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SUMMARY

Notch receptors transduce essential develop-
mental signals between neighboring cells by
forming a complex that leads to transcription of
target genes upon activation. We report here
the crystal structure of a Notch transcriptional
activation complex containing the ankyrin do-
main of human Notch1 (ANK), the transcription
factor CSL on cognate DNA, and a polypeptide
from the coactivator Mastermind-like-1 (MAML-
1). Together, CSL and ANK create a groove to
bind the MAML-1 polypeptide as a kinked, 70 Å
helix. The composite binding surface likely
restricts the recruitment of MAML proteins to
promoters on which Notch:CSL complexes
have been preassembled, ensuring tight tran-
scriptional control of Notch target genes.

INTRODUCTION

Notch and its homologs define a unique class of highly

conserved single-pass transmembrane receptors that

anchor a metazoan signaling pathway that regulates cell

growth, development, and death in a variety of tissues

(Artavanis-Tsakonas et al., 1999). Genetic studies examin-

ing the role of Notch in different developmental contexts

indicate that even small changes in the strength of Notch

signals are sufficient to cause malformations and defects

in tissue homeostasis. In addition, a variety of human pa-

thologies result from mutations affecting certain of the

four mammalian NOTCH receptors (NOTCH1–4) or their

cognate ligands. For example, germline loss-of-function

mutations in NOTCH1 cause congenital aortic valve dis-

ease (Garg et al., 2005), mutations of NOTCH3 result in

an adult onset vasculopathy called CADASIL (Joutel

et al., 1996), and loss-of-function mutations in the Notch
ligand JAGGED1 are found in Alagille syndrome, which is

characterized by pleiotrophic developmental abnormali-

ties (Li et al., 1997; Oda et al., 1997). Conversely, somatic

gain-of-function mutations in NOTCH1 occur in more

than half of human T cell acute lymphoblastic leukemias

(T-ALL; Ellisen et al., 1991; Weng et al., 2004), and other

studies indicate that aberrations in Notch signaling can

also contribute to neoplasia of the skin (Nicolas et al.,

2003), breast (Uyttendaele et al., 1996), and gut (Fre

et al., 2005; van Es et al., 2005).

Notch signaling is initiated when a ligand of the Delta,

Serrate, and Lag-2 (DSL) family expressed on one cell

binds to a Notch receptor on the surface of a neighboring

cell (Fehon et al., 1990). Upon ligand stimulation, Notch

undergoes regulated intramembrane proteolysis, which

permits its intracellular portion (ICN) to translocate to the

nucleus (De Strooper et al., 1999; Struhl and Grenwald,

1999; Ye et al., 1999). ICN then induces transcription of

target genes by driving the assembly of a transcriptional

activation complex that includes a DNA bound transcrip-

tion factor called CSL (for CBF-1, suppressor of hairless,

and Lag-1; Fortini and Artavanis-Tsakonas, 1994) and

a coactivator protein of the Mastermind-like (MAML) family

(Petcherski and Kimble, 2000a; Wu et al., 2000).

Genetic and biochemical studies have defined the

regions of CSL, ICN, and MAML that are responsible for

functional interactions of these proteins with one another.

CSL is a highly conserved protein comprised of N-terminal

and C-terminal Rel homology domains and a central

b-trefoil domain that bindsDNA ina sequence-specific fash-

ion (Kovall and Hendrickson, 2004; Tun et al., 1994). Like

other transcription factors that contain Rel homology do-

mains (e.g., NF-kB), CSL activity is regulated by the forma-

tion of a complex with a protein partner (ICN) that contains

a set of iterated ankyrin repeats (ANK). Although ICN can

bind CSL with high affinity through an N-terminal domain

called RAM, assembly of a functional transcriptional acti-

vation complex requires the presence of the ANK domain

(Lubman et al., 2004; Rebay et al., 1993; Roehl et al., 1996;
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Figure 1. Sequence Alignment and Electron Density

(A) Sequence alignment. Residues 13-74 of human MAML-1 aligned

with homologs from human (MAML-2 and MAML-3), mouse, Drosoph-

ila melanogaster, Xenopus laevis, and Caenorhabditis elegans. Helices

are marked with cylinders above the sequence, and the kink in the helix

is denoted with a blue arrow. Residues that are absolutely conserved

are orange. Blue and green colors denote sites with conserved and

semiconserved substitutions, respectively (ClustalW, http://www.ebi.

ac.uk/clustalw/). Colored circles above the sequence denote residues

that interact with ANK (purple) and/or CSL (orange).

