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Summary

Noncoding RNAs have recently emerged as important regu-

lators of mRNA translation and turnover [1, 2]. Nevertheless,
we largely ignore how their function integrates with protein-

mediated translational regulation. We focus on Bicoid, a key
patterning molecule in Drosophila, which inhibits the trans-

lation of caudal in the anterior part of the embryo [3, 4].
Previous work showed that Bicoid recruits the cap-binding

protein d4EHP on the caudal mRNA to repress translation
[5]. Here we show thatmiR-2 family microRNAs are essential

cofactors in the repression of caudal. Using an in vivo
sensor, we demonstrate that Bicoid acts through a 63 nt

response element in the caudal 30 UTR that includes a single
miR-2 target site. Mutating that site abolishes Bicoid-medi-

ated repression, and this effect can be partly reversed by
expressing a microRNA with compensatory changes that

restore binding to the mutated target. Four predicted Bicoid

splice isoforms are capable of caudal repression, including
two that lack the d4EHP interaction domain; all four isoforms

require the microRNA target for repression. The synergy
between Bicoid and microRNAs appears to have evolved

recently in the context of the drosophilid caudal BRE. The
discovery that microRNAs play an essential role in Bicoid-

mediated translational repression opens up new perspec-
tives on Bicoid’s function and evolution.

Results and Discussion

Bicoid (Bcd) is a key regulator that functions as amorphogen to
define the anterior-posterior axis of Drosophila embryos [6, 7].
It fulfils this role by acting both as a transcriptional activator
and as a translational repressor of different target genes in
early blastoderm embryos [3, 4, 8–10]. Bicoid evolved recently,
within cyclorrhaphan flies, from a homeobox-containing gene
of theHox family [11–14], by acquiring a suite of newproperties
that include its anterior localization in early embryos, a major
change in its DNA binding specificity, and the ability to bind
RNA and to regulate translation [15]. Bicoid thus serves as an
excellent paradigm for the evolution of gene functions.

The only known translational target of Bicoid is the posterior
patterning gene caudal, whose maternally transcribed mes-
senger RNAs (mRNAs) are ubiquitously distributed in early
embryos [3, 4]. Bicoid-mediated translational repression gen-
erates an inverse (posterior) gradient of Caudal (Cad) protein
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(Figure 1A). Previous work showed that caudal repression in-
volves direct binding of the Bicoid homeodomain to the 30

untranslated region (UTR) of caudal mRNA and recruitment
of the cap-binding protein d4EHP [3–5, 16, 17]. This mecha-
nismhas served as a newparadigm for translational repression
via competitive cap binding [18]. Here we report that Bicoid-
mediated repression is more complex than previously thought
and involves an unsuspected contribution from microRNAs.

In Vivo Sensor for Bicoid-Mediated Translational

Repression
To monitor Bicoid’s ability to regulate translation in vivo, we
established a fluorescent sensor. It consists of a transgene
expressing nuclear-localized EGFP followed by the caudal 30

UTR, under the constitutive tub-a1 promoter (Figure 1B). A
control sensor contains the SV40 early polyadenylation
sequence instead of the caudal 30 UTR. We inserted both con-
structs at the same location in the Drosophila genome using
phiC31-mediated integration (see the Supplemental Experi-
mental Procedures available online). Flies carrying these con-
structs expressed high levels of EGFP protein in their ovaries,
which perdured to embryonic stages. This ubiquitousmaternal
EGFP prevented us from observing Bicoid-mediated transla-
tional repression in early embryos. However, by expressing
Bicoid protein uniformly in oocytes and early embryos, using
nanos-GAL4 and a UAS-Bcd construct carrying the fs(1)K10
30 UTR instead of the bicoid 30 UTR, we observed that Bicoid
exerted a strong repression on the caudal 30 UTR sensor (Fig-
ure 1B). The control sensor, carrying the SV40 polyA, was
insensitive to Bicoid (Figure 1B). Thus, we developed a sensor
that recapitulates Bicoid-mediated repression on the caudal 30

UTR during oogenesis.
Using a modified sensor, expressing an unstable EGFP-Cad

fusion protein with the caudal 30 UTR, we were able to detect
the graded activity of Bicoid in early embryos (see Figure S1A).
However, the weaker and graded fluorescence obtained with
that sensor was less reliable for quantitative measurements.

