## Available at

# On the existence of positive solutions of $p$-Laplacian difference equations 

Zhimin He*<br>Department of Applied Mathematics, Central South University, Changsha 410083, Hunan, People's Republic of China

Received 7 June 2003


#### Abstract

In this paper, by means of fixed point theorem in a cone, the existence of positive solutions of $p$-Laplacian difference equations is considered.


(c) 2003 Elsevier B.V. All rights reserved.

MSC: 39A10
Keywords: Boundary value problem; Positive solution; Difference equation; Fixed point theorem; Cone

## 1. Introduction

For notation, given $a<b$ in $Z$, we employ intervals to denote discrete sets such as $[a, b]=\{a, a+$ $1, \ldots, b\},[a, b)=\{a, a+1, \ldots, b-1\},[a, \infty)=\{a, a+1, \ldots\}$, etc. Let $T \geqslant 1$ be fixed. In this paper, we are concerned with the following $p$-Laplacian difference equation:

$$
\begin{equation*}
\Delta\left[\phi_{p}(\Delta u(t-1))\right]+a(t) f(u(t))=0, \quad t \in[1, T+1], \tag{1}
\end{equation*}
$$

satisfying the boundary conditions

$$
\begin{equation*}
\Delta u(0)=u(T+2)=0, \tag{2}
\end{equation*}
$$

where $\phi_{p}(s)$ is $p$-Laplacian operator, i.e., $\phi_{p}(s)=|s|^{p-2} s, p>1,\left(\phi_{p}\right)^{-1}=\phi_{q}, 1 / p+1 / q=1$, and (A) $f: R^{+} \rightarrow R^{+}$is continuous ( $R^{+}$denotes the nonnegative reals), (B) $a(t)$ is a positive valued function defined on $[1, T+1]$.

[^0]The motivation for the present work stems from many recent investigations in [1-4,6-8,10]. For the continuous case, boundary value problems analogous to (1) and (2) arise in various nonlinear phenomena for which only positive solutions are meaningful; see, for example [11,12].

## 2. Preliminaries

Let

$$
f_{0}=\lim _{u \rightarrow 0^{+}} \frac{f(u)}{u^{p-1}}, \quad f_{\infty}=\lim _{u \rightarrow \infty} \frac{f(u)}{u^{p-1}} .
$$

We note that $u(t)$ is a solution of (1) and (2), if, and only if

$$
\begin{equation*}
u(t)=\sum_{s=t}^{T+1} \phi_{q}\left(\sum_{i=1}^{s} a(i) f(u(i))\right), \quad t \in[0, T+2] . \tag{3}
\end{equation*}
$$

Let

$$
E=\{u:[0, T+2] \rightarrow R \mid \Delta u(0)=u(T+2)=0\}
$$

with norm, $\|u\|=\max _{t \in[0, T+2]}|u(t)|$, then $(E,\|\cdot\|)$ is a Banach space.
Define a cone, $P$, by

$$
P=\{u \in E: u(t) \geqslant 0, t \in[0, T+2], \text { and } u(t) \geqslant \sigma(t)\|u\|\}
$$

where $\sigma(t)=1-t /(T+2), t \in[0, T+2]$.
The following two lemmas will play an important role in the proof of our results and can be found in the book in [9] as well as in the book in [5].

Lemma 2.1. Let $E$ be a Banach space, and let $P \subset E$ be a cone in $E$. Assume $\Omega_{1}, \Omega_{2}$ are open subsets of $E$ with $0 \in \Omega_{1} \subset \bar{\Omega}_{1} \subset \Omega_{2}$, and let

$$
T: P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow P
$$

be a completely continuous operator such that, either
(i) $\|T u\| \leqslant\|u\|, u \in P \cap \partial \Omega_{1}$, and $\|T u\| \geqslant\|u\|, u \in P \cap \partial \Omega_{2}$, or
(ii) $\|T u\| \geqslant\|u\|, u \in P \cap \partial \Omega_{1}$, and $\|T u\| \leqslant\|u\|, u \in P \cap \partial \Omega_{2}$.

