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numerous metabolic and signalling functions that vary according to specific
tissues. Glutamate metabolism is tightly controlled by activities of mitochondrial enzymes and
transmembrane carriers, in particular glutamate dehydrogenase and mitochondrial glutamate carriers that
have been identified in recent years. It is remarkable that, although glutamate-specific enzymes and
transporters share similar properties in most tissues, their regulation varies greatly according to particular
organs in order to achieve tissue specific functions. This is illustrated in this review when comparing
glutamate handling in liver, brain, and pancreatic β-cells. We describe the main cellular glutamate pathways
and their specific functions in different tissues, ultimately contributing to the control of metabolic
homeostasis at the organism level.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Glutamate is a multifunctional amino acid. Apart of being a
building block for proteins [1], glutamate is also a major neurotrans-
mitter in neuronal and non-neuronal cells [2,3], a precursor of the
tricarboxylic acid (TCA) cycle and metabolic intermediate [1], an
intracellular messenger [4], a key member of ammonia metabolism
[5], and the inducer of one of the five basic tastes, i.e. the savoury taste
umami [6]. This key amino acid is closely associated with mitochon-
drial metabolism. Mitochondrial enzymes glutamate dehydrogenase
(GDH), aspartate aminotransferase, and glutaminase participate to
breakdown and generation of glutamate [7].

Because various functions are associated with glutamate, it is
intriguing how different tissues can achieve specific control of
glutamate pathways to meet their specific tasks. In this review, we
describe the main players involved in cellular glutamate metabolism.
In parallel, specific glutamate-dependent functions are illustrated by
comparing three important tissues playing a key role in the control of
metabolic homeostasis, i.e. pancreatic β-cells, liver, and brain.

Mitochondria, and the TCA cycle in particular, represent the major
metabolic crossroad enabling fuel oxidation as well as provision of
building blocks, or cataplerosis, for lipids and proteins [1]. Glycolytic
product pyruvate entersmitochondria and is preferentially oxidised to
(P. Maechler).
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acetyl-CoA by pyruvate dehydrogenase. Pyruvate dehydrogenase is an
important site of regulation as, among other effectors, the enzyme is
activated by elevation of mitochondrial Ca2+[8] and, conversely, its
activity is reduced upon exposures to excess fatty acids [9].
Oxaloacetate, produced by malate dehydrogenase or alternatively by
the anaplerotic enzyme pyruvate carboxylase, condenses with acetyl-
CoA forming citrate, which undergoes stepwise oxidation and
decarboxylation yielding α-ketoglutarate (2-oxoglutarate). The TCA
cycle is completed via succinate, fumarate, and malate, in turn
producing oxaloacetate (Fig. 1). The fate of α-ketoglutarate is
influenced by the redox state of mitochondria. Low NADH to NAD+

ratio would favour further oxidative decarboxylation to succinyl-CoA
as NAD+ is required as co-factor for this pathway. Conversely, high
NADH to NAD+ ratio would promote NADH-dependent reductive
transamination through glutamate dehydrogenase (GDH), thereby
forming glutamate as a cataplerotic product of the TCA cycle [1].
Alternatively, glutamate can originate from glutamine via glutaminase
activity and also through transamination reactions (Fig. 1).

Glutamate can enter various metabolic pathways according to
cellular demand and tissue specific function requirements. Glutamate
is necessary for protein synthesis and it forms the TCA cycle
intermediate α-ketoglutarate. In skeletal muscles, glutamate is used
as an anaplerotic precursor for the TCA cycle to enhance oxidative
metabolism [10]. Glutamate can also be taken up by secretory vesicles
in excitable tissues; it initiates urea cycle via ornithine formation;
and it can form γ-glutamyl-cysteine, the precursor of glutathione
(γ-glutamyl-cysteine-glycine) implicated in redox control. Glu-
tathione synthase deficiency is associatedwith central nervous system

mailto:Pierre.Maechler@medecine.unige.ch
http://dx.doi.org/10.1016/j.bbabio.2008.04.031
http://www.sciencedirect.com/science/journal/00052728


Fig. 1. Simplified scheme depicting major glutamate pathways. Glutamate dehydrogenase (GDH) is activated by ADP and L-leucine (Leu) and inhibited by GTP and SIRT4. Alanine
aminotransferase (ALAT) and aspartate aminotransferase (ASAT) also participate to glutamate breakdown and synthesis. Ornithine is formed from glutamate through three reactions
(hashed line). See text for description.
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damage and recurrent bacterial infections [11], stressing again the
implication of glutamate pathways in numerous functions and tissues.

