A construction for 2-chromatic Steiner quadruple systems

L. Ji

Department of Mathematics, Suzhou University, Suzhou 215006, China

Received 1 February 2005; accepted 25 April 2006
Available online 7 July 2006

Abstract

In 1971, Doyen and Vandensavel gave a special doubling construction that gives a direct construction of 2-chromatic SQS\((v)\) for all \(v \equiv 4 \text{ or } 8 \pmod{12}\). In this paper, we introduce the concept of a 2-chromatic candelabra quadruple system, and use it to provide a construction for 2-chromatic SQS. It is proved that a 2-chromatic SQS\((v)\) exists if \(v \equiv 10 \text{ or } 26 \pmod{48}\), or if \(v \equiv 2 \text{ or } 34 \pmod{96}\) with the possible exception \(v = 98\).

1. Introduction

A \(t\)-wise balanced design (\(t\)BD) is a pair \((X, \mathcal{B})\), where \(X\) is a finite set of points and \(\mathcal{B}\) is a set of subsets of \(X\), called blocks, with the property that every \(t\)-element subset of \(X\) is contained in a unique block. If \(|X| = v\) and the block sizes of \(\mathcal{B}\) are all from \(K\), we denote the \(t\)BD by \(S(t, K, v)\). When \(K = \{k\}\), we simply write \(k\) for \(K\). An \(S(t, k, v)\) is called a Steiner system.

An \(S(3, 4, v)\) is called a Steiner quadruple system of order \(v\) (briefly an SQS\((v)\)). It is well known (see [2]) that an SQS\((v)\) exists if and only if \(v \equiv 2 \text{ or } 4 \pmod{6}\).

As with a hypergraph, a \(k\)-coloring of an SQS\((v)\) is a partition of the set \(X\) into \(k\) parts or color classes such that no block of \(\mathcal{B}\) is contained in any color class. An SQS\((v)\) is \(k\)-chromatic if it is \(k\)-colorable but not \((k - 1)\)-colorable.

Steiner quadruple systems can be 2-colored as was noted by Doyen and Vandensavel [1]. In that paper, they pointed out that if an SQS\((v)\) can be 2-colorable, then the color classes each
Theorem 1.1. A 2-chromatic SQS(v) exists if \(v \equiv 4 \) or \(8 \) (mod \(12 \)), or if \(v = 2 \cdot 5^a 13^b 17^c \), \(a, b, c \geq 0 \), and proved that there does not exist a 2-chromatic SQS(14). Recently, Phelps in [8] enumerated 2-chromatic SQS(22) having a cyclic automorphism of order 11. We state these known results on 2-chromatic SQS in the following theorem.

Theorem 1.2. A 2-chromatic SQS(v) exists if \(v \equiv 4 \) or \(8 \) (mod \(12 \)), or if \(v \equiv 10 \) or \(26 \) (mod \(48 \)), or if \(v \equiv 2 \) or \(34 \) (mod \(96 \)) with the possible exception of \(v = 98 \), or if \(v = 22 \). A 2-chromatic SQS(14) does not exist.

2. A recursive construction for 2-chromatic SQS

In Lemma 2.2 of this section we describe a recursive construction for 2-chromatic SQS from 2-chromatic candelabra quadruple systems.

Let \(v \) be a non-negative integer, let \(t \) be a positive integer and let \(K \) be a set of positive integers. A candelabra \(t \)-system (or \(t-CS \) as in [7]) of order \(v \), and block sizes from \(K \) denoted by \(CS(t, K, v) \), is a quadruple \((X, S, G, A)\) that satisfies the following properties:

1. \(X \) is a set of \(v \) elements (called points);
2. \(S \) is an \(s \)-subset (called the stem of the candelabra) of \(X \);
3. \(G = \{G_1, G_2, \ldots\} \) is a set of non-empty subsets (called groups or branches) of \(X \setminus S \), which partition \(X \setminus S \);
4. \(A \) is a family of subsets (called blocks) of \(X \), each of cardinality from \(K \);
5. every \(t \)-subset \(T \) of \(X \) with \(|T \cap (S \cup G_i)| < t \), for all \(i \), is contained in a unique block and no \(t \)-subsets of \(S \cup G_i \), for all \(i \), are contained in any block.