(B) Electron density. View of a SigmaA-weighted composite omit map

of the MAML-1:ANK:CSL:DNA complex contoured at 1s after refine-
974 Cell 124, 973–983, March 10, 2006 ª2006 Elsevier Inc.
Roehl and Kimble, 1993), which also participates in CSL

binding (Jarriault et al., 1995; Kodoyianni et al., 1992; Kur-

ooka et al., 1998; Tani et al., 2001). Significantly, enforced

expression of ICN proteins that have ANK but not RAM are

capable of causing CSL-dependent Notch gain-of-func-

tion phenotypes (Aster et al., 2000; Jeffries et al., 2002;

Roehl et al., 1996), indicating that the essential domain

for the effector function of Notch at target promoters is

ANK. The capacity of ANK to activate CSL-dependent

transcription relies upon its ability to interact with a short

60–70 residue sequence at the N-terminal end of MAML

(Figure 1A) that is sufficient for assembly of complexes

that contain MAML, ICN, and CSL (Nam et al., 2003;

Petcherski and Kimble, 2000a; Petcherski and Kimble,

2000b). Once the complex is assembled, the C-terminal

portion of MAML not only contributes to transcriptional ac-

tivation through association with p300, RNA polymerase II,

and other unknown factors (Fryer et al., 2002; Wallberg

et al., 2002), but also limits the longevity of the assembled

complex by promoting the phosphorylation of ICN by

CDK8, which leads to rapid ICN turnover (Fryer et al., 2004).

A central unanswered question in Notch signaling re-

volves around how ICN recruits MAML to ICN:CSL com-

plexes. Remarkably, neither CSL nor the intracellular portion

of Notch1 (ICN1) alone binds detectably to MAML-1, but to-

gether they cooperate to bind MAML-1 with high affinity

(Nam et al., 2003; Petcherski and Kimble, 2000a; Petcherski

and Kimble, 2000b), suggesting two possible recruitment

mechanisms. First, binding of ANK to CSL could induce an

allosteric change that creates a MAML binding site, a mech-

anism analogous to the manner in which steroid hormones

induce conformational changes that make their receptors

competent for coactivator loading (Nettles and Greene,

2005; Shiau et al., 1998). Alternatively, the association of

ANK with CSL might create a novel composite binding site

for MAML. To distinguish between these possibilities, we

sought to solve structures of complexes consisting of the

three critical protein components—ANK, CSL, and the

N-terminal portion of MAML—assembled on cognate DNA.

RESULTS

We report here three structures determined by X-ray crys-

tallography: two of complexes that contain the ANK do-

main of human ICN1, residues 13–74 of human MAML-1,

and residues 9–435 of human CSL on different DNA du-

plexes, and a third of the ANK domain of human Notch1

solved to 1.55 Å resolution (Figures 1B and 2; Table 1

and Table S1 in the Supplemental Data available with

this article online). One of the complexes, a MAML-1:

ANK:CSL complex bound to an 18-mer blunt-ended

DNA duplex from the HES-1 promoter, crystallized in

ment to 3.25 Å resolution. Density around the MAML-1 polypeptide

is shown. (B) and Figures 2–5 were generated using Pymol software

(DeLano scientific; www.pymol.org). The coloring scheme for stick

representation in all figures is as follows: carbon—ribbon color, green,

yellow or gray; oxygen—red; nitrogen—blue; and sulfur—orange.

http://www.ebi.ac.uk/clustalw/
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Figure 2. Overall Structure of the MAML-

1:ANK:CSL:DNA Complex

(A and B) Molecular surface representation.

(C and D) Ribbon representation. Two views re-

lated by a 90 degree rotation are shown. The

ankyrin domain is colored purple; the MAML-1

polypeptide is colored dark green; and the

RHR-N, b-trefoil, and RHR-C domains of CSL

are colored light brown, gold, and orange, re-

spectively. The two DNA strands are colored

blue and cyan.
space group P6322 and diffracted to 3.25 Å. The other

complex, which was formed with a related 18-mer having

a two-base overhang, stacked via a pseudocontinuous

DNA helix in space group P43212 and diffracted anisotrop-

ically between 4.3 and 7.5 Å. Despite different DNA se-

quences and different crystal packing interactions in the

two complexes, there are no detectable differences in

the relative positions of the proteins. All interactions de-

scribed below are derived from the higher resolution struc-

ture with blunt-ended DNA.

Overview of the Structure

of the MAML-1:ANK:CSL:DNA Complex

CSL and the ANK domain of Notch1 combine to create

a binding groove that accommodates the MAML-1 poly-

peptide in a kinked helical conformation (Figures 2A and

2C). The N terminus of the MAML-1 polypeptide is located

60 Å from the DNA, but descends at an �45 degree angle

with respect to the DNA so that the last MAML-1 residue

resolved in the structure approaches to within 15 Å of

the penultimate phosphate group of the nearest DNA

strand. Although the ANK domain and the MAML-1 poly-

peptide are themselves elongated, the complex is globu-

lar overall (�80 � 60 � 50 Å), with a cleft separating the

DNA binding domain of CSL from the base of the ANK do-

main of Notch1 (Figures 2B and 2D).

The CSL protein in our complex has three domains, an

N-terminal RHR-N domain, a DNA binding b-trefoil do-
main, and a C-terminal RHR-C domain (Figure 2). The ex-

tended overall arrangement among the three CSL domains

does not change upon complexation with ANK and

MAML-1 from that observed in the Caenorhabditis elegans

CSL:DNA complex alone (Kovall and Hendrickson, 2004);

the CSL proteins of the respective complexes superim-

pose with a backbone rmsd of 1.12 Å (Figure S1), and

the interactions with DNA are preserved. The divergence

between the two complexes is primarily restricted to two

loops that are distant from both the partner proteins and

the bound DNA, with crystal packing forces clearly respon-

sible for the repositioning of one of them.