2. Glutamate dehydrogenase (GDH)

Glutamate dehydrogenase (GDH) is widely distributed throughout
the eukaryotic, eubacterial and archaebacterial kingdoms with only
few organisms being known to lack this class of enzymes. GDH is of
major significance because it occupies a pivotal position between
carbon and nitrogen metabolism. There are three basic types of GDH:
those that are cofactor-specific for NAD (EC 1.4.1.2), those that are
specific for NADP (EC 1.4.1.4), and dual coenzyme-specific GDHs that
can use either cofactors (EC 1.4.1.3), the latter one being the most
relevant for mammals.

GDHs are homopolymers consisting of two to six subunits of
molecular weight of 40 to 60 kDa, the most common number of
subunits being six. The GDH from bovine liver is undoubtedly the
most extensively studied one [12]. In mammals, this enzyme is a
homohexamer located in the mitochondrial matrix. GDH catalyses the
reversible reaction α-ketoglutarate+NH3+NAD(P)H↔glutamate+
NAD(P)+ [12]. High GDH enzymatic activity has been found in several
mammalian tissues including liver, brain, kidney, heart, pancreas,
ovaries, and lymph nodes [13]. In the brain, GDH plays a key role in the
cycling of the neurotransmitter glutamate between neurons and
astrocytes [14]. GDH is also of major importance for ammonia metab-
olism and detoxification, mainly in the liver and kidney [15]. In
pancreatic β-cells, the importance of GDH as a key enzyme in the
regulation of insulin secretion has been recognized long ago [16].
Inhibition of GDH activity was shown to decrease insulin release
[17–19], while activating mutations have been associated with a
hyperinsulinism syndrome [20,21].

2.1. Enzymatic regulation of GDH

The enzyme is allosterically regulated by leucine, pyridine, adenine
and guanine nucleotides [22,23]. Each subunit of GDH exhibits specific
binding domains: the catalytic domain, the adenine and guanine
nucleotide regulatory domains, the reduced coenzyme regulatory
domain, and the ADP-ribosylation domain [12,24–27]. In most
vertebrates GDH is inhibited by GTP and activated by ADP, but there
are differences in the way the enzyme behaves towards the purine
nucleoside phosphates [12]. GTP reduces enzyme turnover by
increasing the affinity of GDH for the reaction product [28]. In
contrast, ADP activates GDH by facilitating product release [28,29].
From the proposed locations of GTP and ADP binding sites in bovine
GDH structure, it was suggested that these allosteric regulators exert
their effects by changing the energy required to open and close the
catalytic cleft during the enzymatic turnover [23,30].

Mutagenesis and photoaffinity labelling identified Lys-450 residue
as a GTP binding site on GDH [31]. The region of 20 amino acids,
corresponding to residues Ile-444 to Arg-463, has been suggested to
encode the putative GTP allosteric domain of the enzyme [23]. The
NADH binding domain of the enzyme was identified in residues Cys-
270 through Lys-289 [32], residue Glu-279 playing an important role
for efficient binding of NADH [33]. Analyses of the X-ray structure of
bovine liver GDH indicate that Glu-275, corresponding to Glu-279 in
human enzyme, forms a hydrogen bond with the coenzyme NADH
[23,30]. The adenine binding domain of the ADP site within the
human enzyme was identified by cassette mutagenesis and photo-
affinity labelling at the Tyr-187 position [33].

