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Abstract In this article, stagnation point flow of a Maxwell fluid over a shrinking porous sheet is

considered. The governing partial differential equations are reduced to ordinary differential

equations by using similarity transformations. The solution of the resulting nonlinear boundary

value problem is calculated with the help of Successive linearization method (SLM) using

computational software Matlab. The present analysis confirmed the existence of dual solution

for shrinking sheet, while for stretching case the solution is unique. The effects of suction parameter

S on the velocity profiles are shown through graphs and analyzed in detail.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In fluid mechanics non-Newtonian and Newtonian flow over a
shrinking and stretching sheet is very important and plays vital
role in polymer industry. Newtonian and non-Newtonian fluid

flow due to stretching body originated in contraction and
expanding surface in a fluid i.e., elongation of pseudopods,
hot rolling, production of glass fiber, production of rubber

and plastic sheets, expulsion of sheet material from a die, melt
spinning and to cool down the metallic plates. Yacob and
Ishak [1] investigated the two dimensional micropolar fluid
over a shrinking sheet. He found that the solutions can be

obtained if the adequate suction is considered in the permeable
sheet. He also analyzed that stronger suction is necessary for
the case of non-Newtonian fluid as compared to Newtonian

fluid. Suali et al. [2] studied the unsteady stagnation point flow
with heat transfer on a stretching and shrinking sheet having
surface heat flux. He analyzed that with the increment in
unsteadiness parameter, skin friction and local Nusselt number

increase. Wang [3] examined the two dimensional axisymmet-
ric stagnation point flow through a shrinking sheet. He found
that for large shrinking rates, solution does not exist and also

analyzed that with the increment in the thickness of boundary
layer, convective heat transfer with shrinking rate decreases.
Various experimental and numerical investigations have been

done by different authors [4–19].
Stagnation point flows have gained a lot of importance

recently because of their numerous applications including
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Fig. 1 Geometry of the problem.
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flows over the tips of rockets, aircrafts, submarines and oil
ships. The two dimensional stagnation point flow with a fixed
flat plate was first introduced by Hiemenz [20]. Vyas and Sri-

vastava [21] explored the boundary layer flow in porous expo-
nentially shrinking sheet with the help of Runga–Kutta (RK)
method and Shooting method. Nadeem and Awais [22] inves-

tigated the influence of variable viscosity with thermo-
capillarity on Newtonian fluid flow in a thin film through a
porous medium. Ali et al. [23] found the dual solution with

the help of shooting method for the nonlinear porous shrink-
ing sheet of a Newtonian fluid under the influence of MHD.
He analyzed that dual solutions can only be obtained for the
positive values of the controlling parameter. Awati and

Bujurke [24] examined analytically the Newtonian fluid of
Magneto-hydrodynamic (MHD) flow of nonlinear porous
shrinking sheet with the help of Dirichlet series and Method

of stretching variables. He found that Dirichlet series with
Method of stretching variables have faster convergence as
compared to the Homotopy analysis method (HAM), Homo-

topy perturbation method (HPM) and Adomian decomposi-
tion method (ADM).

Literature survey reveals that no such attention has been

given to the shrinking flow for Maxwell fluids. There are sit-
uations such as rising shrinking balloons, and so forth, the
standard stretching phenomenon is not useful therefore,
where shrinking phenomena are used. The purpose of this

article was to analyze the Fluid flow over a shrinking sheet
in the Region of a Stagnation Point through a porous
medium by using Successive linearization method (SLM)

and Chebyshev spectral collocation method [25–31]. With
the help of this method the governing nonlinear resulting
differential equation and boundary conditions transformed

into an iterative scheme. The iterative scheme can be further
solved with the help of Chebyshev spectral collocation
method. Niu et al. [32] examined the unsteady axisymmetric

boundary layer flow of a non-Newtonian fluid through a
cylinder under the influence of heat transfer. According to
the best of authors’ knowledge, Fluid flow over a shrinking
porous sheet in the region of a stagnation point by

Successive linearization method (SLM) has not been investi-
gated before.

The paper is formulated as follows: Section 2 denotes the

basic formulation of the governing flow problem, and Section 3
describes the methodology and solution of the problem. In
Section 4 graphical results have been sketched for various

physical parameters whereas Section 5 includes the conclusion
of the present analysis.