Our structure of the ANK domain from human Notch1

closely resembles the three other reported structures of

partial (Lubman et al., 2005) or complete (Ehebauer

et al., 2005; Zweifel et al., 2003) isolated Notch ANK do-

mains (Figure S2). In each structure of an entire isolated

Notch ANK domain including ours, repeats two through

seven of the ANK domain adopt the characteristic ankyrin

fold of two antiparallel a helices followed by a b hairpin or

a long loop that projects roughly perpendicular to the long

axis of the helical hairpin, whereas the first repeat is not re-

solved in the structure.

Both in isolation and in the complex, the consecutive

ANK repeats stack together into an L-shaped domain,

which curves to create a concave surface along the H1 he-

lices. Repeats two through seven of the ANK domain asso-

ciate with CSL as a rigid body, with little change in the
Cell 124, 973–983, March 10, 2006 ª2006 Elsevier Inc. 975



Table 1. Data Collection and Refinement Statistics

Crystal ANK

CSL, SeMet ANK,

MAML-1, Overhang

DNA

CSL, SeMet ANK,

MAML-1, Blunt-Ended

DNA

Data Collection Statistics

Space group P65 (twinned) P43212 P6322

Resolution range (Å) 30–1.55 25–4.3 (along a) or 7.5
(along b and c)

45–3.25

Molecules in

asymmetric unit

2 1 1

Cell parameters (Å) a = b = 97.93

c = 109.07

a = b = 107.5

c = 233.2

a = b = 273.9

c = 121.0

X-ray source BNL NSLS X29A BNL NSLS X29A APS ANL19-ID

Mosaicity (º) 0.31 0.8 0.4

Number of unique
reflections

85821 10505 79964

Multiplicity 2.2 (2.0)a 5.0 (5.1)a 3.6 (3.5)a

Completeness (%) 88.2 (45.9)a 93.8 (86.2)a 91.1 (89.3)a

Rsymm (%)b 6.8 (37.5)a 9.0 (25.1)a 8.4 (41.1)a

I/s(I) 11.9 (2.0)a 8.2 (2.63)a 19.7 (3.3)a

Refinement Statistics

Rfree(%)c (test set size/

count)

19.3 (5.5%/4762) 35.8 (4.7%/491) 25.7 (5.1%/3688)

Rcryst(%)c 15.7 35.8 22.2

Number of ANK atoms 1665 (A) and 1618 (B) 1660 1660

Number of CSL atoms N/A 3370 3370

Number of MAML

atoms

N/A 468 468

Number of DNA atoms N/A 732 732

Number of water (W)

and sulfate (S) atoms

414 (W) and 10 (S) 0 10 (W)

Average B (Å2), average

over all residues in

each chain indicated

23.3 (chain A)

26.5 (chain B)

34.2 (solvent)

164.5 (overall B) 65.8 (ANK)

94.5 (CSL)

83.0 (MAML)
112.4 (DNA)

47.6 (solvent)

Rmsd bond length (Å) 0.005 0.010 0.010

Rmsd bond angle (º) 1.20 1.6 1.6

Rmsd dihedral (º) 20.6 22.7 22.7

Rmsd improper (º) 0.75 1.21 1.21

Ramachandron plot (%)

(core, allowed,
generous, dis-

allowed)

87.1, 12.7, 0.3, 0.0 76.0, 21.9, 2.1, 0.0 76.0, 21.9, 2.1, 0.0

Estimated coordinate
error from Luzzati

plot (Å)

0.25 0.94 0.38

a Data for the outermost shell are given in parentheses.
b Rsymm = 100 S jIh � <Ih>j/S Ih, where <Ih> is the average intensity over symmetry equivalents.
c Rcryst/free = 100 S jFo � Fcj/SjFoj. Rcryst and Rfree were calculated from the working and test sets, respectively.
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curvature of this part of the domain induced upon binding

(Figure S2). The difference between the isolated ANK do-

main and the structure of ANK after complexation is that

the first repeat acquires an ANK fold in the context of the

complex. The induced folding of the first ANK repeat of

Notch is likely to be general throughout the Notch family,

as the residues that comprise the two helices are highly

conserved, though the unstructured linker between them

is not. Nevertheless, the first repeat is still more poorly or-

dered than the rest of the domain, with electron density ev-

ident only for the polypeptide backbone and certain bulky

side chains on the two helices (helix H2 was modeled only

as polyalanine). Indeed, truncated forms of ANK lacking

the first repeat still form ternary complexes that are stable

to gel filtration and even crystallize (data not shown). The

N-terminal end of the ANK stack thus appears to be intrin-

sically more flexible than the C-terminal end of the stack,

as previously suggested (Lubman et al., 2005). The N-ter-

minal end of the first repeat also approaches the C-termi-

nal end of CSL and the N-terminal end of MAML-1 in the

complex, and its position might be more rigidly fixed in

the context of the full-length proteins. Alternatively, it might

be that the first repeat constitutes a recognition element

that is induced after formation of this complex to recruit

additional binding partners.