Finally, GDH is also regulated by reversible cystein-specific ADP-
ribosylation in mitochondria. Inactivation of the enzyme is caused by
ADP-ribose association, which is suppressed by NAD(P)H. The
stoichiometry between incorporated ADP-ribose and GDH subunits
suggests that modification of one subunit per catalytically active
homohexamer causes the inactivation of the enzyme [27]. Residue
Cys-119 might have an important role in the regulation of hGDH
isoenzymes by ADP-ribosylation [34]. SIRT4, a mammalian sirtuin
withmitochondrial ADP-ribosyltransferase activity, is amatrix protein
and becomes cleaved at amino acid 28 after import into mitochondria
[35]. Recently, physiological importance of GDH regulation by ADP-
ribosylation has been demonstrated. Indeed, mitochondrial ADP-
ribosyltransferase SIRT4 downregulates GDH activity in pancreatic
β-cells and thereby modulates insulin secretion [35,36].

2.2. Genetics of GDH

GDH is encoded by a well-conserved 45 kb gene named GLUD1,
which is organised into 13 exons [37]. While GLUD1is expressed in
several tissues [13], its isoform GLUD2 is restricted to hominoids
and specific for nerve tissues such as brain and retina [38]. GLUD2 is an
X-linked intronless gene [38] andwas originated by retrotransposition
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of a spliced mRNA derived from the intron-containing GLUD1 gene in
the hominoid ancestor less than 23 million years ago. The amino acid
changes responsible for the unique brain-specific properties of the
enzyme derived from GLUD2 occurred during a period coinciding with
an increase in brain size in both human and great ape ancestor [39].
GLUD2might have participated to enhanced brain function in humans
and apes by allowing higher neurotransmitter flux and clearance. Of
interest, the GDH gene was one of two candidates identified in a
systematic screen for genes upregulated during late memory forma-
tion in rats [40]. Thus, GLUD2 might have been important during
evolution for increased cognitive capacities in hominoids [41].

Significance of GTP mediated regulation of GDH is highlighted
through human genetic and pathophysiology. Identification of an
unusual hyperinsulinism/hyperammonaemia syndrome has been
associated with dominant mutations in GDH that cause reduced
GTP-mediated inhibition of the enzyme [42]. Missense mutations in
exons 11 and 12, corresponding to the allosteric domain, result for
instance in Lys-450-Glu [42], Ser-445-Leu, Gly-446-Ser, Gly-446-Asp,
Ser-448-Pro, His-454-Tyr modifications [20]. Other missense muta-
tions located in GLUD1 exons 6 and 7, corresponding to the catalytic
domain of the enzyme, consist in Ser-217-Cys [43], Arg-221-Cys [44],
Arg-265-Thr [43], Tyr-266-Cys [43], Arg-266-Lys [45], Arg-269-His
[44], Arg-269-Cys [43] and Glu-296-Ala [45] substitutions that are also
responsible for the hyperinsulinism/hyperammoanemia syndrome
[44,45]. Surprisingly, mutations in exons 6 and 7 result in diminished
inhibitory effect of GTP on GDH activity, similar to effects of mutations
in exons 11 and 12. This suggests that amino acid substitutions in the
catalytic domain could result in severely altered tertiary structure of
the enzyme indirectly affecting the GTP binding site [44]. Finally,
activating missense mutation in exon 10, responsible for an Asn-410-
Thr in GDH protein, has been identified and is located outside of the
allosteric domain [21].

3. GDH function in specific tissues

Although GDH enzyme catalyzes the same reaction in every tissue,
its function regarding metabolic homeostasis varies greatly according
to specific organs. We will illustrate such diversity through three
tissues controlling whole body metabolism at different levels; i.e.
insulin secretion in pancreatic β-cells, ammonia metabolism in
hepatic cells, and glutamate/glutamine cycling in the central nervous
system.