2. Mathematical formulation

Let us consider the steady two-dimensional incompressible,
irrotational flow of a Maxwell fluid near a stagnation point
over a shrinking porous sheet coinciding with the plane at

z ¼ 0. The flow being confined to z > 0, Cartesian coordinates
ðx; zÞ fixed in space are taken in such a way that x� axis is
taken along the plate and the z� axis is taken normal to it

respectively. We will consider the flow of a Maxwell fluid near
the stagnation point on the porous shrinking sheet as shown in
Fig. 1.

The governing equations of continuity and momentum
equation for the Maxwell fluid flow can be written as [33,34]
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where ~u and ~w are the velocity components along x, and z axis
whereas U ¼ ax is the free stream velocity, m is the kinematic
viscosity and k is the relaxation time. Their respective bound-

ary conditions are given by

~u ¼ bðxþ cÞ; ~w ¼ 0; at z ¼ 0;

~u ¼ ax; ~w ¼ �az; z ! 1; ð3Þ
where a is the strength of the stagnation flow, b is stretching
rate (shrinking occurs when b < 0), and c is the location of
the stretching origin. The similarity variables are stated as fol-

lows [3]

f ¼
ffiffiffi
a

m

r
z; ~u ¼ axg0 fð Þ þ bch fð Þ;

v ¼ 0; ~w ¼ � ffiffiffiffiffi
am

p
g fð Þ: ð4Þ

Using these transformations, Eq. (1) is identically satisfied

and Eq. (2) gives

g000ðfÞþgðfÞg00ðfÞ�g02ðfÞþ1�bðg2ðfÞg000ðfÞ�2gðfÞg0ðfÞg00ðfÞÞ
þKð1�g0ðfÞÞ¼ 0;

h00ðfÞ�g0ðfÞhðfÞþgðfÞh0ðfÞ�b g2ðfÞh00ðfÞ�2gðfÞhðfÞg00ðfÞ� �¼ 0;

ð5Þ
where prime denotes differentiation with respect to f; bð¼ kaÞ,
is the dimensionless Deborah number and Kð¼ m=a~kÞ is the

porous parameter. The corresponding boundary conditions
take the new form

gð0Þ ¼ � ~u~wffiffiffiffiffi
am

p ¼ S; g0ð0Þ ¼ a; g0ð1Þ ¼ 1;

hð0Þ ¼ 1; hð1Þ ¼ 0; ð6Þ
where S is the suction/injection parameter, a ¼ b=a, and a > 0
corresponds to the stretching sheet case, a < 0 corresponds to
shrinking sheets case and for a ¼ 0, planar stagnation flow
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toward a stationary sheet case occurs, and for a ¼ 1, the flow

has no boundary layer.

3. Solution of the problem

We apply the Successive linearization method (SLM) to Eq. (5)
with their boundary conditions in Eq. (6), by setting

g fð Þ ¼ gi fð Þ þ
Xi�1

m¼0

gm fð Þ; ði ¼ 1; 2; 3; . . .Þ; ð7Þ

where gi are unknown functions which are obtained by itera-

tively solving the linearized version of the governing equation
and assuming that gi 0 6 m 6 i� 1ð Þ are known from previous
iterations. Our algorithm starts with an initial approximation

g0 fð Þ which satisfy the given boundary conditions in Eq. (6)
according to SLM. The suitable initial guess for the governing
flow problem is

g0 fð Þ ¼ Sþ fþ a� 1ð Þ 1� e�f
� �

: ð8Þ
We write the equation in general form as

L g; g0; g00; g000ð Þ þN g; g0; g00; g000ð Þ ¼ 0; ð9Þ
where

L g; g0; g00; g000ð Þ ¼ g000; ð10Þ
and

N g;g0;g00;g000ð Þ¼ gg00 �g02þ1�b g2g000 �2gg0g00
� �þKð1�g0Þ;