Features of the Interface between ANK and CSL

The ANK:CSL interface consists of two discontinuous con-

tact sites (ANK:RHR-C and ANK:RHR-N), which together

bury a total of 1040 Å2 of solvent-accessible surface area

on each protein (Figure 3). The groove created by the com-

plex lies nearly parallel to the long axis of ANK along the in-

terface with RHR-C, and the binding of MAML-1 in this

groove further conceals the ANK:CSL interface from sol-

vent. At the ANK:RHR-C site, the concave (inner) face of

ANK interacts with the external-facing b sheet of RHR-C.

The surface of ANK buried at this site corresponds roughly

to that of IkB covered by the p65 RHR-C domain of the

IkB:NFkB complex (Huxford et al., 1998; Jacobs and Har-

rison, 1998), though the detailed interactions between

ANK and RHR-C as well as the relative positions of the

RHR-N and -C domains differ when the ANK:CSL interface

is compared with that of IkB:NFkB. At the ANK:RHR-N

site, residues from the loops connecting ANK repeats

five to six and six to seven come into contact with RHR-N.

The contacts between the domains are capped at the

ends by polar interactions that are largely conserved; the

overall surface potential of the ANK domain at the interface

is positive, in contrast to the region in contact with MAML-1,

which is strongly negative (see below and Figure 4A).

Cooperative Binding of the Mastermind-like 1

Polypeptide as an Elongated Helix

The most striking feature of the structure is the elongated

kinked helix adopted by residues 15–67 of the MAML-1

polypeptide and its interactions with ANK and CSL in the

complex (Figure 4). A 40 degree kink around Pro 46 divides

this 15 turn helix into two discrete N- and C-terminal parts.
The N-terminal part isnestled ina grooveat the ANK:RHR-C

interface, bounded on one side by ANK and on the other

by the RHR-C domain of CSL. A four-stranded b sheet of

RHR-N perpendicular to the helix establishes a second,

predominantly hydrophobic docking site exclusively on

CSL for the C-terminal part of MAML-1 after the kink. On

the ANK side, the N-terminal part of the MAML-1 helix

rests on a concave ridge established by the H1-H2 loops

of ANK repeats three through seven. Platforms at the

two ends of the ridge serve as anchor points for interac-

tions between ANK and this part of the helix (Figure 4B).

At platform I (Figure 5A), which is highly acidic (Figure 4A),

polar and charged interactions predominate among con-

tacts between the H1-H2 loops of ANK repeats three

and four and turns three and four of the MAML-1 he-

lix. This platform ends with a hydrophobic interaction be-

tween MAML-1 L29 and ANK A2007. At platform II

(Figure 5B), turns seven through nine of the MAML-1 helix

interact with ANK repeats six and seven. Between the two

platforms on ANK (Figure 4), the MAML-1 helix is sus-

pended above the concavity in the ridge and rests against

a bulge in the RHR-C domain of CSL (Figure 5C). Alternat-

ing hydrophobic and polar interactions make up the

MAML-1:RHR-C interface and appear to guide the choice

of helical register. The interface between the C-terminal

part of the MAML-1 helix, and the four-stranded b sheet

of RHR-N (Figure 5D) is centered around a hydrophobic

patch on CSL and is capped at the C-terminal end by polar

interactions.

DISCUSSION

Specificity in biological signaling often relies on motif rec-

ognition. Typical motifs are frequently 10 amino acids in

length or fewer and routinely suffice to encode functional

specificity in the cell. Transcriptional coactivation in hor-

mone receptor signaling is no exception: the binding of

hormones or small molecule agonists to nuclear hormone

receptors recruits coactivators by inducing a conforma-

tional change in the hormone binding domain that un-

covers a binding site for a short hydrophobic helical motif

(Nettles and Greene, 2005; Shiau et al., 1998).

In contrast, neither Notch nor CSL undergoes a dramatic

conformational change upon complexation, and therefore,

MAML-1 detects a composite surface derived from both

proteins, rather than of a smaller, allosterically induced

binding site on CSL or ANK alone. As a result, the

MAML-1 polypeptide ‘‘motif’’ in the Notch transcriptional

activation complex includes a 52 residue helix, much lon-

ger than the typical recognition motif. Indeed, the 62-mer

used here for crystallization is the shortest tested se-

quence that retains potent dominant-negative activity

(Weng et al., 2003), blocking Notch signaling both in cells

transfected with active forms of Notch, and in tumor cell

lines with mutations in Notch1 that cause constitutively

increased signaling (Weng et al., 2004). By recognizing

parts of ANK and CSL at alternating surfaces along the long

axis of the ANK:CSL protein-protein interface, MAML-1
Cell 124, 973–983, March 10, 2006 ª2006 Elsevier Inc. 977



Figure 3. Interactions between ANK and

RHR-C

(A) Molecular surface representation. Center

panel: the ANK domain of Notch1 is pink, and

CSL is beige. Left panel: the ANK domain has

been rotated clockwise, and residues that ap-

proach within 4 Å of CSL are colored slate-

blue. Right panel: CSL has been rotated coun-

terclockwise and residues that approach within

4 Å of ANK are colored crimson. MAML-1 and

DNA have been removed for clarity. Ovals de-

note the regions of ANK and RHR-C at the in-

terface in (B).