3.1. GDH and pancreatic β-cell function

Pancreatic β-cells produce the hormone insulin and insulin action
on target tissues maintains glucose homeostasis. Upon nutrient
stimulation, elevation of cytosolic Ca2+ in the β-cell is the primary
and necessary signal for insulin exocytosis [46]. Then, increasing the
magnitude of the secretory response requires amplification of the Ca2+

signal involving metabolism-derived additive factors [18]. Importance
of GDH as a key enzyme in the control of insulin secretion has been
recognized long ago [16]. However, the complete detailed function of
GDH in β-cells remains to be determined. Specifically, GDH might
play a role in glucose-induced amplifying pathway through genera-
tion of glutamate [4,47]. GDH is also an amino acid sensor triggering
insulin release upon glutamine stimulation in conditions of GDH allo-
steric activation [48–50]. These two modes of action each requires
opposite directions of GDH reactions. GDH preferential flux direction
would be either anaplerotic forming α-ketoglutarate from glutamate
or, conversely, cataplerotic generating glutamate at the expense of
α-ketoglutarate. Temporally, these two actions are not mutually
exclusive, as specific metabolic states of the cell might dictate one or
the other direction. During glucose stimulation, elevation of mito-
chondrial NADH to NAD+ ratio should favour NADH-dependent
reductive transamination of α-ketoglutarate to glutamate. Indeed,
such metabolic conditions result in saturated electron transport chain
activity [51]. Then, GDH is the only alternative enzyme to complex I
activity for NADH reoxidation to NAD+. NMR spectroscopy studies
performedon insulinoma cells revealed that under glucose stimulation
glutamate is generated rather than being consumed [52] and that
pyruvate dehydrogenase plus pyruvate carboxylase act as the
anaplerotic enzymes rather than the GDH [53]. Therefore, the flux
direction of GDH might depend on redox and energy state of
mitochondria, as well as on provision of specific substrates determin-
ing the balance of cataplerosis versus anaplerosis.

Of interest, GDH was investigated in β-cells mostly by means of
increased activity of the enzyme. Numerous studies have used the
GDH allosteric activator L-leucine or its non-metabolized analogue
beta-2-aminobicyclo[2.2.1]heptane-2-carboxylic acid (BCH) to ques-
tion the role of GDH in the control of insulin secretion
[16,48,49,54,55]. Our group also increased GDH activity by means of
overexpression, an approach that we combined with allosteric
activation of the enzyme [56].

As described above, another line of studies in β-cells looked at
activating mutations of GDH that have been associated with a
hyperinsulinism syndrome [20,21]. Reduced GTP-mediated inhibition
of the enzyme was associated with most of GDH mutations linked to
the hyperinsulinism syndrome [42]. β-cells forced to express such
mutations became glutamine responsive in terms of insulin secretion,
both in cell and mouse models [50,57]. Unlike glucose, glutamine is
not efficiently catabolised to the end-product CO2 in β-cells [55,58].
However, glutamine complete oxidation can be prompted by allosteric
activation of GDH, an effect correlating with stimulation of insulin
secretion [48,55]. Alternatively, we have shown that overexpression of
GDH in isolated islets promotes glutamine metabolism associated
with insulin secretion [56]. Taken together, these gain-of-function
approaches demonstrate that glutamine can be turned into a
secretagogue under conditions of increased GDH activity, although
glucose stimulated insulin secretion is not, or very modestly, modified
[50,54,56,57].

In only limited number of studies, GDH activity was reduced in
pancreatic islets by the use of inhibitors for which specificity is
questionable [17,19,59]. Upon glucose stimulation, GDH inhibition
results in both lower insulin release and cellular glutamate levels
[59,60]. Green tea polyphenols inhibit GDH and reduce insulin release
when islets are stimulated with glutamine plus BCH, although not
upon glucose stimulation [19]. Recently, it has been shown that the
mammalian Sir2 homolog SIRT4 acts in the mitochondria of
pancreatic β-cells to repress the activity of GDH through ADP-
ribosylation [36,61]. SIRT4 downregulates GDH activity and thereby
modulates insulin secretion [35,36]. In particular, we have shown that
glucose stimulated insulin secretion is increased when SIRT4 is
downregulated and decreased when overexpressed [35]. Antisense
approach was also used in our laboratory to lower GDH expression in
rat clonal INS-1E β-cells, resulting in reduced GDH activity and
inhibition of glucose evoked insulin release [18].