By the group type (or type) of a \(t-CS \) \((X, S, \Gamma, A)\) we mean the list \(((|G|, G \in \Gamma) : |S|)\) of group sizes and stem size. The stem size is separated from the group sizes by a colon. If a \(t-CS \) has \(n_i \) groups of size \(g_i \), \(1 \leq i \leq r \), and stem size \(s \), then we use the notation \((g_1^{n_1} g_2^{n_2} \cdots g_r^{n_r} : s)\) to denote the group type. When \(t = 3 \) and \(K = \{4\} \), such a system is called a candelabra quadruple system (as in [4]) and denoted for short by \(\text{CQS}(g_1^{n_1} g_2^{n_2} \cdots g_r^{n_r} : s) \).

Let \(g_1, \ldots, g_r \) and \(s \) be all even. A \(\text{CQS}(g_1^{a_1} g_2^{a_2} \cdots g_r^{a_r} : s) \) \((X, S, \mathcal{G}, \mathcal{B})\) is called 2-chromatic if the point set \(X \) can be partitioned into two color classes \(X_1 \) and \(X_2 \) such that \(|G \cap X_1| = |G \cap X_2|\) for \(G \in \mathcal{G} \cup \{S\} \), and such that no block of \(\mathcal{B} \) is contained in any color class.

We state one example which will play an important role in the following.

Lemma 2.1. There exists a 2-chromatic CQS(\(8^4 : 2)\).
Proof. The desired design is constructed on \((Z_{16} \cup \{\infty\}) \times Z_2\) with groups \([i, i + 4, i + 8, i + 12] \times Z_2\) for \(0 \leq i \leq 3\) and a stem \([\infty] \times Z_2\). Its two color classes are \((Z_{16} \cup \{\infty\}) \times \{j\}, j = 0, 1\). Its blocks are generated by 86 base blocks under \((\text{mod} 16, -)\), of which we list 45 base blocks. The other 41 base blocks can be obtained from the last 41 base blocks under the mapping
\[f : (a, b) \mapsto (-a, b + 1).\]
Note that \(\infty + i = \infty\).

A holey quadruple system of order \(v\) with a hole of order \(s\), denoted by HQS\((v : s)\), is a triple \((X, S, \mathcal{A})\) where \(X\) is a set of size \(v\), \(S\) is an \(s\)-subset of \(X\), and \(\mathcal{A}\) is a set of \(4\)-subsets (called blocks) of \(X\) such that every 3-subset \(T \subseteq X\) with \(T \not\subseteq S\) is contained in a unique block and no 3-subset of \(S\) is contained in any block. Let \(v, s\) be even. An HQS\((v : s)\) is called 2-chromatic if the point set \(X\) can be partitioned into two color classes \(X_1\) and \(X_2\) of size \(v/2\) such that \(|S \cap X_1| = |S \cap X_2|\), and such that no block of \(\mathcal{A}\) is contained in any color class.

Using 2-chromatic CQS and HQS, we have the following.

Lemma 2.2. Suppose that there is a 2-chromatic CQS\((g_0^1, g_2^1, \ldots, g_r^r : s)\). If there is a 2-chromatic HQS\((g_i + s : s)\) for \(1 \leq i \leq r\), then there is a 2-chromatic HQS\((g_0 + s + \sum_{1 \leq i \leq r} a_i g_i : g_0 + s)\). Further, if there is a 2-chromatic SQS\((g_0 + s)\), then there is a 2-chromatic SQS\((g_0 + s + \sum_{1 \leq i \leq r} a_i g_i)\).

Proof. Let \((X, S, G, \mathcal{A})\) be the given 2-chromatic CQS\((g_0^1, g_2^1, \ldots, g_r^r : s)\) with two color classes \(X_1\) and \(X_2\). Let \(G\) be a group of size \(g_0\).

For any \(G' \in G\) with \(G' \neq G\), construct a 2-chromatic HQS\((|G'| + s : s)\) on \(G' \cup S\) with \(S\) as a hole and \((G' \cup S) \cap X_i\) \((i = 0, 1)\) as two color classes. Such a design exists by assumption. Denote its block set by \(B_{G'}\). Then \((X, \mathcal{A} \cup (\cup_{G' \in G, G' \neq G} B_{G'}))\) is a 2-chromatic HQS\((g_0 + s + \sum_{1 \leq i \leq r} a_i g_i : g_0 + s)\) with \(G \cup S\) as a hole, \(X_1\) and \(X_2\) as two color classes.

