
ELSEVIE; Theoretical Computer Science 218 (1999) 2055216

Theoretical
Computer Science

Quasiperiodicity and string covering

Costas S. Iliopoulos a,b, Laurent Mouchard w,*,*

a Deptartment of Computer Science, King’s College London, Strand, London, WC2R ZLS, UK

b School of Computing, Curtin University of Technology. GPO Box U1987, Perth 684.5,
Western Australia

’ LIR - ABISS, Universitk de Rouen, 76821 Mont Saint Aignan Cedex, France

Abstract

In this paper, we study word regularities and in particular extensions of the notion of the word

period: quasiperiodicity, covers and seeds. We present overviews of algorithms for computing
the quasiperiodicity, the covers and the seeds of a given word. We also present an overview
of an algorithm that finds maximal word factors with the above regularities. Finally, we show
how Fine and Wilf’s Theorem fails if we try to extend it directly to quasiperiodicity, as well as
a new property on concatenation of periodic words. @ 1999 Elsevier Science B.V. All rights
reserved.

Keywords: Regularities; Periodicity; Quasiperiodicity; Covers; Seeds

1. Introduction

This paper is focussed on the study and the identification of various kinds of periodic-

ities and other regularities in words; much of it turns out to bear directly on problems

that arise in DNA sequence analysis, image validation/de- composition and melody

recognition. The ability to locate repeats is useful in a wide area of applications which

involve word manipulations. Pattern recognition, computer vision, speech recognition,

data compression, data communication, combinatorics, coding and automata theory,

formal language theory, system theory, are classic examples. Finding repeats also has

applications in database work and general text editing, such as finding duplicate entries

in a database.

The study of word repetitions and word periodicity was pioneered by Axe1 Thue

at the beginning of this century [20], and since then it has been intensively studied

and it has been one of the building blocks in Automata and Formal Language Theory,

* Corresponding author. E-mail: Im@dir.univ-rouen.fi.
’ Partially supported by the EPSRC grant GIUJ 17844.
’ Supported by the Conseil Rigional de Haute Normandie.

0304-3975/99/$-see front matter @ 1999 Elsevier Science B.V. All rights reserved.
PII: SO304-3975(98)00260-6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82597915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

206 C.S. Iliopoulos, L. Mouchardl Theoretical Computer Science 218 (1999) 205-216

Algebraic Coding, Systems Theory and Combinatorics. Thue in [20] has constructed an

infinite word over an alphabet of size 3 which contains no square proving that squares

are avoidable regularities in words.

A typical regularity, the period u of a given word x, grasps the repetitiveness of

x since x is a prefix of a word constructed by concatenations of u. For example,

u2 = abaaba is a repetition of u = aba and abc is a period of abcabcabca. Apostolic0

et al. [2] introduced the notion of quasiperiodicity, which extends periodicity by al-

lowing not only the repetition of similar factors, but also superpositions. For example,

a superposition of u = aba is v = ababa.
A factor w of x is called a cover of x if x can be constructed by concatenations and

superpositions of w. The smallest such cover is called the quasiperiod of the word.

A factor w of x is called a seed of x if there exists an extension of x which is

constructed by concatenations and superpositions of w.

For example, w = abaabababaababaaba can be obtained by a series of six con-

catenations or superpositions of the factor u = aba. Furthermore, abca is a seed of

abcabcaabc.
The notions “cover” and “seed” are generalizations of periods in the sense that

superpositions as well as concatenations are considered to define them, whereas only

concatenations are considered for periods.

In the next section we present the basic definitions. In Section 3 we present results

on periodicity and in Section 4 we survey results on quasiperiodicity (from [I, 131). In

Section 5 we present a “well-known” result (due to Fine and Wilf [121) which fails

if we try to extend it to quasiperiodicity. And finally in Section 6 we present a new

result on the concatenation of two periodic words.