3.2. GDH and hepatic function

The liver is the centre of nitrogen metabolism in the organism.
Nitrogen is transported from skeletal muscle essentially as glutamine
and alanine. In the liver, hepatic glutamate pathway is involved for
metabolism of most amino acids through transamination or GDH
activity. Glutamate metabolism is strongly compartmentalized [62].
Urea synthesis takes place in periportal hepatocytes where glutamine
is deaminated by glutaminase, thereby generating ammonia and
glutamate. Transaminases, such as alanine aminotransferase, are also
more abundant in the periportal region. Then, glutamate is mainly
taken up by the small hepatocytic population in the perivenous
hepatocytes where GDH and glutamine synthetase are abundantly
expressed [63]. Hepatic GDH has a rather high activity and can be
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involved in both glutamine utilization and synthesis. This suggests
that net flux can be in either direction, depending on the provision
or clearance of substrates and products along with allosteric control.
For instance, it has been suggested that a rise in hepatic glutamate
concentrations enhances ureagenesis in response to protein feeding
[64]. By transamination reactions producing α-ketoglutarate, gluta-
mate can transfer its amino group to either oxaloacetate or pyruvate,
thereby generating aspartate or alanine, respectively. Alterna-
tively, glutamate can be deaminated and oxidized via GDH to yield
α-ketoglutarate (also named 2-oxoglutarate). Next, α-ketoglutarate is
further oxidized by the TCA cycle, providing energy in the form of ATP
or utilized for gluconeogenesis [65]. The first step of urea synthesis is
controlled by N-acetylglutamate, a glutamate metabolite that acti-
vates the mitochondrial carbamoyl phosphate synthetase [66]. There-
fore, GDH function is essential to preserve urea generation and to
control ammonia levels. The importance of GDH activity is witnessed
by the severity of disorders where GDH function is compromised, such
as hyperinsulinism/hyperammonaemia syndrome and N-acetylgluta-
mate synthase deficiency.

3.3. GDH and brain function

Mitochondrial function in the brain is closely associated with
glutamate metabolism as this amino acid is the main excitatory
neurotransmitter in the central nervous system [67]. In particular,
mitochondria regulate energetic status of the brain, utilization of
metabolic substrates, and detoxification associated with excess of
neurotransmitters.

Glutamate is released by activated synapses and then depolarizes
target neurons through specific receptors [68,69]. Glutamate is also
the precursor of GABA in neurons and of glutamine in astrocytes
[70,71]. During the synaptic glutaminergic transmission, extracellular
levels of glutamate rise dramatically [72]. Then, glutamate is promptly
removed in order to maintain low concentrations in the extracellular
space (below 3 μM) to avoid excessive stimulation of its receptors that
would result in dysfunction of downstream signaling system, i.e.
excitotoxicity effects [73,74]. Intersynaptic glutamate clearance is
mostly operated by astrocytes, in particular by their specialized
transmembrane transporters GLT1/EAAT2 and GLAST/EAAT1 [75].
GLT1 and GLAST are expressed mainly in astrocytes [76] and take up
glutamate through a Na+-dependent high affinity system [77,78].
Astrocytic internalization of glutamate not only participates to
detoxification of the extracellular space, but also supplies energy to
brain cells. Neurons and astrocytes are metabolically coupled and
tightly related in the regulation of energy balance of the brain.
Astrocytes take up glutamate essentially via Na+-glutamate co-
transporter. When extracellular glutamate is elevated, glutamate-
induced Na+ influx is paralleled by Na+ extrusion through energy
dependent Na+/K+ ATPase [73]. Once internalized inside the astrocyte
glutamate is transformed into glutamine by the enzyme glutamine
synthase [79]. Glutamine is then transported to neurons, transformed
back into glutamate by glutaminase, and packed into secretory vesicles
to be released as neurotransmitter [80]. The alternative fate of astro-
cytic glutamate is the oxidative transamination into α-ketoglutarate
and complete oxidation via the TCA cycle.

