, syntactic and semantic information may allow
much sharper predictions for upcoming sounds. Although predic-
tive processes have been hypothesized for language processing,
most studies and models consider reading and possibly sign lan-
guage, but not speech per se. However a predictive framework for
speech processing has been developed by Kotz and colleagues
(Kotz & Schwartze, 2010; Kotz, Schwartze, & Schmidt-Kassow,
2009; Rothermich & Kotz, 2013; Sammler, Kotz, Eckstein, Ott, &
Friederici, 2010) that is compatible with the idea that AERS regu-
larity representations may be specified by predictions based on
syntactic or semantic predictability.

The next issues to be solved are whether the message is direc-
ted to us and if so, does it require a response. Although the first
information is typically resolved by the general context, at least
in infants, the mode of speech (infant vs. adult directed speech)
has a significant effect on whether the infant regards him/herself
as the addressee of the message (Senju & Csibra, 2008). Prosody
generally tells whether the message contains a question. Prosodic
regularities are encoded in AERS, as was shown by studies testing
prosodic violations (e.g., Honbolygó, Csépe, & Ragó, 2004; Leitman,
Sehatpour, Shpaner, Foxe, & Javitt, 2009; Tong et al., 2014). Thus
AERS serves as a source of prosodic information to speech process-
ing and, in return, prosodic regularity representations in AERS may
be modulated by syntactic information.

Finally, conversations require mutual adaptation from the par-
ticipants. This includes turn-taking as well as co-adapting their
rhythms of speech (Jaffe, Beebe, Feldstein, Crown, & Jasnow,
2001). The temporal aspects of sound sequences, including stimu-
lus rate and rhythmic structures are also represented in AERS.
Changes in a regular inter-stimulus interval (e.g., Nordby, Roth, &
Pfefferbaum, 1988), train offsets (e.g., Bendixen, Scharinger, et al.,
2014; Horváth, Müller, Weise, & Schröger, 2010; Yabe et al.,
1998), and violations of higher-order rhythmic (Ladinig, Honing,
Háden, & Winkler, 2009) elicit MMN responses. Thus, AERS can
play an important role in providing information about response
timing.

From our point of view, speech is only one of many possible
communication channels. Once the channel is established, the pre-
dictions are assumed to foster the processing of the information
delivered via the channel. In the case of speech, one can hardly
imagine that production and perception can work without genera-
tive models; consider, e.g., the German sports reporter Heribert
Fassbender, who could articulate up to 26 phonemes per second,
and listeners were still being able to comprehend it (N. Blotzki,
unpublished Master Thesis, Bonn University). Another benefit of
predictions is that they help to detect new acoustic information
communicated by the channel: through deviance (irregularity)
detection, an inherent property of AERS, we may quickly learn
about a change of the speaker or a change in the speaker’s state
(by detecting changes in voice characteristics).
9. Limitations of AERS and future directions

The goal of this review has been to outline a common theoret-
ical framework for conceptualizing phenomena observed in studies
of auditory scene analysis and deviance detection. As most theoret-
ical frameworks, the current one is also bound in two different
ways: (1) self-imposed limitations regarding the width and depth
of the discussion and (2) limitations imposed by the experimental
data considered. We already referred to the first in Introduction.
We did not review the extensive literature in psychology, acous-
tics, and neuroscience on early auditory processing. We assume
that preprocessed auditory information is available at the input
of AERS. Similarly, we did not attempt to outline higher cognitive
systems which utilize the information from AERS and can adjust
its operation.