(B) Details of the ANK-RHR-C interface. The

backbone of ANK is a purple ribbon, with side

chains that approach within 4 Å of RHR-C ren-

dered as sticks. The backbone of RHR-C is an

orange ribbon, with side chains that approach

within 4 Å of ANK rendered as sticks. Side

chain hydrogen bonds are indicated with dot-

ted black lines. Residues from ANK at the inter-

face with RHR-C include side chains projecting

from the H1 helices that line the concave sur-

face of the domain, as well as additional resi-

dues from the repeat one through two and re-

peat two through three loops. Polar interactions help to cap the interactions between the N-terminal end of ANK and RHR-C, and they are likely

to be important in fixing the positions of the two domains with respect to each other. Near the N-terminal end of ANK and the C-terminal end of

RHR-C, side chain hydrogen bonds are formed between the following pairs of residues: ANK R1927 and the side chain hydroxyl of T429 from

RHR-C, ANK Y1939 and E433 of RHR-C. Moving along the ankyrin repeat stack, additional side chain hydrogen bonds are formed between ANK

R1963 and Q347 of CSL, ANK R2005 and CSL E358, ANK R2071 and CSL E385, and ANK E2072 and CSL Y381. There are also hydrophobic inter-

actions along the interface: among ANK L1935, ANK Y1939, and RHR-C P434, between ANK M1961 and CSL L348, between ANK L2006 and CSL

L388, and around ANK W2035, which contacts the methyl group of T360 and the aliphatic portion of E385 from CSL. Adjacent to W2035, A2038 and

V2039 of ANK come into contact with the aliphatic parts of R382 and C383 from CSL.

At the secondary docking site (not shown), there is a cluster of interactions that includes contacts from the side chains of H2093 and M2094 from ANK

with the side chains of H124 and M126 from RHR-C. Polar interactions that cap this site at the C-terminal end of ANK include contacts between the

imidazole ring of ANK H2093 with the guanidino group of CSL R146, between the carboxylate of ANK D2095 and the backbone amide of CSL K123,

and between the guanidino group of ANK R2096 and the CSL N93 side chain amide.
ensures binding to the Notch:CSL complex with high affin-

ity, in the absence of tight binding to either protein alone.

Further stringency in recognition is achieved by requiring

the MAML-1 sequence to fold into a relatively rigid helical

conformation to form a productive complex, because the

MAML-1 polypeptide is not folded until bound (Figure S5).

Though MAML-1 is less well conserved than either CSL

or the ANK domain of Notch, the sequence variability in

MAML-1 occurs primarily at positions on the exposed

face of the helix not in contact with ANK or CSL. In fact,

four of the seven residues that interact with ANK are iden-

tical among all three human MAML proteins, as are all eight

of the MAML residues that contact the RHR-C domain of

CSL (Figure 1A). Although all three mammalian MAML pro-

teins form complexes with ICN1 and CSL, reporter-gene

assays suggest that the relative coactivation strength of

MAML-1, MAML-2, and MAML-3 varies, with MAML-1

and MAML-2 being more potent coactivators for ICN1

than MAML-3 (Wu et al., 2002). Further work will be

needed to determine whether these functional differences

stem from sequence variation in the CSL and ANK binding

region, from differences in posttranslational modifications

that differentially regulate the affinity of the N-terminal re-

gions for Notch:CSL complexes, or from effects due to

the less well-conserved C-terminal parts of the MAML pro-
978 Cell 124, 973–983, March 10, 2006 ª2006 Elsevier Inc.
teins. More generally, several key MAML-1 residues buried

in the interface with CSL—Y41, T56, L59, and R62—are

absolutely conserved among all species (Figure 1A). The

most divergent sequence belongs to the C. elegans

MAML protein LAG-3, which lacks an otherwise con-

served arginine-rich sequence (RLRRR) tethering the N-

terminal end of MAML-1 to ANK in our structure. Strikingly,

the sequences of the ANK domains of the worm proteins

also diverge at the positions in contact with the MAML-1

N terminus: D1973 of human Notch1 is replaced by a pos-

itively charged residue in both LIN-12 and GLP-1, and

E2009 of human Notch1 is located at the site of an�10 res-

idue insertion in both worm Notch proteins. These corre-

lated changes of LAG-3 and the ANK domains appear to

represent covariation needed to maintain a binding inter-

face, and the species differences at these sites probably

explain the observed failure of cross-species complexes

to form when worm LAG-3 and either murine or fly compo-

nents are mixed (Petcherski and Kimble, 2000b).

Mutational studies of the ANK domains of various Notch

proteins have implicated residues from ANK repeats two,

four, five, and seven as important for proper function (Lub-

man et al., 2004). Phenotypically identified mutations,

which include a CADASIL mutation of human Notch3 in

the H1-H2 loop of ANK repeat two and a hypomorphic



Figure 4. Cooperative Binding of MAML-1 by ANK and CSL

The MAML-1 helix is rendered as a green helical ribbon with side chains that approach within 4 Å of either ANK or CSL shown as sticks.

(A) The surfaces of ANK and CSL colored according to vacuum electrostatic potential on a sliding scale from red (�75 kT) to white (0 kT) to blue (75 kT).