Uponneurotransmission, glutamate stimulates its ownoxidation in
order to compensate for increased energetic demand. The ratio
between glutamate/glutamine cycling and oxidative metabolism of
glutamate varies according to neuronal activity, the rate of oxidized
glutamate rising from10% to 50% during stimulation [81]. Glutamine is
a precursor for glutamate used either as a neurotransmitter in neurons
or as a metabolite providing energy to astrocytes via glutaminase
action located in the inner mitochondrial membrane [82]. Overall,
glutamate is an important source of energy for glial cells [83].

In the brain, GDH is highly expressed in astrocytes [84]. This
ensures efficient clearance and catabolism of glutamate released from
neurons [14,85]. As described above, human GDH exists both as
ubiquitous enzyme (hGDH1) encoded by the GLUD1 gene and as brain
and testicular tissue-specific isoform (hGDH2) encoded by GLUD2
[38]. The GLUD2 gene encodes a GDH that is resistant to GTP-mediated
inhibition [86]. Such GLUD2 encoded GDH might confer to astrocytes
higher capacity of glutamate catabolism following glutamate release
as neurotransmitter [41], thereby preventing glutamate induced
neurotoxicity [87]. In rodents, GLUD1 is the only isoform of GDH [41].

GDH is primarily expressed in the mitochondrial matrix of
astrocytes and to a lesser extent in neurons [88]. Under basal
conditions, astrocytes metabolize glutamate via glutamine synthetase
rather than via GDH, thereby favoring glutamine formation [89]. The
amount of glutamate being oxidized through the TCA cycle increases
dramatically when extracellular glutamate is raised to concentrations
reaching 0.5 mM [81]. Under such conditions requiring energy supply,
astrocytes metabolize glutamate primarily via GDH, although in
neurons glutamate is mostly processed by aspartate aminotransferase.
Complete oxidation of glutamate occurs in the TCA cycle, where
glutamate enters as α-ketoglutarate after oxidative deamination
catalyzed by GDH [90]. Oxidative catabolism of glutamate to CO2

produces energy in the form of ATP. Differences in glutamate handling
between neurons and astrocytes provide functional example of
energetic compartmentalization. This way, GDH oxidizes endogenous
glutamine in neurons and exogenous glutamine in astrocytes [91].

4. Mitochondrial glutamate carriers

The transport of glutamate across the inner mitochondrial mem-
brane is mediated by two identified transporters (Fig. 2), i.e. the
aspartate–glutamate exchanger and the glutamate carrier [92–94].
Both proteins belong to themitochondrial solute carrier protein family,
which comprises over 45 members, among them the well known
uncoupling proteins and the ADP/ATP carriers [95–99]. Unique proper-
ties have been ascribed to the solute carriers such as the tripartite
structure and the six transmembrane hydropathy profile, which has
facilitated the identification of other potential members [97–99]. The
major drawback for the functional characterization of these carriers
may be accounted for by the minute expression of these proteins [99].

As inferred from their names the glutamate carrier (GC) as well as
the aspartate–glutamate carrier (AGC) mediate the transport of
glutamate, along with a proton for the former, or in exchange with
aspartate for the latter [93,94]. The GC family is electroneutral, whereas
AGC is electrogenic. AGC requires concentration gradient of solutes and/
or electrochemical potential generated across the inner mitochondrial
membrane as a driving force [100]. The othermajor difference between
the two carriers is that the AGC has a bipartite structure, i.e. the amino
termini contain four EF Ca2+ binding sites that are facing the external
side of the innermitochondrialmembrane, whereas the carboxyl end is
characteristic of mitochondrial solute carriers [101]. This suggests the
possible implication of this carrier as a Ca2+ sensor. GCon theotherhand
has the typical profile of solute carriers [102]. Several studies focused on
the physiological and pathological relevance of both carriers that have
been recently reviewed in details [103].