It is perhaps more important to consider, how the empirical evi-
dence forming the basis of the current review may limit its scope.
Most studies referred in the current review (and also in the litera-
ture in general) deal with stimulus configurations, which are far
simpler than almost any real-life auditory scene. Specifically,
streams in these studies differ from each other by one (in a very
few cases two or three) primary auditory features. The same is true
for the separation between standard and deviant sounds in most
deviance-detection studies. Furthermore, the test sounds are usu-
ally short and they seldom fully overlap each other in time; thus
promoting discrete sounds as easily discernible units of the incom-
ing sound. Does this mean that the functions and principles
described in AERS are only valid for such simplified stimulus con-
figurations? Perhaps not. There is no reason to assume that either
auditory streaming or deviance detection would work differently
when the sounds are separated by complex spectro-temporal char-
acteristics. For example, Winkler, Teder-Sälejärvi, Horvath,
Näätänen, and Sussman (2003) delivered to participants sequences
composed of 11 different natural footstep sounds. Ten of these
sounds were similar and presented in an approximately even
rhythm, thus giving the impression of someone walking. The
remaining one sounded as if someone stepped onto a different sur-
face. Although there were no easy-to-define spectral or temporal
differences between the two types of footstep sounds, when the
different-surface footstep was presented in the 10th position in
the footstep sequence, it elicited the MMN. MMN was elicited
despite the fact that the participant watched a movie with sounds
and street noise was also continuously delivered to the room
through loudspeakers. This result demonstrates that the deviance
detection system can also utilize complex auditory features within
a natural sound environment as for detecting the deviation, the
sequence of footsteps had to be segregated from two other contin-
uous streams of sound (street noise and the sound of the movie),
both of which covered a wide spectral range, fully overlapping that
of the footstep sounds. Thus auditory streams fully overlapping in
time and in the spectrum were segregated from each other (for
streaming by complex feature differences, see also, Iverson,
1995; for extracting sounds fully embedded in other sounds, see
e.g., Chait, 2014; McDermott, Wrobleski, & Oxenham, 2011; Teki,
Chait, Kumar, Shamma, & Griffiths, 2013; Teki et al., 2011).

Deviance detection for speech sounds works similarly to other
types of sounds with phonetic features showing categorical effects
with respect to the languages spoken by the listener (for reviews
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see, Bishop, 2007; Näätänen, 2001; Pulvermüller & Shtyrov, 2006;
Rimmele, Sussman, & Poeppel, 2015). Speaker and speech segrega-
tion from noise and from other speakers has been extensively stud-
ied in the literature (e.g., Culling & Summerfield, 1995; de
Cheveigné, Kawahara, Tsuzaki, & Aikawa, 1997; de Cheveigné,
McAdams, & Marin, 1997; for the engineering point of view see,
e.g., Loizou, 2007). However, speech/speaker segregation is typi-
cally not an auditory-only function, as understanding speech
allows one to sharpen predictions for upcoming sounds. As was
already noted in Introduction, such effects are fully compatible
with AERS. They are conceptualized as higher-level models in a
possible predictive coding hierarchy affecting model selection
and parameters in AERS through the ‘‘Evaluation’’ function.

Forming and maintaining regularity representations in AERS do
not depend on the feature underlying the regularity. However,
AERS does not include mechanisms promoting the emergence of
context-specific features (e.g., by plastic changes in the
spectro-temporal receptive fields of groups of afferent neurons).
It is possible that long-term learning effects shape what features
are picked up by our auditory system. Further, although our
description focuses on the temporal/sequential cues of auditory
stream segregation, we also considered stream segregation by
spectral/concurrent cues. As for finding sound units within a real-
istic auditory scene, together with Nelken et al. (2003), we main-
tain that sound is analyzed on multiple time scales in parallel,
thus allowing parallel formation of regularities based on different
units. There exist some computational models capable of segment-
ing continuous sounds (Coath, Brader, Fusi, & Denham, 2005;
Kiebel et al., 2009). One exciting future direction will be to connect
them with computational models based on AERS (Mill et al., 2013).
Larger units can then be built from smaller ones, as was reviewed
in Section 4.2. Thus the simplified stimulation employed in most
studies of auditory stream segregation and deviance detection does
not appear to limit the generality of the functions assumed for
AERS. On the other hand, we acknowledge that the current descrip-
tion did not explore the effects of task- and knowledge-based
strategies on auditory streaming and deviance detection. AERS
includes several different ways in which top-down influence can
affect its operation. Specifying these effects is an exciting direction
for further research (see, e.g., Niessen, van Maanen, & Andringa,
2008).

In summary, AERS is aimed at capturing the intelligent dynamic
aspects of auditory perceptual processing, which allows – para-
phrasing Köhler’s famous sentence – naïve and uncritical listeners
to effortlessly experience the auditory world as organized and to
select from it meaningful, identifiable objects at will. So, finally,
one can say that we listen to sounds through our AERS.
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