Then $T$ has a fixed point in $P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.
Lemma 2.2. Let $E$ be a Banach space, and let $P \subset E$ be a cone in $E$. For $\rho>0$, define $P_{\rho}=$ $\{u \in K:\|u\| \leqslant \rho\}$. Assume that

$$
T: P_{\rho} \rightarrow P
$$

is a completely continuous operator such that, Tu$\neq u$ for $x \in \partial P_{\rho}=\{u \in P:\|u\|=\rho\}$.
(i) If $\|u\| \leqslant\|T u\|, u \in \partial P_{\rho}$, then $i\left(T, P_{\rho}, P\right)=0$;
(ii) If $\|u\| \geqslant\|T u\|, u \in \partial P_{\rho}$, then $i\left(T, P_{\rho}, P\right)=1$.

## 3. Solutions of (1) and (2) in a cone

Theorem 3.1. Assume that conditions (A) and (B) are satisfied. If
(i) $f_{0}=0, f_{\infty}=\infty$ or
(ii) $f_{0}=\infty, f_{\infty}=0$.

Then, there exists at least one solution of (1) and (2) in $P$.
Proof. Define a summation operator $T: P \rightarrow E$ by

$$
\begin{equation*}
(T u)(t)=\sum_{s=t}^{T+1} \phi_{q}\left(\sum_{i=1}^{s} a(i) f(u(i))\right), \quad t \in[0, T+2] . \tag{4}
\end{equation*}
$$

We note that from (4), if $u \in P$, then $(T u)(t) \geqslant 0, t \in[0, T+2]$.
Moreover, for $u \in P$, we have

$$
\begin{aligned}
\|T u\| & =(T u)(0) \\
& =\sum_{s=0}^{T+1} \phi_{q}\left(\sum_{i=1}^{s} a(i) f(u(i))\right) .
\end{aligned}
$$

Set

$$
U(t)=(T u)(t)-\left(1-\frac{t}{T+2}\right)\|T u\|, \quad t \in[0, T+2] .
$$

Then $U(0)=U(T+2)=0, \Delta^{2} U(t) \leqslant 0, t \in[0, T]$. By Lemma 2 in [6], we have $U(t) \geqslant 0, t \in$ $[0, T+2]$, i.e. $(T u)(t) \geqslant(1-t /(T+2))\|T u\|, t \in[0, T+2]$. Consequently, $T: P \rightarrow P$. It is also easy to check that $T: P \rightarrow P$ is completely continuous.

Case (i): Now, turning to $f_{0}$, there exits $H_{1}>0$ such that $f(u) \leqslant(\theta u)^{p-1}$ for $0<u \leqslant H_{1}$, where $\theta>0$ satisfies

$$
\theta \sum_{s=0}^{T+1} \phi_{q}\left(\sum_{i=1}^{s} a(i)\right) \leqslant 1 .
$$

Thus, for $u \in P$ with $\|u\|=H_{1}$, implies that

$$
\begin{aligned}
\|T u\| & =\sum_{s=0}^{T+1} \phi_{q}\left(\sum_{i=1}^{s} a(i) f(u(i))\right) \\
& \leqslant \sum_{s=0}^{T+1} \phi_{q}\left(\sum_{i=1}^{s} a(i)(\theta u(i))^{p-1}\right) \\
& \leqslant\|u\| \theta \sum_{s=0}^{T+1} \phi_{q}\left(\sum_{i=1}^{s} a(i)\right) \\
& \leqslant\|u\| .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\|T u\| \leqslant\|u\| \quad \text { for } u \in P \cap \partial \Omega_{1}, \tag{5}
\end{equation*}
$$

where

$$
\Omega_{1}=\left\{u \in B:\|u\|<H_{1}\right\} .
$$

If we next consider $f_{\infty}$, there exists an $\bar{H}_{2}>0$ such that $f(u) \geqslant(\Theta u)^{p-1}$, for all $u \geqslant \bar{H}_{2}$, where $\Theta>0$ satisfies

$$
\frac{1}{2} \Theta \sum_{s \in Y} \phi_{q}\left(\sum_{i=1}^{s} a(i)\right) \geqslant 1
$$

where

$$
Y=\left\{t \in Z: 0 \leqslant t \leqslant \frac{T+2}{2}\right\}
$$

Let $H_{2}=\max \left\{2 H_{1}, 2 \bar{H}_{2}\right\}$, and define

$$
\Omega_{2}=\left\{u \in B:\|u\|<H_{2}\right\} .
$$

Note that

$$
\frac{1}{2}\|u\| \leqslant u(t) \leqslant\|u\| \quad \text { for } t \in Y, u \in P
$$

