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Abstract 

In this paper, we study word regularities and in particular extensions of the notion of the word 

period: quasiperiodicity, covers and seeds. We present overviews of algorithms for computing 
the quasiperiodicity, the covers and the seeds of a given word. We also present an overview 
of an algorithm that finds maximal word factors with the above regularities. Finally, we show 
how Fine and Wilf’s Theorem fails if we try to extend it directly to quasiperiodicity, as well as 
a new property on concatenation of periodic words. @ 1999 Elsevier Science B.V. All rights 
reserved. 
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1. Introduction 

This paper is focussed on the study and the identification of various kinds of periodic- 

ities and other regularities in words; much of it turns out to bear directly on problems 

that arise in DNA sequence analysis, image validation/de- composition and melody 

recognition. The ability to locate repeats is useful in a wide area of applications which 

involve word manipulations. Pattern recognition, computer vision, speech recognition, 

data compression, data communication, combinatorics, coding and automata theory, 

formal language theory, system theory, are classic examples. Finding repeats also has 

applications in database work and general text editing, such as finding duplicate entries 

in a database. 

The study of word repetitions and word periodicity was pioneered by Axe1 Thue 

at the beginning of this century [20], and since then it has been intensively studied 

and it has been one of the building blocks in Automata and Formal Language Theory, 
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Algebraic Coding, Systems Theory and Combinatorics. Thue in [20] has constructed an 

infinite word over an alphabet of size 3 which contains no square proving that squares 

are avoidable regularities in words. 

A typical regularity, the period u of a given word x, grasps the repetitiveness of 

x since x is a prefix of a word constructed by concatenations of u. For example, 

u2 = abaaba is a repetition of u = aba and abc is a period of abcabcabca. Apostolic0 

et al. [2] introduced the notion of quasiperiodicity, which extends periodicity by al- 

lowing not only the repetition of similar factors, but also superpositions. For example, 

a superposition of u = aba is v = ababa. 
A factor w of x is called a cover of x if x can be constructed by concatenations and 

superpositions of w. The smallest such cover is called the quasiperiod of the word. 

A factor w of x is called a seed of x if there exists an extension of x which is 

constructed by concatenations and superpositions of w. 

For example, w = abaabababaababaaba can be obtained by a series of six con- 

catenations or superpositions of the factor u = aba. Furthermore, abca is a seed of 

abcabcaabc. 
The notions “cover” and “seed” are generalizations of periods in the sense that 

superpositions as well as concatenations are considered to define them, whereas only 

concatenations are considered for periods. 

In the next section we present the basic definitions. In Section 3 we present results 

on periodicity and in Section 4 we survey results on quasiperiodicity (from [I, 131). In 

Section 5 we present a “well-known” result (due to Fine and Wilf [ 121) which fails 

if we try to extend it to quasiperiodicity. And finally in Section 6 we present a new 

result on the concatenation of two periodic words. 

2. Preliminaries 

An alphabet ~2 is a set of elements, that we will called letters, characters or sym- 

bols. A word w over the alphabet JXZ is a sequence of zero or more letters of -c9, that is 

(w,w2,..., wn) with wi E &*, i = 1,2,. . ., n. The empty word is the empty sequence 

(of zero letters) and it will be denoted by E. The set of all words over & is denoted 

by 8*, and can be equipped with a binary operation, concatenation: 

. : d* x &!22* - d* 

((al,...,a,),(h ,... ,b,)) - (al,...,a,,h,... ,&I 

The concatenation of k copies of w is denoted by wk and is called the k-th power of 

w. As concatenation is obviously associative and we can write (al ) = al, this allows us 

to write (WI, ~2,. . . , wn) as wi w2 . . . w, and n is called the length of w and is denoted 

by lwl. 
Let w be a word over d. A word u over G? is a factor of w if and only if there exist 

two words t and v over & such that w = tuv. A word u over d is a left (respectively 
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right) factor of w or a prejx (respectively su@x) of w if and only if there exists a 
word v over d such that w = uv (resp. w = vu). 