4.1. Aspartate–glutamate carrier (AGC)

The aspartate–glutamate isoforms 1 and 2 are also commonly
referred to as Aralar1 and citrin carriers [103]. Aralar1 derives from the
contraction of author's name (ARAceli del Arco) with reference to the
fact that the protein is longer in size when compared to other solute
carriers (hyperLARgo) [101]. The citrin carrier relates to the implication
of AGC2 with human citrin deficiency [104]. Several functions have
been ascribed to aspartate–glutamate carriers. In particular, they
constitute part of the malate–aspartate shuttle [103,105]. This shuttle
mediates the transfer of reducing equivalents from cytosolic NADH
intomitochondriawhere it activates the electron transport chain. This,



Fig. 2. Simplified scheme of glutamate carrier (GC) and aspartate–glutamate carrier (AGC). Both carriers span the inner mitochondrial membrane (IMM) six times with three long
hydrophilic loops. AGC has a bipartite structure, with the C-terminal domain that is similar to GC and the N-terminal domain harbouring EF-Ca2+ binding motifs. GC mediates the
transport of glutamate along with a proton, whereas AGC carries glutamate into the mitochondrial matrix in exchange to aspartate.
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in turn, leads to ATP generation, rendering AGCsmajor contributors for
the event of oxidative phoshorylation [105–107].

Both AGC1 and AGC2 are differentially expressed in specific tissues,
although both are found in heart and kidney. Aralar1 is expressed in
excitable tissues, such as the brain and skeletal muscle [101], whereas
the citrin carrier is found predominantly in the liver but also in the
small intestine [108,109]. These carriers are involved in a number of
metabolic pathways, including gluconeogenesis, ureogenesis and the
generation of proteins and amino acids [105,110], accounting for its
expression in the aforementioned tissues to accommodate high
metabolic demands. In the prospect of clarifying the role of AGCs,
knockout mice for both Aralar and citrin were generated.

Aralar1 deficient mice exhibit severe growth defects, limited
lifespan and impairment of motor coordination, as well as deficits in
myelination. In addition, the lack of Aralar1 accounted for the absence
ofmalate–aspartate shuttle activity in bothheart and brain as expected
[110].

Since AGCs are Ca2+ sensors, they might be implicated in Ca2+

signalling. Accordingly, Ca2+ mobilising agonists are able to increase
mitochondrial ATP levels, suggesting that the Ca2+ binding site of AGCs is
crucial for the control of malate–aspartate shuttle activity [111,112]. Our
laboratory pointed out the importance of Aralar1 towards glucose
stimulated insulin secretion in the context of pancreatic β-cells [107].
Adenoviral mediated over-expression of Aralar1 ameliorates coupling
between glycolysis andmitochondrial activation. Inparticular, increased
expression of Aralar1 potentiates metabolism secretion coupling by
increasing NADH generation, ATP levels, glucose oxidation, and insulin
secretion, along with reduced lactate production [107]; thereby
stressing the importance of the malate–aspartate shuttle for β-cell
function [107,113].

Human citrin deficiency encompasses both adult onset type II
citrullinemia (CTLN2) and neonatal intrahepatic cholestasis (NICCD).
CTLN2disorder is characterizedby theaccumulation of citrin in thebody
due to a deficiency in the enzyme argininosuccinate synthase [114].
Clinically, CTLN2 patients display a wide variety of neuropsychiatric
symptoms associated with hyperammonia, which may lead to sudden
death between the ages of 20 to 40 as a result of brain edema [104,115]. It
was shown that liver transplantation may effectively eradicate all
symptoms associated with CTLN2, suggesting that argininosuccinate
synthetasedeficiency is liver specific [115]. NICCDon theotherhand, has
less severe clinical symptoms, restricted to the first few months after
birth. Typically, patients suffer from multiple metabolic abnormalities,
such as aminoacidemias, galactosemia, and hypoproteinemia [115].

AGC2 knockout mouse model was generated as a representative
model of CTLN2 pathology [116]. These mice showed a significant
decrease in aspartate efflux from liver mitochondria when compared
to the wild type mice. Moreover, liver perfusion revealed marked
decrease of ureogenesis from ammonia and gluconeogenesis from
lactate. Despite the deficits in AGC-dependent metabolic pathways,
the knockout mice failed to display physiological factors that are
characteristic of CTLN2 [116].