2. Preliminaries

An alphabet ~2 is a set of elements, that we will called letters, characters or sym-

bols. A word w over the alphabet JXZ is a sequence of zero or more letters of -c9, that is

(w,w2,..., wn) with wi E &*, i = 1,2,. . ., n. The empty word is the empty sequence

(of zero letters) and it will be denoted by E. The set of all words over & is denoted

by 8*, and can be equipped with a binary operation, concatenation:

. : d* x &!22* - d*

((al,...,a,),(h ,... ,b,)) - (al,...,a,,h,... ,&I

The concatenation of k copies of w is denoted by wk and is called the k-th power of

w. As concatenation is obviously associative and we can write (al) = al, this allows us

to write (WI, ~2,. . . , wn) as wi w2 . . . w, and n is called the length of w and is denoted

by lwl.
Let w be a word over d. A word u over G? is a factor of w if and only if there exist

two words t and v over & such that w = tuv. A word u over d is a left (respectively

C.S. Iliopoulos, L. Mouchardl Theoretical Computer Science 218 (1999) 205-216 201

right) factor of w or a prejx (respectively su@x) of w if and only if there exists a
word v over d such that w = uv (resp. w = vu).

For example, bb is a factor ababbc, ab is a left factor of ababbc and bbc is a right
factor of ababbc. A word u over d is an extension of w if and only if w is a factor
of u. A word u over d is a left (resp. right) extension of w if and only if w is a
right (resp. left) factor of U.

For example ababbc is a right extension of aba and ababbc is a left extension of
bbc. A word u over d is a border of w if and only if there exist two words t and v
over zz2 such that w = tu and w = uv, i.e. u is both prefix and sufhx of w.

For example, a, aba and ababa are borders of ababaababa.

3. Periodicity and primitivity

Let w be a word over ~2. The word w is said to be primitive if and only if w is not
a kth power of another word. Thus, for any word u over zz’, setting w = uk implies
u=wandk=l.

For example w = abaababa is primitive but w’ = abaabaaba = (aba)3 is not. A
word w over d is said to be strongly primitive 3 if and only if every factor of w is
primitive. For example the word w = aba is strongly primitive. One can can easily
prove that any word over a binary alphabet whose length is greater or equal to 4
contains a square (2nd power of a word) and therefore it is not strongly primitive.

Fig. 1. Periodic&y.

An integer p is a period of w if and only if wi = Wi+p for 0 < i < 1 w (- p. The smallest
period is called the period. For example, ab, aba, abab are periods of abababab and
ab is the period of abababab.

By misnomer, we have the following definition: a word u over d is a period of w
if and only if there exists k such that w is a prefix of uk. A word w is periodic if and
only if w has a period p such that p <]wj/2.

3.1. A “well-known” property on periodicity

We consider a standard property on periodicity which is due to Fine and Wilf [121
and in Section 5, we show how it fails as soon as we consider quasiperiodicity instead
of periodic&y.

Theorem 1 (Fine and Wilf [12]). Let w be a word over the alphabet ~4 and m and
n be two periods of w. The condition Jw(2m + n - gcd(m,n) implies gcd(m,n) is a
period of w.

3 Also said square-free.

208 C.S. Iliopoulos, L. Mouchardl Theoretical Computer Science 218 (1999) 205-216

Proof. See for example in [17, pp. 9,101. q

u U

w= ~lbl~lblalblalbl~lblalb II
v v v

Fig. 2. gcd(4,6)=2 is a period of w.

Corollary. If there exist two periods m and n of w such that gcd(m,n) = 1, then
w = ak with a E ~4.

4. Quasiperiodicity and superprimitivity

Here we present the notion of quasiperiodicity introduced by Apostolico et al. in [2],

where they gave a linear-time algorithm for its computation. It extends the notion of

periodic&y by allowing concatenations and superpositions, We can consider, in a certain

way, that quasiperiodicity is periodicity with stutterings.

For two words u and a over d such that U/,I-i+l . ..xI., = ~1 . . . vi for some i2 1,

the word u 1 . . . U(*(_iU = UUi+] . . . U(“(is a superposition of u and u with i ouerlaps.

,--.-..L, __ U

w= alblalalblalblalalblalbla
--T

J L
I.4

I
u

Fig. 3. u a-covers w.