For example, bb is a factor ababbc, ab is a left factor of ababbc and bbc is a right 
factor of ababbc. A word u over d is an extension of w if and only if w is a factor 
of u. A word u over d is a left (resp. right) extension of w if and only if w is a 
right (resp. left) factor of U. 

For example ababbc is a right extension of aba and ababbc is a left extension of 
bbc. A word u over d is a border of w if and only if there exist two words t and v 
over zz2 such that w = tu and w = uv, i.e. u is both prefix and sufhx of w. 

For example, a, aba and ababa are borders of ababaababa. 

3. Periodicity and primitivity 

Let w be a word over ~2. The word w is said to be primitive if and only if w is not 
a kth power of another word. Thus, for any word u over zz’, setting w = uk implies 
u=wandk=l. 

For example w = abaababa is primitive but w’ = abaabaaba = (aba)3 is not. A 
word w over d is said to be strongly primitive 3 if and only if every factor of w is 
primitive. For example the word w = aba is strongly primitive. One can can easily 
prove that any word over a binary alphabet whose length is greater or equal to 4 
contains a square (2nd power of a word) and therefore it is not strongly primitive. 

Fig. 1. Periodic&y. 

An integer p is a period of w if and only if wi = Wi+p for 0 < i < 1 w ( - p. The smallest 
period is called the period. For example, ab, aba, abab are periods of abababab and 
ab is the period of abababab. 

By misnomer, we have the following definition: a word u over d is a period of w 
if and only if there exists k such that w is a prefix of uk. A word w is periodic if and 
only if w has a period p such that p < ]wj/2. 

3.1. A “well-known” property on periodicity 

We consider a standard property on periodicity which is due to Fine and Wilf [ 121 
and in Section 5, we show how it fails as soon as we consider quasiperiodicity instead 
of periodic&y. 

Theorem 1 (Fine and Wilf [12]). Let w be a word over the alphabet ~4 and m and 
n be two periods of w. The condition Jw( 2m + n - gcd(m,n) implies gcd(m,n) is a 
period of w. 

3 Also said square-free. 
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Proof. See for example in [ 17, pp. 9,101. q 

u U 

w= ~lbl~lblalblalbl~lblalb II 
v v v 

Fig. 2. gcd(4,6)=2 is a period of w. 

Corollary. If there exist two periods m and n of w such that gcd(m,n) = 1, then 
w = ak with a E ~4. 

4. Quasiperiodicity and superprimitivity 

Here we present the notion of quasiperiodicity introduced by Apostolico et al. in [2], 

where they gave a linear-time algorithm for its computation. It extends the notion of 

periodic&y by allowing concatenations and superpositions, We can consider, in a certain 

way, that quasiperiodicity is periodicity with stutterings. 

For two words u and a over d such that U/,I-i+l . ..xI., = ~1 . . . vi for some i2 1, 

the word u 1 . . . U(*(_iU = UUi+] . . . U(“( is a superposition of u and u with i ouerlaps. 

,--.-..L, __ U 

w= alblalalblalblalalblalbla 
--T 

J L 
I.4 

I 
u 

Fig. 3. u a-covers w. 

Let w be a word over z/. A word u over d a-covers w if and only if w can be 

constructed by concatenations and superpositions of u. 

Fig. 4. u covers w (as u a-covers an extension of w). 

A word u over d couers w if and only if an extension of w can be constructed by 

concatenations and superpositions of u. It means in a more formal manner: 

Vi E {l,..., ]w]} 3j E max{l,i - ]uI+ l}/ 

wj...wmin{j+lul-l,lwl} = ul ...Umin{Ju(,Iwl-j+l}. 

A word w is quasiperiodic if and only if w is a-covered by one of its proper factor. 

The shortest proper factor that a-covers w is said to be the cover of w. If such a word 

does not exist then the word w is said to be superprimitiue. 
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It is not difficult to note that a periodic string is always quasiperiodic, but the 

converse is not true. Also, clearly a superprimitive string is always primitive, however 

the converse is not true. For example, aba is superprimitive and primitive, but abaabaab 
is primitive but not superprimitive, since the superprimitive string abaab covers it. 