Further, suppose the given 2-chromatic SQS\((g_0 + s)\) on \(G \cup S\) with \((G \cup S) \cap X_i\) \((i = 0, 1)\) as two color classes has block set \(B_G\). Then \((X, \mathcal{A} \cup B_G \cup (\cup_{G' \in G, G' \neq G} B_{G'}))\) is a 2-chromatic SQS\((g_0 + s + \sum_{1 \leq i \leq r} a_i g_i)\) with two color classes \(X_1\) and \(X_2\).

The above lemma demonstrates that the 2-chromatic CQS is useful in the construction of 2-chromatic SQS. To obtain such CQS, we first state a fundamental construction for 3-CS which is a special case of the fundamental construction of Hartman [3], then give a recursive construction for 2-chromatic CQS.

Let \((X, S, G, \mathcal{A})\) be a CS\((3, K, v)\) of type \((s_1^{a_1} \cdots g_r^{a_r} : s)\) and \(S = \{\infty_1, \infty_2, \ldots, \infty_3\}\) with \(s \geq 1\). For \(1 \leq i \leq s\), let \(B_i = \{A \setminus \{\infty_i\} : B \in \mathcal{A}, \infty_i \in A\}\) and \(T = \{A \in \mathcal{A} : A \cap S = \emptyset\}\). The \((s + 3)\)-tuple \((X, S, G, B_1, B_2, \ldots, B_s, T)\) is called an s-fan design (as in [3]). Its type is the list \(|G||G| \in G\). If block sizes of \(B_i\) and \(T\) are from \(K_i\) \((1 \leq i \leq s)\) and \(K_T\), respectively, then the s-fan design is denoted by s-FG\((3, (K_1, K_2, \ldots, K_s, K_T), \sum_{i=1}^r a_i g_i)\) of type \(g_1^{a_1} g_2^{a_2} \cdots g_r^{a_r}\).
Let v be a non-negative integer, let t be a positive integer and K be a set of positive integers. A group divisible t-design of order v and with block sizes from K denoted by GDD(t, K, v) is a triple (X, G, B) such that

(1) X is a set of v elements (called points),

(2) $G = \{G_1, G_2, \ldots\}$ is a set of non-empty subsets of X (called groups) such that (X, G) is a 1-wise balanced design,

(3) B is a family of subsets of X (called blocks) each of cardinality from K such that each block intersects any given group in at most one point,

(4) each t-set of points from t distinct groups is contained in exactly one block.

The type of the GDD(t, K, v) is defined as the list $|G||G \in G$.

Theorem 2.3 ([3]). Suppose that there exists an e-FG(3, (K_1, \ldots, K_e, K_T), v) of type $s_1 \leq s_2 \leq \ldots \leq s_e$. Suppose that there exist a GDD(3, L, $b(k_1 + s_1)$) of type $b(k_i)$ for any $k_i \in K_i$ with $2 \leq i \leq e$, a CS(3, L, $b(k_1 + s_1)$) of type $(b(k_i))$ for any $k_i \in K_1$ and a GDD(3, L, $b(k_j)$) of type $b(k_j)$ for any $k_j \in K_T$. Then there exists a CS(3, L, $vb + \sum_{1 \leq i \leq e} s_i$) of type $(bgr_1)^a_1(bgr_2)^a_2(\ldots(bgr_e)^a_e) : \sum_{1 \leq i \leq e} s_i$.

Let g_1, \ldots, g_r be all even. A GDD(3, 4, v) of type $g_1 g_2 g_3 \ldots g_r$ (X, G, A) is said to be 2-chromatic if the vertex set of X can be partitioned into two color classes X_1 and X_2 such that $|G \cap X_1| = |G \cap X_2|$ for any $G \in G$ and no block of A is contained in any color class.

Taking a 2-chromatic CQS and a 2-chromatic GDD(3, 4, v) as input designs in Theorem 2.3, we have the following construction for 2-chromatic CQS.