(B) Sites where MAML-1 contacts ANK and CSL. The surface of ANK is colored dark purple where an atom of MAML-1 approaches within 4 Å and light

purple elsewhere. The surface of CSL is colored dark orange where an atom of MAML-1 approaches within 4 Å and light orange elsewhere.
mutant of Drosophila Notch (called Su42c and equivalent

to a V2039A substitution on H1 of human ANK repeat

five) are located at positions in contact with MAML-1 and

CSL, respectively. In contrast, multiresidue substitutions

in ANK repeats four or seven predicted (Lubman et al.,

2004) or shown (Zweifel et al., 2003) to unfold the ANK

domain or dramatically reduce its stability do not alter res-

idues in direct contact with either CSL or MAML-1, sug-

gesting that these mutations compromise function indi-

rectly by disrupting ANK structure around platforms I and

II, respectively.

Functional Implications for Transcriptional

Activation

Before Notch is proteolytically released from the mem-

brane in its active form, CSL is in a complex with core-

pressor proteins at target DNA sites. Based on mutational

studies, these corepressor proteins, which include SMRT

(silencing mediator of retinoid and thyroid receptors)/N-

coR (nuclear repressor corepressor) and CIR (CBF-1-in-

teracting repressor), appear to bind directly to the b-trefoil

domain of CSL (Hsieh et al., 1999; Kao et al., 1998). The

corepressor binding site partially overlaps the proposed

binding site on CSL for RAM (Kovall and Hendrickson,

2004) but is distant from the ANK binding site, which lies

entirely within the Rel-homology region (Figures 2 and 3).

Whether the conversion of CSL from a repressor into an

activator results from direct displacement of corepressors

thus remains an open question, especially because en-

forced expression of intracellular Notch variants lacking

the RAM domain can still turn on CSL-dependent

transcription and confer Notch gain-of-function pheno-

types (Aster et al., 2000; Jeffries et al., 2002; Roehl et al.,

1996).

Our structure, taken together with previous biochemical

studies, supports a model in which the assembly of the
Notch transcriptional activation complex occurs in a series

of distinct steps (Figure 6). After translocation into the nu-

cleus, Notch must first be delivered to CSL on DNA. Phys-

iologic Notch signaling may rely on the natively unstruc-

tured region adjacent to the ANK domain called RAM,

which has high affinity for the b-trefoil domain of CSL, to

achieve this step (though variants of Notch lacking the

RAM domain can transduce signals and even suffice to in-

duce T-ALL in mouse models when expressed at high

levels, as noted above [Aster et al., 2000]). After the recruit-

ment step, ANK docks onto the Rel-homology region of

CSL to create the composite surface recognized by the

MAML-1 helix.

Transcriptional activation by nuclear Notch complexes

then appears to depend on the use of p300 to connect

Notch to the transcription machinery, but the molecular

basis for recruitment of p300 to Notch:CSL complexes

has been controversial. On the one hand, it has been con-

tended that a region corresponding to the seventh ankyrin

repeat of ICN1 links Notch:CSL complexes to the tran-

scriptional machinery by directly binding to p300 (Oswald

et al., 2001). On the other hand, studies by two different

groups have reported that p300 binds to MAML-1 directly

and that Notch:CSL complexes cannot bring p300 to DNA

in cell-free systems, arguing that the role of Notch in re-

cruiting p300 is indirect (Fryer et al., 2002; Wallberg

et al., 2002). The structure of the complex reported here

shows that the seventh ankyrin repeat of Notch is engaged

in crucial interactions with MAML-1 at the epicenter of the

complex right in the neighborhood of the kink in the helix,

and it is unlikely that this ankyrin repeat would also be ca-

pable of directly binding to p300. Therefore, our data lend

support to the model in which recruitment of p300 by ICN is

indirect as a result of its interactions with MAML, a conclu-

sion also reached by consideration of the deleterious ef-

fects on ANK domain stability likely to occur from the
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Figure 5. MAML-1 Binding Interfaces

(A and B) Interactions with ANK.

(A) Platform I interactions. Contacts include a salt-bridge between MAML-1 R22 and ANK D1973, hydrogen bonds from the MAML-1 R22 side chain to

ANK Q1975 and to the backbone carbonyl oxygen of ANK E2009, and a salt bridge between MAML-1 R25 and ANK E2009.

(B) Platform II interactions. The guanidino group of MAML-1 R40 forms H bonds with the carboxylate of ANK D2109, and M2106 from ANK repeat

seven at the tip of the platform has hydrophobic interactions with MAML-1 V44 and with the aliphatic portions of E47 and R48. The backbone of

ANK is a purple ribbon, with side chains that approach within 4 Å of MAML-1 rendered as sticks. The MAML-1 helix is rendered as a green helical

ribbon with side chains that approach within 4 Å of ANK shown as sticks.

(C and D) Interactions with CSL.

(C) RHR-C interactions. The first hydrophobic cluster includes I27, C30, and the aliphatic portion of R31 from turns five and six of the MAML-1 helix

and M356, M380, and L388 of the CSL RHR-C domain. A salt bridge between R31 of MAML-1 and E378 of CSL anchors an adjacent set of polar

interactions, which also include buried hydrogen bonds between H33 and H34 and the backbone carbonyl groups of CSL residues R382 and

P366, respectively, a second salt bridge between MAML-1 E38 and CSL R369, and a hydrogen bond between E38 and the side chain amide of

CSL N417. Hydrophobic interactions among the aliphatic part of MAML-1 E38, MAML-1 Y41, and the aliphatic parts of CSL T365, P366, and

N367 complete the MAML-1:RHR-C interface.