The algorithm in [2] is based on the observation that the cover of a word x is also 

a border of x: the cover of x must cover positions 1 and n of x. The algorithm in [2] 

exploits this fact by using the failure function of [16] for computing the borders and 

then testing whether they cover the word or not. The linear time is dominated by the 

computation of the failure function and it is achieved by reducing periodical cases to 

primitive ones. 

In the computation of covers, two problems have been considered in the literature: the 

quasiperiodicity problem (also known as the superprimitivity test) is that of computing 

the shortest cover of a given string of length n, and the all-covers problem is that 

of computing all the covers of a given string. Breslauer [6] presented a linear-time 

on-line algorithm for the quasiperiodicity problem. Moore and Smyth [ 191 presented a 

linear-time algorithm for the all-covers problem. Lin and Smyth in [ 181 presented an 

on-line computation of the all-covers problem. 

In parallel computation, Breslauer [6] gave two algorithms for the shortest-cover 

problem. The first one is an optimal O(a(n)log log n)-time algorithm, where a(n) 
is the inverse Ackermann function, and the second one is a non-optimal algorithm 

that requires O(log log n) time and O(n log n) work. Breslauer [7] also obtained an 

R(log log n) lower bound on the time complexity of the shortest-cover problem from 

the lower bound of string matching [5]. Iliopoulos and Park in [14] gave a work-time 

optimal O(log log n) algorithm for the shortest-cover problem and in [ 151 a work-time 

optimal O(log log n) algorithm for the all-covers problem. 

4.1. EfJicient detection of quasiperiodicities in word 

Apostolic0 and Ehrenfeucht presented in [l] an algorithm to find all the maximal 

quasiperiodic factors of a given word, that is find all the longest a-covered factors of 

a word. A quasiperiodic factor z is maximal, if no extension of z could be covered by 

either the same word w covering z or by an extension wa of w. All maximal a-covered 

factors of a word w over & can be detected in time 0( IwI log* 1~1). 

The algorithm in [l] shadows the Apostolic0 and Preparata [3] algorithm for detec- 

tion of all the squares in a string. It is not difficult to see the link between the two 

problems: the starting position of every quasiperiodic factor is also the starting position 

of a square. The main steps of the Apostolic0 and Ehrenfeucht algorithm for a given 

word w over G? is as follows: 

1. Build the compact &ix tree for the word w. 

2. For each node ni of this tree, maintain the list of all leaves in the subtree whose 

root is ni. 

3. For each list Zi, compute its span, that is, the longest uninterrupted cover. 

4. Determine the longest span over the tree and the appropriate factor. 
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Example. Given w = abaabababa. Find all maximal quasiperiodic factors of W. 

Build the compact sufix tree for the word w = abaabababa (Fig. 5). 

Fig. 5. Suffix-tree of w = abaabababa. 

For each node ni of this tree, maintain the list of all leaves in the subtree whose root 
is ni (Fig. 6). 

Fig. 6. Suffix-tree of w = abaabababa with lists 

For each list Ii, compute its span (longest uninterrupted cover> 

Node Factor(s) List Span 

121 a II = {1,3,4,6,8,10} 2 (3-4) 

n2 ba 12 = {2,5,7,9) 6 (5-10) 

113 ab, aba 13 = {1,4,6,8) 10 (l-10) for u = aba 

124 bab, baba 14 = (571 6 (5-10) for u = baba 

n5 abab, ababa 15 = {4,6) 7 (4-10) for u = ababa 

Determine the longest span over the tree and the appropriate factor. The longest 

span is 10, for node n3 and factor aba. In this example, the word w = abaabababa is 

a-covered by u = aba as span(u) = Iw 1. 
One observation that may lead to faster than the Apostolic0 and Ehrenfeucht algo- 

rithm is that the number of different spans than one can have at any given position is 

bounded by log n: 
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Let bi,... , bk be the sequence B of all nontrivial borders of x from smallest to 

largest. Let bo denote the empty string and bk+l the given string x. A subsequence 

bl,...>br+, of B is said to be a chain of covers of x if every bl+i, O<i<m, covers x. 