Let w be a word over z/. A word u over d a-covers w if and only if w can be

constructed by concatenations and superpositions of u.

Fig. 4. u covers w (as u a-covers an extension of w).

A word u over d couers w if and only if an extension of w can be constructed by

concatenations and superpositions of u. It means in a more formal manner:

Vi E {l,...,]w]} 3j E max{l,i -]uI+ l}/

wj...wmin{j+lul-l,lwl} = ul ...Umin{Ju(,Iwl-j+l}.

A word w is quasiperiodic if and only if w is a-covered by one of its proper factor.

The shortest proper factor that a-covers w is said to be the cover of w. If such a word

does not exist then the word w is said to be superprimitiue.

C.S. Niopoulos, L. MouchardlTheoretical Computer Science 218 (1999) 205-216 209

It is not difficult to note that a periodic string is always quasiperiodic, but the

converse is not true. Also, clearly a superprimitive string is always primitive, however

the converse is not true. For example, aba is superprimitive and primitive, but abaabaab
is primitive but not superprimitive, since the superprimitive string abaab covers it.

The algorithm in [2] is based on the observation that the cover of a word x is also

a border of x: the cover of x must cover positions 1 and n of x. The algorithm in [2]

exploits this fact by using the failure function of [16] for computing the borders and

then testing whether they cover the word or not. The linear time is dominated by the

computation of the failure function and it is achieved by reducing periodical cases to

primitive ones.

In the computation of covers, two problems have been considered in the literature: the

quasiperiodicity problem (also known as the superprimitivity test) is that of computing

the shortest cover of a given string of length n, and the all-covers problem is that

of computing all the covers of a given string. Breslauer [6] presented a linear-time

on-line algorithm for the quasiperiodicity problem. Moore and Smyth [191 presented a

linear-time algorithm for the all-covers problem. Lin and Smyth in [181 presented an

on-line computation of the all-covers problem.

In parallel computation, Breslauer [6] gave two algorithms for the shortest-cover

problem. The first one is an optimal O(a(n)log log n)-time algorithm, where a(n)
is the inverse Ackermann function, and the second one is a non-optimal algorithm

that requires O(log log n) time and O(n log n) work. Breslauer [7] also obtained an

R(log log n) lower bound on the time complexity of the shortest-cover problem from

the lower bound of string matching [5]. Iliopoulos and Park in [14] gave a work-time

optimal O(log log n) algorithm for the shortest-cover problem and in [151 a work-time

optimal O(log log n) algorithm for the all-covers problem.

4.1. EfJicient detection of quasiperiodicities in word

Apostolic0 and Ehrenfeucht presented in [l] an algorithm to find all the maximal

quasiperiodic factors of a given word, that is find all the longest a-covered factors of

a word. A quasiperiodic factor z is maximal, if no extension of z could be covered by

either the same word w covering z or by an extension wa of w. All maximal a-covered

factors of a word w over & can be detected in time 0(IwI log* 1~1).

The algorithm in [l] shadows the Apostolic0 and Preparata [3] algorithm for detec-

tion of all the squares in a string. It is not difficult to see the link between the two

problems: the starting position of every quasiperiodic factor is also the starting position

of a square. The main steps of the Apostolic0 and Ehrenfeucht algorithm for a given

word w over G? is as follows:

1. Build the compact &ix tree for the word w.

2. For each node ni of this tree, maintain the list of all leaves in the subtree whose

root is ni.

3. For each list Zi, compute its span, that is, the longest uninterrupted cover.

4. Determine the longest span over the tree and the appropriate factor.

210 C.S. Iliopoulos, L. Mouchardl Theoretical Computer Science 218 (1999) 205-216

Example. Given w = abaabababa. Find all maximal quasiperiodic factors of W.

Build the compact sufix tree for the word w = abaabababa (Fig. 5).

Fig. 5. Suffix-tree of w = abaabababa.

For each node ni of this tree, maintain the list of all leaves in the subtree whose root
is ni (Fig. 6).