(D) RHR-N interactions. CSL residues F88, M98, F132, and the aliphatic part of K130 contact the nonpolar parts of side chains from two consecutive

turns of the MAML-1 helix: H55, the methyl group of T56, L59, and H60. Polar interactions at the C-terminal part of MAML-1 include contacts between

the side chain of MAML-1 R62 and the side chain of CSL E97, and between the sulfhydryls of MAML-1 C63 and CSL C86. Side chain nitrogen atoms

from R53, H60, and R62 of MAML-1 also form hydrogen bonds to the backbone carbonyl groups of S136, G134, and M98 of CSL, respectively. The

backbone of CSL is an orange ribbon, with side chains that approach within 4 Å of MAML-1 rendered as sticks. The MAML-1 helix is rendered as

a green helical ribbon with side chains that approach within 4 Å of CSL shown as sticks.
repeat seven mutations used to probe p300 recruitment

(Lubman et al., 2004). Whether MAML-1 is preassociated

with other components of the transcriptional machinery,

such as p300 and CyclinC:CDK8:RNA polymerase II, or

these components are recruited via MAML-1 subsequent

to complex assembly remains to be determined. The re-

cruitment of Cyclin C:CDK8 complex has been suggested

to couple transcriptional activation with the disassembly

and destruction of the ternary complex (Fryer et al.,

2004); given the stability of the isolated complex, these

steps are also likely to proceed through a series of tightly

regulated events.
980 Cell 124, 973–983, March 10, 2006 ª2006 Elsevier Inc.
EXPERIMENTAL PROCEDURES

Protein and DNA Purification

MAML-1 13–74 and the ANK domain (residues 1873–2127) of human

Notch1 were purified as previously described (Nam et al., 2003). For

selenomethionine derivatives, the same expression vector and cells

were used but were cultured to induce feedback inhibition of methio-

nine biosynthesis by adding amino acids to minimal media immediately

before induction. Human CSL (residues 9–435) was expressed with

a C-terminal hexahistidine tag in Escherichia coli strain BL21 (DE3)

pLysS (Stratagene) using a pET28a vector (Novagen). The culture

was grown at 18ºC, induced at OD600 = 0.8 with 0.5 mM IPTG, and

cells were harvested 14 hr after induction. Cell pellets were lysed in

buffer A (50 mM Tris [pH 8.8], 500 mM NaCl, 5 mM b-mercaptoethanol)



Figure 6. Model for Stepwise Assembly

of the Core of the Notch Transcriptional

Activation Complex

Intracellular Notch is initially recruited to the

CSL:DNA complex by the RAM sequence of

ICN, which has high affinity for the b-trefoil do-

main of CSL. The ANK domain of ICN then

docks against the Rel-homology portion of

CSL to create a high-affinity binding site for

MAML-1. In the model, transient association

of ANK with the Rel-homology domain of

CSL (indicated as a reversible step) becomes

clamped by MAML-1 binding.
by sonication, the lysate was cleared of insoluble matter by centrifuga-

tion and loaded onto Ni-NTA resin (Qiagen). The protein was eluted with

200 mM imidazole in buffer A, then further purified by anion-exchange

chromatography on a MonoQ HR 10/10 column (Amersham Biosci-

ences) in buffer B (20 mM Tris 8.8, 5 mM DTT), using a 100–500 mM

NaCl gradient for elution. Complexes of CSL, ANK, and MAML-1 poly-

peptides were mixed at approximately 1:1:1 stoichiometry and purified

away from uncomplexed polypeptides by gel filtration on a Superdex

200 column (Amersham Biosciences) in buffer C (20 mM Tris 8.5, 150

mM NaCl, 5 mM DTT). Oligonucleotides were purified by anion-ex-

change chromatography (BioscaleQ10, Biorad) and annealed in TE

buffer. The DNA sequences were: 50-GTTACTGTGGGAAAGAAA-30

and 50-TTTCTTTCCCACAGTAAC-30 in the blunt-ended duplex and

50-AGTTACTGTGGGAAAGAA-30 and 50-CTTTCTTTCCCACAGTAA-30

in the two-base overhanging duplex.

Data Collection

All data were collected at 12.659 kEv (the peak energy of selenium) and

processed with HKL2000 (Otwinowski and Minor, 1997). Data collec-

tion details and final refinement statistics for all three structures are

presented below and in Tables 1 and S1.

Crystallization and Structure Determination

Isolated ANK Domain (P65 Crystals with Merohedral Twinning)

Crystals of the isolated ANK domain grew from hanging drops 24–72 hr

after the protein solution (10 mg/ml, in 20 mM Tris [pH 8.5], 150 mM

NaCl, 5 mM DTT) was mixed with an equal volume of reservoir solution

(100 mM Tris [pH 8.5] and 1M ammonium sulfate). Crystals were cryo-

protected by soaking in mother liquor with 20% glycerol and flash-fro-

zen in liquid nitrogen prior to data collection. A native data set was col-

lected at beamline X29A at Brookhaven National Laboratory, and the

structure was solved by molecular replacement with MOLREP (Vagin

and Teplyakov, 1997), using the Drosophila ankyrin repeat structure

(1OT8; Zweifel et al., 2003) as a search model. Model building and re-

finement were done with ARP/wARP (Perrakis et al., 1997), REFMAC5

(Vagin et al., 2004), and COOT (Emsley and Cowtan, 2004). The twin-

ning fraction was calculated by CNS to be 33%, which was then

used for subsequent steps in CNS refinement algorithms for twinned

data (Brunger et al., 1998).