Lemma 2.4. Suppose that there exists an e-FG(3, (K_1, \ldots, K_e, K_T), v) of type $s_1 \leq s_2 \leq \ldots \leq s_e$. Suppose that there exist a 2-chromatic GDD(3, 4, $b(k_j + s_j)$) of type $b(k_j s_j)$ for any $k_j \in K_j$ with $2 \leq j \leq e$, a 2-chromatic CQS($b(k_i)$) for any $k_i \in K_1$ and a 2-chromatic GDD(3, 4, $b(k_j)$) of type $b(k_j)$ for any $k_j \in K_T$. Then there exists a 2-chromatic CQS($s_1 \leq s_2 \leq \ldots \leq s_e$).

Proof. Let (X, G, B, T) be the given e-FG. By the definition, b and s_j are all even. Let

$s = \sum_{1 \leq j \leq e} s_j$ and $S = \{\infty\} \times Z_2^s \times Z_2^t$. Suppose that $\infty \notin X$. We shall construct a 2-chromatic CQS($s_1 \leq s_2 \leq \ldots \leq s_e$) on $X' = (X \times Z_2^t) \cup S$ having a group set $G' = \{G \times Z_2^t : G \in G\}$ and a stem S. Let $X_i = (X \times Z_2^t \times \{i\}) \cup (\infty \times Z_2^t \times \{i\}) (i = 0, 1)$ be two color classes.

For convenience, define $G_x = \{x\} \times Z_2^t \times Z_2$ for $x \in X$ and $S_i \cup S_2 \cup \ldots \cup S_e$, where $S_1 = \{\infty\} \times Z_2^s / 2 \times Z_2$, $S_j = S'_j \times Z_2$ and $S'_j = (\infty, \sum_{1 \leq j \leq s_i / 2 - 1})$ for $2 \leq j \leq e$.

For each block $B \in T$, construct a 2-chromatic GDD(3, 4, $b|B|$) on $B \times Z_2^t \times Z_2$ with G_x ($x \in B$) as its groups and $B \times Z_2^t \times \{i\}$ ($i = 0, 1$) as two color classes. Such a design exists by assumption. Denote its block set by A_B.

For any $2 \leq j \leq e$ and any block $B_j \in B_j$, construct a 2-chromatic GDD(3, 4, $b|B_j| + s_j$) on $(B_j \times Z_2^t \times Z_2) \cup S_j$ with G_x ($x \in B_j$) and S_j as its groups, $((B_j \times Z_2^t) \cup S'_j) \times \{i\}$ ($i = 0, 1$) as two color classes. Such a design exists by assumption. Denote its block set by A_B.

For each block $B_j \in B_j$, construct a 2-chromatic CQS($s_1 \leq s_2 \leq \ldots \leq s_e$) on $(B_j \times Z_2^t \times Z_2) \cup S_1$ with G_x ($x \in B_1$) as its branches and S_1 as its stem, such that $(B_1 \times Z_2^t \times \{i\}) \cup (\infty \times Z_2^s) \times \{i\}$ ($i = 0, 1$) as two color classes. Such a design exists by assumption. Denote its block set by A_B.

Let

$F = (\cup_{B \in T} A_B) \cup (\cup_{1 \leq j \leq e, B_j \in B_j} A_B)$.

By Theorem 2.3 (X', S, G', F) is a CQS $((bg_1)^{a_1}(bg_2)^{a_2}\cdots (bg_r)^{a_r} : \sum_{1 \leq i \leq e} s_i)$. Further, each block in any input design is not contained in any color class. It follows that each block of F is not contained in any color class and such a CQS is also 2-chromatic. \square

In the next section, we shall use Lemma 2.4 to obtain some 2-chromatic CQS which will produce some new infinite classes of 2-chromatic SQS.

3. Main result

We shall use the result on $S(3, \{4, 5\}, v)$ and apply Lemma 2.4 to prove our main result. We first construct the required input design.

A recursive construction for 2-chromatic GDD$(3, 4, v)$ is given below.

Lemma 3.1. Suppose that there is a GDD$(3, K, v)$ of type $g_1^{a_1}\cdots g_r^{a_r}$. If there is a 2-chromatic GDD$(3, 4, bk)$ of type b^k for any $k \in K$, then there is a 2-chromatic GDD$(3, 4, bv)$ of type $(bg_1)^{a_1}\cdots (bg_r)^{a_r}$.