As inferred from the knockout mice models that were previously
described, these studies demonstrate that there is not a defined
correlation between a defective gene and its pathology. The complex-
ity is further enhanced by environmental factors, which may account
for strong ethnic biases, such as the ones observed for CTLN2 in Asian
population [117–119]. Despite the apparent complexities linked to
pathogenesis onset, the use of knockout mouse may be informative
although one should be aware of compensatory pathways, which may
alleviate or totally abrogate the expected phenotype.

4.2. Glutamate carrier (GC)

The glutamate carrier was first reported in the early seventies by
Meijer et al. and its identification was supported by the evidence of
mitochondria swelling in the presence of ammonium glutamate [94]. It
was found thatGCsplaya crucial role in ureogenesis, since theprovision
of glutamate for the production of NH3, mediated by the enzyme GDH,
is exclusively derived from glutamate carriers. Glutamate derived from
the aspartate–glutamate carriers is transaminatedwith intramitochon-
drial oxaloacetate to form aspartate, thus not available for GDH [120].

Regarding glutamate transport in liver mitochondria, it is relatively
slow under in vivo conditions, although correlating with the rate of
urea production [121]. A study investigating in the liver directionality
of glutamate transport across the inner mitochondrial membrane
demonstrated preferential export from the mitochondrion to the
cytosol [97,122]. However, it should be stressed that directionality of
glutamate transport is dependent on mitochondrial pH, since
glutamate efflux is determined by matrix acidification and media
alkalinisation [122]. The pH dependency of glutamate transport may
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account for functional differences of glutamate according to tissues.
Thus, with respect to glutamate transport rate, it was found to be
higher in the brain, slower in the liver, andmore so in the kidneywhen
compared to other solute carriers, which correlates with the im-
portance of glutamate in the brain and its implication in liver nitrogen
metabolism [121,123].

Currently, very little is known on glutamate carriers. Two isoforms
have been identified, GC1 and GC2, which are highly similar in amino
acid sequences [102]. What differentiates both isoforms is the level of
expression in various human tissues. Thus, although both isoforms are
equally expressed in the brain, GC1 is highly expressed in the pancreas
and the liver. This correlates with differences in their kinetic
parameters, since GC1 has a higher Km value when compared to GC2
[102]. Of interest, the Kmvalue of GC1 correlates with the Kmvalue for
glutamate uptake measured in liver and kidney mitochondria [120–
123], thereby suggesting that in both organs glutamate uptake is
mediated essentially throughGC1. Directionality of glutamate transport
might be dependent on the energized state of mitochondria. Therefore,
one cannot safely conclude that glutamate is preferentially exported as
was suggested previously, since experiments performed on reconsti-
tuted liposomes revealed that both directions are plausible [102].

As opposed to AGCs, there are no human pathologies associated
with GC1 to date, except for a recent correlation between GC1
mutation and neonatal myoclonic epilepsy [124]. This might change in
the future, since further characterization of GCs would clarify the role
of glutamate in various tissues.

5. Conclusion

Glutamate pathways are tightly controlled by mitochondrial
metabolism. Although enzymes and pathways of the mitochondrial
matrix have been studied quite extensively, the regulation of
mitochondrial membrane carriers is poorly characterized. Once
established the basis of molecular properties of such enzymes and
transporters, we will need to acquire knowledge about tissue
specificities. Recent advances show that it is inappropriate to
extrapolate regulation models acquired from one cell model to
another, as every tissue uses glutamate for specific functions. Very
little is known about molecular mechanisms responsible for tissue
specificities. For instance, expression of different isoforms of gluta-
mate carriers might contribute to tissue specificity. Regarding GDH,
flux direction depends on metabolic parameters such as substrate
availability, redox and energy state of mitochondria. These parameters
may be tissue specific as described above. At the post-translational
level, new modes of regulations have been described these recent
years. Indeed, ADP-ribosylation of GDH mediated by SIRT4 offers
another regulatory mechanism that might be tissue specific, pending
different levels of SIRT4 expression. Noteworthy, SIRT4 is expressed at
low levels in pancreatic acini, whereas at high levels in pancreatic
islets [35]. This newly identifiedmode of regulation certainly deserves
further investigations to better integrate molecular and cellular
glutamate pathways intometabolic homeostasis at the organism level.
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