Overhanging DNA Complex (P43212 Crystals)

Protein-DNA complexes (5 mg/ml) formed with CSL, selenomethio-

nine-derivatized ANK, MAML-1, and overhang DNA crystallized from

hanging drops�24 hr after mixing with an equal volume of reservoir so-

lution (60 mM sodium citrate [pH 5.0], 2% PEG 8000, and 10% xylitol).

Crystals were briefly soaked in 30 mM sodium citrate (pH 5.0), 50 mM
NaCl, and 25% xylitol before freezing in liquid nitrogen prior to data col-

lection at Brookhaven National Laboratory (beamline X29A). The crys-

tals diffracted anisotropically to 4.3 Å along the c axis that runs parallel

to the DNA stack and to 7.5 Å along axes a and b. The structure of the

complex was determined by molecular replacement in MOLREP using

the structure of worm CSL on DNA (Kovall and Hendrickson, 2004) and

our human ANK structure as search models. Anomalous Fourier differ-

ence maps showed agreement between ANK’s selenium peaks and

the methionine sites in ANK as positioned by molecular replacement.

After rigid body refinement in CNS, a long tube of curved helical den-

sity corresponding to MAML-1 became apparent and was initially mod-

eled without an assigned helix orientation using a 26 residue helix

kinked in the middle by a proline (PDB code 1D8C, chain A, residues

32–70). Other long helices with proline in the middle fit equally well. Us-

ing the combinatorial extension (CE) method (http://cl.sdsc.edu/), we

identified ten more such helices all with an average bend angle of 40

degrees. Subsequently, the helical model was confirmed and its orien-

tation was determined by Se-Met scanning of MAML-1. Briefly, single

methionines were introduced in place of L29, V44, L49, L51, or L59 of

MAML-1 to make five Se-Met derivatized MAML-1 polypeptides,

which were then crystallized in complexes. The anomalous signal re-

sulting from each introduced methionine mutation was used to define

the orientation and register of the MAML-1 helix (Table S1;

Figure S4). After placing the kinked helix model of MAML-1 according

to the Se-Met scanning results, CNS rigid body refinement was used to

refine the position of the kinked helix. For final refinement, the structure

of the blunt-ended DNA complex (determined as described below) was

used as a starting model for rigid body refinement, and the MAML-1

register in the resulting model remained consistent with the Se-Met

scanning results from the P43212 crystals.

Blunt-Ended DNA Complex (P6322 Crystals)

Complexes with the blunt-ended DNA duplex were assembled essen-

tially as for the complexes described above, also using Se-Met ANK.

Crystals grew from hanging drops containing equal volumes of protein

(5 mg/ml)/DNA solution and reservoir buffer (50 mM HEPES [pH 7.9],

6% PEG 3350, and 5% ethylene glycol). Crystals were cryoprotected

by soaking in mother liquor supplemented with ethylene glycol (25%)

for flash-freezing in liquid nitrogen. The data set was collected at beam-

line 19ID of the Structural Biology Center at Argonne National Labora-

tory. Molecular replacement using MOLREP resulted in identical solu-

tions when either the C. elegans CSL structure or our model from the

P43212 crystals was used as the search model. Model building and re-

finement were accomplished through iterative cycles of simulated an-

nealing (CNS), group B factor refinement and modeling using O (Jones

et al., 1991) as well as COOT (Emsley and Cowtan, 2004). In these
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cycles, we included restraints for secondary structure (helices) and

DNA conformation, and sharpened maps were used to aid with model

building. The final model includes residues 11–434 of CSL, residues

1884–1892 and 1920–2120 of ANK, residues 16–70 of MAML-1, and

all 18 nucleotides of each DNA strand. Helical density corresponding

to helix H2 from the first ANK repeat was modeled as polyalanine

due to weak side chain electron density in that region. Peaks above 3

sigma in the Fo� Fc map with a shape resembling water were identified

and initially populated with water molecules. After one refinement step,

peaks with fewer than two hydrogen-bonding interactions or a B factor

above 80 Å2 were rejected, leaving ten water molecules present in the

final model.

Although there is only one complex in each asymmetric unit, the ANK

subunit of one complex makes crystal contacts with the ANK subunit of

an adjacent complex. These contacts include the following interac-

tions: residues K1946 and E1950 of one ANK subunit form salt bridges

with E1950 and K1946 of the interacting subunit and R1985 of each

ANK subunit contacts several backbone carbonyl groups of the adja-

cent ANK subunit. Although these interactions are crystal contacts

that hold the lattice together, the identical interactions are also present

in the structure of ANK determined separately at higher resolution.

Supplemental Data

Supplemental Data include five figures and one table and can be found

with this article online at http://www.cell.com/cgi/content/full/124/5/

973/DC1/.
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