Proof. Let (X, G, A) be the given GDD$(3, K, v)$. By the definition of the 2-chromatic GDD, b is even. We shall construct the desired design on $X' = X \times Z_{b/2} \times Z_2$ having a group set $G' = \{G \times Z_{b/2} \times Z_2 : G \in G\}$ and two color classes $X \times Z_{b/2} \times \{i\}, i = 0, 1$.

For each block $A \in A$, construct a 2-chromatic GDD$(3, 4, b|A|)$ on $A \times Z_{b/2} \times Z_2$ with groups $\{x\} \times Z_{b/2} \times Z_2$, such that $A \times Z_{b/2} \times \{i\}$ is a two color classes. Such a design exists by assumption. Denote its block set by B_A.

Let $B = \cup_{A \in A} B_A$. Then, it is easy to check that (X', G', B) is a GDD$(3, 4, bv)$ of type $(bg_1)^{a_1}\cdots (bg_r)^{a_r}$. Further, each block in any input design is not contained in any color class. It follows that each block in the GDD$(3, 4, bv)$ is not contained in any color class and such a design is also 2-chromatic. \square

A GDD$(3, 4, ur)$ of type r^u is called an H-design [6]. Mills proved the following.

Lemma 3.2 (Mills [6]). For $u > 3$ and $u \neq 5$, a GDD$(3, 4, ur)$ of type r^u exists if and only if ru is even and $r(u - 1)(u - 2)$ is divisible by 3. For $u = 5$, a GDD$(3, 4, 5r)$ of type r^5 exists if r is divisible by 4 or 6.

From the known GDD in Lemma 3.2, we have the following.

Lemma 3.3. For $u > 3$ and $u \neq 5$, if ru is even and $r(u - 1)(u - 2)$ is divisible by 3, then there is a 2-chromatic GDD$(3, 4, urb)$ of type $(br)^u$ for any even b. For $u = 5$, if r is divisible by 4 or 6, then there is a 2-chromatic GDD$(3, 4, 5br)$ of type $(br)^5$ for any even b.

Proof. First we construct a 2-chromatic GDD$(3, 4, 8)$ of type 2^4 on Z_8 with groups $G_i = \{i, i + 4\} (0 \leq i \leq 3)$ and two color classes $X_1 = \{0, 1, 2, 3\}, X_2 = \{4, 5, 6, 7\}$. Its block set A contains the following blocks.

$0 1 2 7$ $0 1 3 6$ $0 2 3 5$ $0 5 6 7$ $1 2 3 4$ $1 4 6 7$ $2 4 5 7$ $3 4 5 6$

From such a GDD, we shall construct a 2-chromatic GDD$(3, 4, 4b)$ on $Z_8 \times Z_{b/2}$ with groups $\{G_i\} \times Z_{b/2}, 0 \leq i \leq 3$, and two color classes $X_j \times Z_{b/2}, j = 0, 1$.

For each block $A = \{x_1, x_2, x_3, x_4\} \in \mathcal{A}$, construct a GDD($3, 4, 2b$) of type $(b/2)^4$ on $A \times Z_{b/2}$ with groups $\{x\} \times Z_{b/2}$. It has the following blocks.

$\{(x_1, i), (x_2, j), (x_3, k), (x_4, l)\} : i, j, k, l \in Z_{b/2}, \quad i + j + k + l \equiv 0 \pmod{b/2}.$

Denote its block set by \mathcal{B}_A.

Let $\mathcal{B} = \bigcup_{A \in \mathcal{A}} \mathcal{B}_A$. It is easy to check that \mathcal{B} is the block set of a GDD($3, 4, 4b$) of type b^4. Since each block in \mathcal{B}_A is not contained in any color class, such a GDD is also 2-chromatic.

For the given r, u, by Lemma 3.2 there is a GDD($3, 4, ur$) of type r^u. Using the above 2-chromatic GDD($3, 4, 4b$) of type b^4 as the input design, by Lemma 3.1 there exists a 2-chromatic GDD($3, 4, bur$) of type $(br)^u$. □

A small 2-chromatic CQS is constructed directly.

Lemma 3.4. There exists a 2-chromatic CQS($8^3 : 2$).