Fig. 6. Suffix-tree of w = abaabababa with lists

For each list Ii, compute its span (longest uninterrupted cover>

Node Factor(s) List Span

121 a II = {1,3,4,6,8,10} 2 (3-4)

n2 ba 12 = {2,5,7,9) 6 (5-10)

113 ab, aba 13 = {1,4,6,8) 10 (l-10) for u = aba

124 bab, baba 14 = (571 6 (5-10) for u = baba

n5 abab, ababa 15 = {4,6) 7 (4-10) for u = ababa

Determine the longest span over the tree and the appropriate factor. The longest

span is 10, for node n3 and factor aba. In this example, the word w = abaabababa is

a-covered by u = aba as span(u) = Iw 1.
One observation that may lead to faster than the Apostolic0 and Ehrenfeucht algo-

rithm is that the number of different spans than one can have at any given position is

bounded by log n:

C.S. Iliopoulos, L. Mouchardl Theoretical Computer Science 218 (1999) 205-216 211

Let bi,... , bk be the sequence B of all nontrivial borders of x from smallest to

largest. Let bo denote the empty string and bk+l the given string x. A subsequence

bl,...>br+, of B is said to be a chain of covers of x if every bl+i, O<i<m, covers x.

If additionally each of bl-1 and bl+,,,+l is a trivial border or it does not cover x, then

bl,...,bl+m is said to be a maximal chain of covers.

Theorem 2. There are at most [logn] maximal chains of covers.

Proof. See [15]. Cl

4.2. Covering a string

Iliopoulos et al. [13] have proposed a new notion of sting regularity and an extension

of the notions of period and cover, called seed. The focus of [131 was on the General
String Covering problem. We say that a word u covers a word w if there exists an

extension of w which is constructed by concatenations and superpositions of y. For

example, abca covers abcabcaabc. A factor u of a word w is called a seed of x if u

covers w. The GSC problem is as follows: given a word w of length n, compute all

the seeds of w. Note that there may be more than one shortest seed (e.g. for abababa,
both ab and ba are the shortest seeds). In [131 a method for finding all the seeds of a

given word w over d in time O(JwJlogjwJ) . p is resented. A parallel PRAM algorithm

and a lower bound for the GSC can be found in [4].

The seeds of w are classified into two kinds: A seed u is an easy seed if there

is a factor of u which covers w by concatenations only; u is a hard seed otherwise.

For example, for x = (abbab)3abb, the words abbab, babab cover w by concatenations

and thus are easy seeds. The words babbab, bababba are also easy seeds of w, having

abbab and babab as factors respectively which cover w by concatenations. But the

word bab is a hard seed of w. Let u = wi . . . wp be the period of w. It is easy to see

that u covers w by concatenations. The following lemmas characterize easy and hard

seeds of w.

Easy seeds: A seed u is an easy seed if there is a factor of u which covers w only

by concatenations. Otherwise u is a hard seed of w.

Theorem 3. A factor u of a word w over d is an easy seed if and only if u is a
right extension in w of a conjugate of the period.

Proof. See [131, page 4. Cl

Easy seeds can be found by the preprocessing of Knuth [16]. They can be found in

time O(lwl).

Hard seeds: A factor u of the word w over d is a candidate for a hard seed if

there exist (t, w’, v), words over J-ZZ such that

0 w = tw’v.

212 C.S. Iliopoulos, L. Mouchardl Theoretical Computer Science 218 (1999) 205-216

l w’ is a-covered by u.

l Jt(< lu(and Ia] < 1~1.

For maximal w’, we call t (0) the head (tail) of w with respect to u. If we want u to

be a seed of w, it has to cover both t and v in their context, that is, it has to a-cover

a left extension of tu and a right extension of uv.

Among all such coverings, we consider the one which maximizes the overlap between

w’ and U, this overlap being different from u (as this occurrence has to overlap t).

We name I-size r-(size) the length of such a maximal overlap between u and w’ (w’

and U)

l A hard seed is type-A if l-size >r-size.

a A hard seed is type-B if l-size <r-size.

For each factor s of w, the start-set of s is the set of start positions of all occurrences

of s in w. An equi-set is a set of factors of w whose start-sets are the same. Note that

a start-set is associated with an equi-set and vice versa.