If $u \in P$ with $\|u\|=H_{2}$, then

$$
\begin{aligned}
\|T u\| & =\sum_{s=0}^{T+1} \phi_{q}\left(\sum_{i=1}^{s} a(i) f(u(i))\right) \\
& \geqslant \sum_{s \in Y} \phi_{q}\left(\sum_{i=1}^{s} a(i) f(u(i))\right) \\
& \geqslant \sum_{s \in Y} \phi_{q}\left(\sum_{i=1}^{s} a(i)(\Theta u(i))^{p-1}\right) \\
& \geqslant \frac{1}{2} \Theta\|u\| \sum_{s \in Y} \phi_{q}\left(\sum_{i=1}^{s} a(i)\right) \\
& \geqslant\|u\| .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\|T u\| \geqslant\|u\| \quad \text { for } u \in P \cap \partial \Omega_{2} \tag{6}
\end{equation*}
$$

From (5) and (6), Lemma 2.1(i) implies that $T$ has a fixed point $u \in P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.
Case (ii): Beginning with $f_{0}$, there exits $H_{1}>0$ such that $f(u) \geqslant(v u)^{p-1}$ for $0<u \leqslant H_{1}$, where $v>0$ satisfies

$$
\frac{1}{2} v \sum_{s \in Y} \phi_{q}\left(\sum_{i=1}^{s} a(i)\right) \geqslant 1
$$

So, for $u \in P$ with $\|u\|=H_{1}$, we have

$$
\begin{aligned}
\|T u\| & =\sum_{s=0}^{T+1} \phi_{q}\left(\sum_{i=1}^{s} a(i) f(u(i))\right) \\
& \geqslant \sum_{s \in Y} \phi_{q}\left(\sum_{i=1}^{s} a(i) f(u(i))\right) \\
& \geqslant \sum_{s \in Y} \phi_{q}\left(\sum_{i=1}^{s} a(i)(v u(i))^{p-1}\right) \\
& \geqslant \frac{1}{2} v\|u\| \sum_{s \in Y} \phi_{q}\left(\sum_{i=1}^{s} a(i)\right) \\
& \geqslant\|u\| .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\|T u\| \geqslant\|u\| \quad \text { for } u \in P \cap \partial \Omega_{1}, \tag{7}
\end{equation*}
$$

where

$$
\Omega_{1}=\left\{u \in B:\|u\|<H_{1}\right\} .
$$

Using the assumption concerning $f_{\infty}$, there exists an $\bar{H}_{2}>0$ such that $f(u) \leqslant(\lambda u)^{p-1}$ for $u \geqslant H_{2}$, where $\lambda>0$ satisfies

$$
\lambda \sum_{s=0}^{T+1} \phi_{q}\left(\sum_{i=1}^{s} a(i)\right) \leqslant 1
$$

There are two cases: (a) $f$ is bounded, and (b) $f$ is unbounded.
For case (a), assume $M>0$ is such that $f(u) \leqslant M^{p-1}$ for all $0<u<\infty$. Let

$$
H_{2}=\max \left\{2 H_{1}, M \sum_{s=0}^{T+1} \phi_{q}\left(\sum_{i=1}^{s} a(i)\right)\right\} .
$$

Then, for $u \in P$ with $\|u\|=H_{2}$, we have

$$
\begin{aligned}
\|T u\| & =\sum_{s=0}^{T+1} \phi_{q}\left(\sum_{i=1}^{s} a(i) f(u(i))\right) \\
& \leqslant M \sum_{s=0}^{T+1} \phi_{q}\left(\sum_{i=1}^{s} a(i)\right) \\
& \leqslant H_{2}=\|u\| .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\|T u\| \leqslant\|u\| \quad \text { for } u \in P \cap \partial \Omega_{2} \tag{8}
\end{equation*}
$$

where

$$
\Omega_{2}=\left\{u \in B:\|u\|<H_{2}\right\} .
$$

For case (b), it can be shown without much difficulty that there is an $H_{2}>\max \left\{2 H_{1}, \bar{H}_{2}\right\}$ such that $f(u) \leqslant f\left(H_{2}\right)$, for $0<u \leqslant H_{2}$. Choosing $u \in P$ with $\|u\|=H_{2}$,