If additionally each of bl-1 and bl+,,,+l is a trivial border or it does not cover x, then 

bl,...,bl+m is said to be a maximal chain of covers. 

Theorem 2. There are at most [logn] maximal chains of covers. 

Proof. See [15]. Cl 

4.2. Covering a string 

Iliopoulos et al. [13] have proposed a new notion of sting regularity and an extension 

of the notions of period and cover, called seed. The focus of [ 131 was on the General 
String Covering problem. We say that a word u covers a word w if there exists an 

extension of w which is constructed by concatenations and superpositions of y. For 

example, abca covers abcabcaabc. A factor u of a word w is called a seed of x if u 

covers w. The GSC problem is as follows: given a word w of length n, compute all 

the seeds of w. Note that there may be more than one shortest seed (e.g. for abababa, 
both ab and ba are the shortest seeds). In [ 131 a method for finding all the seeds of a 

given word w over d in time O(JwJlogjwJ) . p is resented. A parallel PRAM algorithm 

and a lower bound for the GSC can be found in [4]. 

The seeds of w are classified into two kinds: A seed u is an easy seed if there 

is a factor of u which covers w by concatenations only; u is a hard seed otherwise. 

For example, for x = (abbab)3abb, the words abbab, babab cover w by concatenations 

and thus are easy seeds. The words babbab, bababba are also easy seeds of w, having 

abbab and babab as factors respectively which cover w by concatenations. But the 

word bab is a hard seed of w. Let u = wi . . . wp be the period of w. It is easy to see 

that u covers w by concatenations. The following lemmas characterize easy and hard 

seeds of w. 

Easy seeds: A seed u is an easy seed if there is a factor of u which covers w only 

by concatenations. Otherwise u is a hard seed of w. 

Theorem 3. A factor u of a word w over d is an easy seed if and only if u is a 
right extension in w of a conjugate of the period. 

Proof. See [ 131, page 4. Cl 

Easy seeds can be found by the preprocessing of Knuth [16]. They can be found in 

time O(lwl). 

Hard seeds: A factor u of the word w over d is a candidate for a hard seed if 

there exist (t, w’, v), words over J-ZZ such that 

0 w = tw’v. 
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l w’ is a-covered by u. 

l Jt( < lu( and Ia] < 1~1. 

For maximal w’, we call t (0) the head (tail) of w with respect to u. If we want u to 

be a seed of w, it has to cover both t and v in their context, that is, it has to a-cover 

a left extension of tu and a right extension of uv. 

Among all such coverings, we consider the one which maximizes the overlap between 

w’ and U, this overlap being different from u (as this occurrence has to overlap t). 

We name I-size r-(size) the length of such a maximal overlap between u and w’ (w’ 

and U) 

l A hard seed is type-A if l-size >r-size. 

a A hard seed is type-B if l-size <r-size. 

For each factor s of w, the start-set of s is the set of start positions of all occurrences 

of s in w. An equi-set is a set of factors of w whose start-sets are the same. Note that 

a start-set is associated with an equi-set and vice versa. 

Example. Consider w = baabaabaababaababa and u = abaab. We have w = tw’v 

with t = ba, w’ = abaabaababaab and v = a (w = (ba)(abaabaababaab)(a)) and u is 

a candidate as ZJ a-covers w’, ) t( < 5 and Iv] < 5. 

The start-set of u is { 3,6,11} and the equi-set is {u, abaa, abaaba}. The word ZJ is 

a hard seed (tu and UZI are covered by u) and as l-size=2 and r-size=2 (since we have 

&aabaababaab), we have u is a type-A hard seed of w. The word u’ = abaaba is 

a type-A hard seed (w = (ba)(abaabaababaaba)(ba) I-size=3, r-size=l). Furthermore 

the word u” = baaba is a type-A hard seed (w = (~)(baabaabaababaaba)(ba) and 

I-size=O, r-size=O). 