Example. Consider w = baabaabaababaababa and u = abaab. We have w = tw’v

with t = ba, w’ = abaabaababaab and v = a (w = (ba)(abaabaababaab)(a)) and u is

a candidate as ZJ a-covers w’,) t(< 5 and Iv] < 5.

The start-set of u is { 3,6,11} and the equi-set is {u, abaa, abaaba}. The word ZJ is

a hard seed (tu and UZI are covered by u) and as l-size=2 and r-size=2 (since we have

&aabaababaab), we have u is a type-A hard seed of w. The word u’ = abaaba is

a type-A hard seed (w = (ba)(abaabaababaaba)(ba) I-size=3, r-size=l). Furthermore

the word u” = baaba is a type-A hard seed (w = (~)(baabaabaababaaba)(ba) and

I-size=O, r-size=O).

4.2.1. Finding hard seeds
Finding hard seeds is based on the computation of the equivalence relations El used

by Crochemore [LX]. For 1 d I dn, El are defined on the set of positions { 1,2,. . . , (w(-

Z+l}ofwby

iElj if wi...wi+l-1 = wj...wj+l_i

(factors of length 1 occurring at positions i and j are identical). The construction of

El+1 from El is based on:

iEl+lj if and only if iE[j and (i + l)E~(j + 1).

A refinement can be added: instead of partitioning a class C, we partition with respect

to class C, that is, for each class D, compute classes {i E D/i + 1 E C} and {i E

D/i + 1 6 C}. It leads to a O(]wl log Iw]) algorithm instead of O((W(~).

For a given word w over & the main steps of the algorithm in [13] are as follows:

1. Compute the period of w using the KMP algorithm in [16].

2. Compute El for 1 d Id p or until all classes are singletons.

3. Compute the start-sets and the equi-sets.

C.S. Iliopoulos, L. Mouchardl Theoretical Computer Science 218 (1999) 205-216 213

4. Determine the candidate sets.

5. If it is a hard seed, determine l-size, r-size and type-A or type-B.

Example. Consider w = babaabaaba. Compute hard seeds of w.

Compute the period of w from KMP [16] The period is 8. The word babaabaaba
is not periodic.

Compute El for 1< 1< p or all classes are singletons

El = {{1,3,6,9},{2,4,5,7,s,10)), Ez = {{1,3,6,9},{2,5,8},{4,7)),

E3 = {{1},{3,6},{2,~,~},{4,7}}, E4 = {{1>,{3,6~,{2,~},{4,7}},

Es = {{I}, {3,6), {2,5), {4)), ~~ = {{l), {3), {2,5), (411,

~97 = {{l), (31, (21, (4)).

Table 1

Compute start-sets and equi-sets

Equi-set

16, ba)
{ab, aba}
{bab, baba, babaa, babaab}
(abaa,abaab, abaaba)
{baabaa}

Start-set

{1,3,6,9}

{2,5,81

(1)
(~5)
13)

Equi-set

Ia>
(aa,aab,aaba)
(baa, baab, baaba)
(aabaa,aabaab)
(abaabaa)

Start-set

12,4,5,7,8,10>

{4,71
{3,61
(4)
{2H.lPtl

Table 2

Determine candidate sets

Candidate

{aba)
{aaba}
{baab}
{abaab}

Decomposition

(b)(abaabaaba)(e)
(bab)(aabaaba)(e)
(ba)(baabaab)(a)
(b)(abaabaab)(a)

Candidate

{baa)
{abaa}
{ aabaa}
(baaba)

Decomposition

(ba)(baabaa)(ba)
(b)(abaabaa)(ba)
(bab)(aabaa)(ba)
(ba)(baabaaba)(e)

Table 3

If hard seed, determine l-size, r-size and type-A or type-B

Candidate Decomposition

{aba) (b)(abaabaaba)(&)

{baa) (ba)(baabaa)(ba)
{aaba} (bab)(aabaaba)(&)
{abaa} (b)(abaabaa)(ba)
{ baab} (ba)(baabaab)(a)
{ aabaa} (bab)(aabaa)(ba)
{abaab} (b)(abaabaab)(a)
{baaba} (ba)(baabaaba)(e)

Seed ?