$$
\begin{aligned}
\|T u\| & =\sum_{s=0}^{T+1} \phi_{q}\left(\sum_{i=1}^{s} a(i) f(u(i))\right) \\
& \leqslant \sum_{s=0}^{T+1} \phi_{q}\left(\sum_{i=1}^{s} a(i) f\left(H_{2}\right)\right) \\
& \leqslant\left(f\left(H_{2}\right)\right)^{q-1} \sum_{s=0}^{T+1} \phi_{q}\left(\sum_{i=1}^{s} a(i)\right) \\
& \leqslant \lambda H_{2} \sum_{s=0}^{T+1} \phi_{q}\left(\sum_{i=1}^{s} a(i)\right) \\
& \leqslant H_{2}=\|u\| .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\|T u\| \leqslant\|u\| \quad \text { for } u \in P \cap \partial \Omega_{2} \tag{9}
\end{equation*}
$$

where

$$
\Omega_{2}=\left\{u \in B:\|u\|<H_{2}\right\} .
$$

We apply Lemma 2.1 to conclude that $T$ has a fixed point $u \in P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$. Thus, in either of the case, Lemma 2.1 (ii) applied to (7) and (8) or (9) yields a fixed point of $T$ which belongs to $P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$. This fixed point $u$ is a solution of (1) and (2). The proof of Theorem 3.1 is complete.

Theorem 3.2. Assume that conditions (A) and (B) are satisfied. If
(i) $f_{0}=f_{\infty}=\infty$,
(ii) there exists $\rho>0$ such that $f(u)<(\eta \rho)^{p-1}$ for $0<u \leqslant \rho$, where

$$
\eta=\left[\sum_{s=0}^{T+1} \phi_{q}\left(\sum_{i=1}^{s} a(i)\right)\right]^{-1} .
$$

Then, there exists at least two solutions $u_{1}$ and $u_{2}$ of (1) and (2) in $P$, such that $0<\left\|u_{1}\right\|<$ $\rho<\left\|u_{2}\right\|$.

Proof. Since $f_{0}=\infty$, there exits $d \in(0, \rho)$ such that $f(u) \geqslant(M u)^{p-1}$ for $0 \leqslant u \leqslant d$, where $M>0$ satisfies

$$
M \sum_{s \in Y} \phi_{q}\left(\sum_{i=1}^{s} a(i)\left(1-\frac{i}{T+2}\right)^{p-1}\right)>1
$$

Thus, for $u \in P$ with $\|u\|=d$, we have

$$
\begin{aligned}
\|T u\| & =\sum_{s=0}^{T+1} \phi_{q}\left(\sum_{i=1}^{s} a(i) f(u(i))\right) \\
& \geqslant \sum_{s \in Y} \phi_{q}\left(\sum_{i=1}^{s} a(i) f(u(i))\right) \\
& \geqslant \sum_{s \in Y} \phi_{q}\left(\sum_{i=1}^{s} a(i)(M u(i))^{p-1}\right) \\
& \geqslant M\|u\| \sum_{s \in Y} \phi_{q}\left(\sum_{i=1}^{s} a(i)\left(1-\frac{i}{T+2}\right)^{p-1}\right) \\
& >\|u\|
\end{aligned}
$$

Therefore,

$$
i\left(T, P_{d}, P\right)=0
$$

Since $f_{\infty}=\infty$, there exists an $R>\rho$ such that $f(u) \geqslant(N u)^{p-1}$, for all $u \geqslant R$, where $N>0$ satisfies

$$
N \sum_{s \in Y} \phi_{q}\left(\sum_{i=1}^{s} a(i)\left(1-\frac{i}{T+2}\right)^{p-1}\right)>1 .
$$

If $u \in P$ with $\|u\|=R$, then

$$
\begin{aligned}
\|T u\| & =\sum_{s=0}^{T+1} \phi_{q}\left(\sum_{i=1}^{s} a(i) f(u(i))\right) \\
& \geqslant \sum_{s \in Y} \phi_{q}\left(\sum_{i=1}^{s} a(i) f(u(i))\right) \\
& \geqslant N\|u\| \sum_{s \in Y} \phi_{q}\left(\sum_{i=1}^{s} a(i)\left(1-\frac{i}{T+2}\right)^{p-1}\right) \\
& >\|u\|
\end{aligned}
$$