4.2.1. Finding hard seeds 
Finding hard seeds is based on the computation of the equivalence relations El used 

by Crochemore [LX]. For 1 d I dn, El are defined on the set of positions { 1,2,. . . , (w( - 

Z+l}ofwby 

iElj if wi...wi+l-1 = wj...wj+l_i 

(factors of length 1 occurring at positions i and j are identical). The construction of 

El+1 from El is based on: 

iEl+lj if and only if iE[j and (i + l)E~(j + 1). 

A refinement can be added: instead of partitioning a class C, we partition with respect 

to class C, that is, for each class D, compute classes {i E D/i + 1 E C} and {i E 

D/i + 1 6 C}. It leads to a O(]wl log Iw]) algorithm instead of O((W(~). 

For a given word w over & the main steps of the algorithm in [13] are as follows: 

1. Compute the period of w using the KMP algorithm in [16]. 

2. Compute El for 1 d Id p or until all classes are singletons. 

3. Compute the start-sets and the equi-sets. 
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4. Determine the candidate sets. 

5. If it is a hard seed, determine l-size, r-size and type-A or type-B. 

Example. Consider w = babaabaaba. Compute hard seeds of w. 

Compute the period of w from KMP [16] The period is 8. The word babaabaaba 
is not periodic. 

Compute El for 1< 1< p or all classes are singletons 

El = {{1,3,6,9},{2,4,5,7,s,10)), Ez = {{1,3,6,9},{2,5,8},{4,7)), 

E3 = {{1},{3,6},{2,~,~},{4,7}}, E4 = {{1>,{3,6~,{2,~},{4,7}}, 

Es = {{I}, {3,6), {2,5), {4)), ~~ = {{l), {3), {2,5), (411, 

~97 = {{l), (31, (21, (4)). 

Table 1 

Compute start-sets and equi-sets 

Equi-set 

16, ba) 
{ab, aba} 
{bab, baba, babaa, babaab} 
(abaa,abaab, abaaba) 
{baabaa} 

Start-set 

{1,3,6,9} 

{2,5,81 

(1) 
(~5) 
13) 

Equi-set 

Ia> 
(aa,aab,aaba) 
(baa, baab, baaba) 
(aabaa,aabaab) 
(abaabaa) 

Start-set 

12,4,5,7,8,10> 

{4,71 
{3,61 
(4) 
{2H.lPtl 

Table 2 

Determine candidate sets 

Candidate 

{aba) 
{aaba} 
{baab} 
{abaab} 

Decomposition 

(b)(abaabaaba)(e) 
(bab)(aabaaba)(e) 
(ba)(baabaab)(a) 
(b)(abaabaab)(a) 

Candidate 

{baa) 
{abaa} 
{ aabaa} 
(baaba) 

Decomposition 

(ba)(baabaa)(ba) 
(b)(abaabaa)(ba) 
(bab)(aabaa)(ba) 
(ba)(baabaaba)(e) 

Table 3 

If hard seed, determine l-size, r-size and type-A or type-B 

Candidate Decomposition 

{aba) (b)(abaabaaba)(&) 

{baa) (ba)(baabaa)(ba) 
{aaba} (bab)(aabaaba)(&) 
{abaa} (b)(abaabaa)(ba) 
{ baab} (ba)(baabaab)(a) 
{ aabaa} (bab)(aabaa)(ba) 
{abaab} (b)(abaabaab)(a) 
{baaba} (ba)(baabaaba)(e) 

Seed ? 

Yes 

No 
No 

No 

No 
No 

Yes 

Yes 

l-size 

1 

0 

0 

r-size 

0 

2 

0 

type 

A 

B 

A 

The details of this procedure can be found in [ 131. 
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5. Extension of Fine and Wilf’s theorem 

Fine and Wilf’s Theorem does not hold, if we consider quasiperiods instead of 

periods. For example we consider the word u = (&)“a. This word is obviously periodic 

(fern> l)and24 , ,. . .are periods. This word has two trivial quasiperiods: m = 2 and 

n = 3 (for words ab and aba). 