Yes

No
No

No

No
No

Yes

Yes

l-size

1

0

0

r-size

0

2

0

type

A

B

A

The details of this procedure can be found in [131.

214 C.S. Iliopoulos, L. Mouchardl Theoretical Computer Science 218 (1999) 205-216

5. Extension of Fine and Wilf’s theorem

Fine and Wilf’s Theorem does not hold, if we consider quasiperiods instead of

periods. For example we consider the word u = (&)“a. This word is obviously periodic

(fern> l)and24 , ,. . .are periods. This word has two trivial quasiperiods: m = 2 and

n = 3 (for words ab and aba).

Fig. 7. gcd(2,3)=1 is not a cover of w.

Extending Fine and Wilf’s Theorem to quasiperiods will incite us to imagine that

gcd(m,n) = 1 is a period of U, which is obviously false. We have presented quasiperi-

odicity as an extension of periodicity, but some of the known properties on periodic&y

cannot be extended directly to quasiperiodicity. On the other hand we will show in

the following section that quasiperiodicity may be useful to solve problems related to

periods.

6. Concatenation of two periodic - quasiperiodic words

A point of a word w over sz2 is a pair of words (w’, w”) over ~2 such that w = w’w”.

We will always assume w’ and w” are not empty.

w= alblal~lbl~lblalalbl~ll~l~~ / J
u I 11

Fig. 8. u = baaba is a repetition at point (abaaba, baababa)

A nonempty word u over & is a repetition4 at point (w’, w”) of w if and only if u is a

suffix of a left extension of w’ and a prefix of a right extension of w” (d*ufM*w’ # 0

and u&* n IV”.&‘* # 0) The minimum of the length of the repetitions at point (w’, w”)

is the local period 5 at point (w’, w”). A critical point is a point (w’, w”) whose local

period is maximal.

6.1. Concatenation of two periodic words

Given two periodic words u of period m and v of period n, we can consider the

concatenation of u and v as a point (u, v),and we can try to figure out if the observation

of local periods at point (u, v) can be of any help in finding a global period of word

UV. The general answer has been pointed out by Duval [l 11, but is very restrictive

4 Also called cross factor.
5 Also called virtual period.

C.S. Iliopoulos, L. Mouchardl Theoretical Computer Science 218 (1999) 205-216 215

since the words have to be kth-power of one of their proper factor whose length is a

local period at point (u,v).

Here we present a different result based on quasiperiodicity instead of periodicity.

Theorem 4. Given two periodic words u of period m and v of period n, if there exists
a repetition of length p at point (u, v) such that max(m, n) dp <()uv))/2 then uv is
quasiperiodic of cover at most p.

Proof. A right extension of v is a-covered by vr . . . up. A left extension of u can

be constructed using only superpositions of vr , . . vp with p - m overlaps. So an ex-

tension of uv is a-covered by VI . . . up and p< juvl/2. Then uv is quasiperiodic of

cover q<p. 0

Example: The words u = abaababaababaaba and v = abaababaababa are periodic (the

period is w = abaab). Repetitions at point (abaababaababaaba, abaababaababa)
include abaaba whose length is 6, which is greater or equal to 5. Then uv =

abaababaababaabaabaababaababa is quasiperiodic and the quasi-period at most equal

to 6. The words aba and abaaba cover uv. Furthermore the word uu is quasiperiodic

of cover 3.

6.2. Concatenation of two quasiperiodic words

Once again, we can imagine that extending the previous theorem to quasiperiodic

words can lead us to an easy result, but an easy counterexample can be built.

The word u = aabababab and v = babababaa are quasiperiodic and aba covers

both of them. The local period at point (u, v) includes babab whose length is greater

or equal to the length of aba. But uv = aababababbabababaa is not quasiperiodic.