ð11Þ
where L and N are the linear and nonlinear part of Eq. (5). By
substituting Eq. (7) in Eq. (5) and taking the linear term only,
we get

g000i þ a0;i�1g
000
i þ a1;i�1g

00
i þ a2;i�1g

0
i þ a3;i�1gi ¼ ri�1; ð12Þ

the corresponding boundary conditions become

gi 0ð Þ ¼ 0; g0i 0ð Þ ¼ 0; g0i 1ð Þ ¼ 0; ð13Þ
We solve Eq. (12) numerically by a well known method namely

Chebyshev spectral collocation method. For numerical imple-
mentation, the physical region 0;1½ Þ is truncated to 0;H½ �, we
can take H to be sufficient large. This region is further trans-

formed to the space �1; 1½ � using the following transformation

d ¼ �1þ 2

H
f: ð14Þ

We define the following discretization between the interval
�1; 1½ � and now we can apply any numerical approximation

method. For this purpose we choose the Gause–Lobatto collo-
cation points to define the nodes in �1; 1½ � by

dj ¼ cos
pj
N

� �
; ðj ¼ 0; 1; . . . ;NÞ; ð15Þ

with Nþ 1ð Þ number of collocation points. Chebyshev spectral
collocation method is based on the concept of differentiation
matrix D. This differentiation matrix maps a vector of the

function values G ¼ g d0ð Þ; . . . ; g dNð Þ½ �T, the collocation points

to a vector G0 is defined as

G0 ¼
XN
k¼0

Dkjg dkð Þ ¼ DG; ð16Þ
the derivative of p order for the function g dð Þ is generally rep-

resented by

g pð Þ dð Þ ¼ DpG: ð17Þ
The entries of matrix D can be computed using different ways
and we used the method proposed by Trefethen [26]. Then
apply the spectral method, with derivative matrices on lin-

earized equation Eqs. (12) and (13) which leads to the follow-
ing linearized matrix system.

Ai�1Gi ¼ Ri�1; ð18Þ
the boundary conditions take the following form

gi dNð Þ ¼ 0;
XN
k¼0

DNkgi dNð Þ ¼ 0;
XN
k¼0

D0kgi dNð Þ ¼ 0;

XN
k¼0

D2
0kgi dNð Þ ¼ 0; ð19Þ

where

Ai�1 ¼ D3 þ a0;i�1D
3 þ a1;i�1D

2 þ a2;i�1Dþ a3;i�1: ð20Þ
In the above equation as;i�1 s ¼ 0; 1; . . . ; 3ð Þ are Nþ 1ð Þ�
Nþ 1ð Þ diagonal matrices with as;i�1 dj

� �
on the main diagonal

and

Gi ¼ gi dj
� �

;Ri ¼ ri dj
� �

: ðj ¼ 0; 1; . . . ;N:Þ ð21Þ
After employing Eq. (19) on the linear matrix system in Eq.

(18), we obtained the solutions for gi by iteratively solving
the system in Eq. (19). We obtain the solution for g fð Þ from
solving Eq. (19) and now the next Eq. (5) is now linear; there-

fore, we will apply Chebyshev pseudospectral method directly,
which gives

BH ¼ S; ð22Þ
with their corresponding boundary conditions

h dNð Þ ¼ 1; h d0ð Þ ¼ 0; ð23Þ
where

B ¼ D2 � bg2D2 þ gD� g0 þ bgg00; ð24Þ
where H ¼ h dj

� �
; S is a vector of zeros, and all vectors in

Eq. (24) are converted to diagonal matrix. We imposed the
boundary conditions Eq. (23) on the first and last rows of B
and S respectively.

4. Numerical results and discussion

In this section the graphical results or various physical param-

eters of interest are sketched and discussed. For this purpose
Figs. 1–11 have been drawn. Fig. 1 shows the geometrical
interpretation of the governing flow problem. Figs. 2 and 3

are plotted to see the effects of shrinking parameter ðaÞ on
the velocity respectively for two different values of suction/
injection parameter ðSÞ. The dashed line represents the sheet

is rigid and the solid line is for porous shrinking sheet. It is
observed that by increasing the shrinking sheet, the velocity
of the fluid decreases and boundary layer thickness increases.
It is further depicted that for porous shrinking sheet, the veloc-

ity profile changes in magnitude but the property of velocity
remains the same as for rigid sheet as shown in Fig. 2. In
Fig. 3, the variation in velocity profile against shrinking



Fig. 2 Effects of the suction parameter S and the shrinking

parameter aða < 0Þ on g0ðfÞ when b ¼ �0:2.