Fig. 7. gcd(2,3)=1 is not a cover of w. 

Extending Fine and Wilf’s Theorem to quasiperiods will incite us to imagine that 

gcd(m,n) = 1 is a period of U, which is obviously false. We have presented quasiperi- 

odicity as an extension of periodicity, but some of the known properties on periodic&y 

cannot be extended directly to quasiperiodicity. On the other hand we will show in 

the following section that quasiperiodicity may be useful to solve problems related to 

periods. 

6. Concatenation of two periodic - quasiperiodic words 

A point of a word w over sz2 is a pair of words (w’, w”) over ~2 such that w = w’w”. 

We will always assume w’ and w” are not empty. 

w= alblal~lbl~lblalalbl~ll~l~~ / J 
u I 11 

Fig. 8. u = baaba is a repetition at point (abaaba, baababa) 

A nonempty word u over & is a repetition4 at point (w’, w”) of w if and only if u is a 

suffix of a left extension of w’ and a prefix of a right extension of w” (d*ufM*w’ # 0 

and u&* n IV”.&‘* # 0) The minimum of the length of the repetitions at point (w’, w”) 

is the local period 5 at point (w’, w”). A critical point is a point (w’, w”) whose local 

period is maximal. 

6.1. Concatenation of two periodic words 

Given two periodic words u of period m and v of period n, we can consider the 

concatenation of u and v as a point (u, v),and we can try to figure out if the observation 

of local periods at point (u, v) can be of any help in finding a global period of word 

UV. The general answer has been pointed out by Duval [l 11, but is very restrictive 

4 Also called cross factor. 
5 Also called virtual period. 
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since the words have to be kth-power of one of their proper factor whose length is a 

local period at point (u,v). 

Here we present a different result based on quasiperiodicity instead of periodicity. 

Theorem 4. Given two periodic words u of period m and v of period n, if there exists 
a repetition of length p at point (u, v) such that max(m, n) dp <()uv))/2 then uv is 
quasiperiodic of cover at most p. 

Proof. A right extension of v is a-covered by vr . . . up. A left extension of u can 

be constructed using only superpositions of vr , . . vp with p - m overlaps. So an ex- 

tension of uv is a-covered by VI . . . up and p< juvl/2. Then uv is quasiperiodic of 

cover q<p. 0 

Example: The words u = abaababaababaaba and v = abaababaababa are periodic (the 

period is w = abaab). Repetitions at point (abaababaababaaba, abaababaababa) 
include abaaba whose length is 6, which is greater or equal to 5. Then uv = 

abaababaababaabaabaababaababa is quasiperiodic and the quasi-period at most equal 

to 6. The words aba and abaaba cover uv. Furthermore the word uu is quasiperiodic 

of cover 3. 

6.2. Concatenation of two quasiperiodic words 

Once again, we can imagine that extending the previous theorem to quasiperiodic 

words can lead us to an easy result, but an easy counterexample can be built. 

The word u = aabababab and v = babababaa are quasiperiodic and aba covers 

both of them. The local period at point (u, v) includes babab whose length is greater 

or equal to the length of aba. But uv = aababababbabababaa is not quasiperiodic. 

7. Conclusion 

In this paper, we have presented a survey of results on quasiperiodicity, and an 

overview of algorithms that find maximal quasiperiodic factors and seeds. Locating such 

a regularity can be useful in a wide area of applications, for example in molecular biol- 

ogy (study of the dosDNA microsatellites). We have shown that properties of periodic 

words can not be directly extended to quasiperiodicities. We think it could be possible 

to extend the notion of local period to local quasiperiod to extend the Critical Factori- 

sation Theorem given in [9] or [lo], in order to find a broader context for this theorem. 
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