Hence,

$$
i\left(T, P_{R}, P\right)=0
$$

If $u \in P$ with $\|u\|=\rho$, then

$$
\begin{aligned}
\|T u\| & =\sum_{s=0}^{T+1} \phi_{q}\left(\sum_{i=1}^{s} a(i) f(u(i))\right) \\
& \left.<\eta \rho \sum_{s=0}^{T+1} \phi_{q}\left(\sum_{i=1}^{s} a(i)\right)\right) \\
& =\rho=\|u\|
\end{aligned}
$$

Hence,

$$
i\left(T, P_{\rho}, P\right)=1
$$

Therefore,

$$
i\left(T, P_{R} \backslash \bar{P}_{\rho}, P\right)=-1, \quad i\left(T, P_{\rho} \backslash \bar{P}_{d}, P\right)=1
$$

So, there exists at least two solutions $u_{1}$ and $u_{2}$ of (1), (2) in $P$, such that $0<\left\|u_{1}\right\|<\rho<\left\|u_{2}\right\|$.

Theorem 3.3. Assume that conditions (A) and (B) are satisfied. If
(i) $f_{0}=f_{\infty}=0$,
(ii) there exists $\rho>0$ such that $f(u)>(\lambda \rho)^{p-1}$ for $\frac{1}{2} \rho \leqslant u \leqslant \rho$, where

$$
\lambda=\left[\sum_{s \in Y} \phi_{q}\left(\sum_{i=1}^{s} a(i)\right)\right]^{-1}, \quad Y=\left\{t \in Z: 0 \leqslant t \leqslant \frac{T+2}{2}\right\} .
$$

Then, there exists at least two solutions $u_{1}$ and $u_{2}$ of (1) and (2) in $P$, such that $0<\left\|u_{1}\right\|<$ $\rho<\left\|u_{2}\right\|$.

The proof of Theorem 3.3 is similar to that of Theorem 3.2. Here we omit it.

## References

[1] R.P. Agarwal, J. Henderson, Positive solutions and nonlinear eigenvalue problems for third-order difference equations, Comput. Math. Appl. 36 (11-12) (1998) 347-355.
[2] R.P. Agarwal, D. O'Regan, A fixed-point approach for nonlinear discrete boundary value problems, Comput. Math. Appl. 36 (10-12) (1998) 115-121.
[3] A. Cabada, Extremal solutions for the difference $\phi$-Laplacian problem with nonlinear functional boundary conditions, Comput. Math. Appl. 42 (2001) 593-601.
[4] A. Cabada, V. Otero-Espinar, Existence and comparison results for difference $\phi$-Laplacian boundary value problem with lower and upper solutions in reverse order, J. Math. Anal. Appl. 267 (2002) 501-521.
[5] K. Deimling, Nonlinear Functional Analysis, Springer, New York, 1985.
[6] P.W. Eloe, A generalization of concavity for finite differences, Comput. Math. Appl. 36 (1998) 109-113.
[7] J. Henderson, Positive solutions for nonlinear difference equations, Nonlinear Stud. 4 (1) (1997) 29-36.
[8] J. Henderson, H.Y. Wang, Positive solutions for nonlinear eigenvalue problems, J. Math. Anal. Appl. 208 (1997) 252-259.
[9] M.A. Krasnosel'skii, Positive Solutions of Operator Equations, Noordhooff, Groningen, 1964.
[10] F. Merdivenci, Two positive solutions of a boundary value problem for difference equations, J. Difference Equations Appl. 1 (1995) 263-270.
[11] W.P. Sun, W.G. Ge, The existence of positive solutions for a class of nonlinear boundary value problems, Acta Math. Sinica 44 (2001) 577-580 (in Chinese).
[12] J.Y. Wang, The existence of positive solutions for the one-dimensional p-Laplacian, Proc. Amer. Math. Soc. 125 (1997) 2275-2283.


[^0]:    * Supported by NNSF (No. 10071018) of People's Republic of China and NSF (02JJY2006) of Hunan.

    E-mail address: hezhimin@mail.csu.edu.cn (Z. He).