Fig. 3 Effects of the suction parameter S and the shrinking

parameter aða < 0Þ on hðfÞ when b ¼ �0:2.

Fig. 4 Effects of the suction parameter S and the stretching

parameter aða > 0Þ on g0ðfÞ when b ¼ �0:2.

Fig. 5 Effects of the suction parameter S and the stretching

parameter aða > 0Þ on hðfÞ when b ¼ �0:2.

Fig. 6 Effects of the suction parameter S and the parameter b on

g0ðfÞ when a ¼ �1.

Fig. 7 Effects of the suction parameter S and the parameter b on

hðfÞ when a ¼ �1.
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parameter ðaÞ for S ¼ 0 and S ¼ 0:5 is drawn. It is shown that

the shrinking of sheet helps to increase the velocity profile for
both rigid and porous sheet and the boundary layer thickness
is changed in comparatively lesser in magnitude for S ¼ 0:5 as

compared to S ¼ 0 against shrinking parameter ðaÞ.
Figs. 4 and 5 are drawn to show the effects of stretching

parameter ðaÞ on the velocity profiles for S ¼ 0 and S ¼ 0:7
and qualitatively and these effects are similar in nature as of
shrinking sheet. The effects of Deborah number on velocity
profile are shown for S ¼ 0 and S ¼ 1 in Figs. 6 and 7 respec-
tively when a ¼ �1. It is seen that the boundary layer thickness

varies in larger magnitude against Deborah number when suc-
tion of the shrinking sheet is taken into consideration. An
interesting fact is observed in velocity profiles, if we consider
the sheet as rigid, and it occurs overshoot near the sheet. This
overshoot can be controlled by introducing the pores in the

sheet. Similarly, again the effects of Deborah number ðbÞ for
S ¼ 0; 1 against velocity profiles are shown in Figs. 8 and 9
for a ¼ 0:6 respectively.

The variation in velocity profiles against suction/injection
parameter ðSÞ is shown in Figs. 10 and 11 respectively. The
remaining parameters are kept fixed at b ¼ �0:4 and a ¼ 0.

It is pertinent to mention that by increasing the suction param-
eter ðSÞ of the sheet, velocity profile gðfÞ is decreased and
boundary layer thickness increases as shown in Fig. 10. On
the other hand by increasing Suction/injection parameter ðSÞ
of shrinking sheet, the velocity profile increases and boundary
layer thickness increases. It can also be observed from Fig. 12
that when the porous parameter ðKÞ increases then the



Fig. 8 Effects of the suction parameter S and the parameter b on

g0ðfÞ when a ¼ 0:6.

Fig. 9 Effects of the suction parameter S and the parameter b on

hðfÞ when a ¼ 0:6.

Fig. 10 Effects of the suction parameter S on g0ðfÞ when

b ¼ �0:4; a ¼ 0.

Fig. 11 Effects of the suction parameter S on hðfÞ when

b ¼ �0:4; a ¼ 0.

Fig. 12 Effects of the porous parameter K on g0ðfÞ when

b ¼ �0:4; a ¼ 0.

Fig. 13 Existence of dual solution: Effect of b on g0ðfÞ when

a ¼ �1:15.

Fig. 14 Existence of dual solution: Effect of b on hðfÞ when

a ¼ �1:15.
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magnitude of the velocity increases. Figs. 13 and 14 are

sketched to show the existence of dual solution for various val-
ues of b.

5. conclusion

In this article, the boundary layer flow for Maxwell fluid in the
region of stagnation point over a two-dimensional shrinking
porous sheet is discussed. The similarity variables are used to

transform the partial differential equations to ordinary differ-
ential equations. The resulting nonlinear ordinary differential
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equation are solved with the help of Successive linearization
method (SLM). The study also confirmed the existence of a
dual solution for shrinking sheet, while for the stretching case

the solution is unique. It is also observed that with the incre-
ment in the suction/injection parameter of the shrinking sheet,
boundary layer thickness and the velocity profile increase.
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