7. Conclusion

In this paper, we have presented a survey of results on quasiperiodicity, and an

overview of algorithms that find maximal quasiperiodic factors and seeds. Locating such

a regularity can be useful in a wide area of applications, for example in molecular biol-

ogy (study of the dosDNA microsatellites). We have shown that properties of periodic

words can not be directly extended to quasiperiodicities. We think it could be possible

to extend the notion of local period to local quasiperiod to extend the Critical Factori-

sation Theorem given in [9] or [lo], in order to find a broader context for this theorem.

References

[l] A. Apostolico, A. Ehrenfeucht, Efficient detection of quasiperiodicities in strings, Theoret. Comput. Sci.

119(2) (1993) 247-265.

[2] A. Apostolico, M. Farach, C.S. Iliopoulos, Optimal superprimitivity testing for strings, Inform. Process.

Lett. 39(l) (1991) 17-20.

216 C.S. Iliopoulos, L. Mouchardl Theoretical Computer Science 218 (1999) 205-216

[3] A. Apostolico, F.P. Preparata, Optimal off-line detection of repetitions in a string, Theoret. Comput.

Sci. 22(3) (1983) 297-31.5.

[4] A. Ben-Amram, 0. Be&man, C.S. Illiopoulos, K. Park, The subtree max gap problem with application

to parallel string covering, Proc. 5th ACM-SIAM Ann. Symp. on Discrete Algorithms, Arlington, VA,

1994, pp. 501-510.

[5] D. Breslauer, Z. Galil, A lower bound for parallel string matching SIAM J. Comput. 21(5) (1992)

856862.

[6] D. Breslauer, An on-line string superprimitivity test, Inform. Process. Lett. 44(6) (1992) 345-347.

[7] D. Breslauer, Testing string superprimitivity in parallel, Inform. Process. Lett. 49(5) (1994) 235-241.

[8] M. Crochemore, An optimal algorithm for computing the repetitions in a word, Inform. Process. Lett.

12(5) (1981) 244-250.

[9] Y. C&sari, M. Vincent, Une caracterisation des mots ptriodiques. Comptes Rendus Acad. Sci. Paris Ser.

I Math. (1978) 1175-l 177.

[lo] J.-P. Duval, Contribution a la combinatoire du mono’ide libre, These, Universite de Rouen, 1980.

[ll] J.-P. Duval, P&odes locales et propagation de periodes dans un mot. Rapport LIR 97.05, Universite

de Rouen, France, 1997.
[121 N.J. Fine, H.S. Wilf, Uniqueness theorems for periodic functions, Proc. Amer. Math. Sot. 16 (1965)

109-I 14.

[13] C.S. Iliopoulos, D.W.G. Moore, K. Park, Covering a string, in A. Apostolico, M. Crochemore, Z. Galil,

U. Manber (Eds.), Proc. 4th Ann. Symp. on Combinatorial Pattern Matching, Lecture Notes in Computer

Science, vol. 684, Padova, Italy, Springer, Berlin, 1993, pp. 5462.

[14] C.S. Iliopoulos, K. Park, An optimal o(log logn)-time algorithm for parallel superprimitivity testing,

J. Korea Inform. Sci. Sot. 21(8) (1994) 140&1404.
[15] C.S. Iliopoulos, K. Park, An o(log logn) pram algorithm for computing all the seeds of a string Theoret.

Comput. Sci. 2(164) (1996) 299-310.

[16] D.E. Knuth, J.H. Morris, Jr, V.R. Pratt, Fast pattern matching in strings, SIAM J. Comput. 6(l) (1977)

323-350.

[17] M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983.

[18] Yin Li, W.F. Smyth, An optimal on-line algorithm to compute all the covers of a string, 1998, submitted

[19] A. Mateescu A. Salomaa, Nondeterminism in patterns, in: P. Enjalbert, E.W. Mayr, K.W. Wagner

(Eds.), Proc. 11th Ann. Symp. on Theoretical Aspects of Computer Science, Caen, France, Lecture

Notes in Computer Science, vol. 775 Springer, Berlin, 1994, pp. 661668.

[20] A. Thue, ijber die gegenseitige lage gleicher teile gewisser zeichenreichen, Nor. Vidensk. Selsk. Skr.

Mat. Nat. Kl. 1 (1912) l-67.