Proof. The desired design is constructed on $(Z_{12} \cup \{\infty\}) \times Z_2$ with groups $\{i, i + 3, i + 6, i + 9\} \times Z_2 (0 \leq i \leq 2)$ and a stem $\{\infty\} \times Z_2$. Its two color classes are $(Z_{12} \cup \{\infty\}) \times \{j\}, j = 0, 1$. Its blocks are generated by 96 base blocks under $\langle +2 \pmod{12}, -\rangle$, of which we list 48 base blocks as follows. The other 48 base blocks can be obtained from them under the mapping $f : (a, b) \mapsto (-a, b + 1)$. Note that $\infty + i = \infty$ and that the first two base blocks A, B, together with $f(A), f(B)$, each generate exactly two distinct blocks.

\[
\begin{array}{cccccccc}
0_0 40 80 \infty & 0_0 50 90 \infty & 0_0 41 81 \infty & 0_0 51 91 \infty & 0_0 10 20 \infty & 0_0 60 110 \infty \\
0_1 11 \infty & 0_1 61 11 \infty & 0_1 10 21 \infty & 0_1 60 11 \infty & 0_1 11 20 \infty & 0_1 61 10 \infty \\
0_0 30 60 1 & 0_0 40 50 1 & 0_0 50 40 1 & 0_0 10 60 51 & 0_0 10 70 81 & 0_0 10 80 11 \\
0_0 10 90 71 & 0_0 10 100 31 & 0_0 10 110 91 & 0_0 20 40 111 & 0_0 20 50 01 & 0_0 20 60 71 \\
0_0 20 70 41 & 0_0 20 80 101 & 0_0 20 90 21 & 0_0 20 110 61 & 0_0 30 40 41 & 0_0 30 50 11 \\
0_0 30 70 71 & 0_0 30 80 21 & 0_0 30 110 81 & 0_0 40 90 11 & 0_0 40 110 71 & 0_0 50 60 10 \\
0_0 50 90 51 & 0_0 50 110 11 & 0_0 70 90 101 & 0_0 70 110 21 & 0_0 90 110 11 & 0_1 30 50 01 \\
0_1 30 70 51 & 0_1 30 90 21 & 0_1 10 60 101 & 0_1 20 31 81 & 0_1 70 11 91 & 0_0 110 31 51 \\
\end{array}
\]

□

A result on 3BD is given in [5].

Lemma 3.5 ([5]). There is an S($3, \{4, 5\}, v$) for $v \equiv 1, 2, 4, 5, 8, 10 \pmod{12}$ with $v \neq 13$.

We are in a position to prove our main result.

Proof of Theorem 1.2. By Theorem 1.1, we need only to consider the cases $v \equiv 10, 26 \pmod{48}$ and $v \equiv 2, 34 \pmod{96}$ with $v \neq 98$. Each such v can be written as $v = 8k + 2$ where $k \equiv 0, 1, 3, 4, 7, 9 \pmod{12}$ and $k \neq 12$.

For $k = 0$, it exists trivially. For $k = 1$, a 2-chromatic SQS($8k + 2$) exists from Theorem 1.1. For each $k \equiv 0, 1, 3, 4, 7, 9 \pmod{12}$, $k \geq 3$ and $k \neq 12$, by Lemma 3.5 there is an S($3, \{4, 5\}, k + 1$). Deleting a point from this 3BD yields a 1-FG($3,$ $\{(3, 4), \{4, 5\}\}$, k) of type 1^k. Apply Lemma 2.4 with $b = 8$. By Lemmas 2.1 and 3.4 there is a 2-chromatic CQS($8^i : 2$) for $i = 3, 4$. By Lemma 3.3 there is a 2-chromatic GDD($3, 4, 8j$) of type 8^j for $j = 4, 5$. Then we obtain a 2-chromatic CQS($8^k : 2$). Since a 2-chromatic SQS(10) is also a 2-chromatic HQS($10 : 2$), by applying Lemma 2.2 we obtain a 2-chromatic SQS($8k + 2$). This completes the proof. □
This paper presents a construction for 2-chromatic SQS, which is used to study the difficult class of orders \(v \equiv 2 \) or \(10 \) (mod 12). Three eighths of this problem is settled. The orders \(v \equiv 14 \) or \(22 \) (mod 24), and \(v \equiv 50 \) or \(82 \) (mod 96), and \(v = 98 \) are what remains be done to settle the existence question for 2-chromatic SQS completely.

Acknowledgements

The author would like to thank Prof. L. Zhu for helpful suggestions and the referees for many helpful comments.

References