Bicoid Isoforms Lacking the d4EHP-Interaction Domain
Are Still Capable of Repression

The five known splice isoforms of bicoid are predicted to
encode different protein isoforms (http://flybase.org; Fig-
ure 1C), but potential functional differences of these isoforms
had not been tested. We examined the functional properties
of each Bicoid isoform by generating UAS lines for each iso-
form and expressing them uniformly in the oocyte and early
embryo using the nanos-GAL4 driver (see the Supplemental
Experimental Procedures).
The transcriptional capability of each isoform was tested by

examining the expression of a known transcriptional target of
Bicoid, hunchback, in embryos. We found that isoforms D to G
are capable of driving ectopic hunchback expression, whereas
isoform A, which lacks the homeodomain, is not (see Fig-
ure S1B). Next we examined the translational capability of
each isoform using the caudal 30 UTR sensor described earlier.
Isoforms D to G repressed the sensor, whereas isoform A had
no effect (Figure 1D). Consistent results were obtained using
different UAS-Bcd insertions. Repression by isoforms D to G
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Figure 1. In Vivo Sensor Reveals Translational

Regulation by Bcd Isoforms

(A) Schematic representation of Bicoid and

Caudal distributions in earlyDrosophila embryos.

Maternal caudal mRNA is uniformly distributed.

The anterior gradient of Bcd represses caudal

translation, resulting in an opposite gradient of

Caudal protein [3, 4].

(B) The in vivo sensor of Bcd-mediated transla-

tion consists of a maternally active promoter

(tub-a1) driving expression of nuclear-localized

EGFP followed by 30 UTR sequences whose

activity we are testing. Using the sensor carrying

the SV40 30 UTR, we observe high levels of GFP

fluorescence in blastoderm embryos, both in

the presence and absence of maternally ex-

pressed Bcd (nos-GAL4 versus nos-GAL4;

UAS-BcdG). In contrast, we observe that Bcd is

able to exert a strong repression on the sensor

carrying the caudal 30 UTR. Fluorescence images

for each sensor were captured using identical

settings. The SV40 30 UTR sensor is expressed

at higher levels than the caudal 30 UTR sensor,

so we used shorter exposure times to image

those embryos.

(C) Representation of the five splice isoforms of

Bcd (see http://flybase.org). The longest protein

isoform is BcdG. Isoforms D and F utilize an

alternative splice acceptor in exon 3, generating

proteins that lack a short sequence just up-

stream of the homeodomain (HD). Isoforms E

and F utilize an alternative splice acceptor in

exon 2, which results in the introduction of a

stop codon (arrow) in frame with the first

AUG; an alternative in-frame AUG in exon 2

may be used to initiate translation in these

mRNAs (AUG start codons marked in red). Iso-

form A lacks exons 2 and 3, generating a pro-

tein that lacks both the homeodomain and the

d4EHP-interaction domain. Putative coding

sequences are shown in white, 50 and 30 UTRs
in gray, the d4EHP interaction domain [5]

is marked in yellow and the homeodomain

(HD) in black.

(D) Assaying translational repression ability of

each Bcd isoform using the caudal 30 UTR

sensor. Fluorescence was quantified on cycle

11 blastoderm embryos laid by females

carrying single insertions of the sensor, nanos-

GAL4 and UAS-Bcd; two lines, carrying dif-

ferent insertions of the UAS-Bcd transgene,

were tested for each isoform (gray bars).

The mean fluorescence intensity of each set

was quantified in relation to control embryos from females carrying the sensor and nos-GAL4 (white bars). Note that isoforms E and F, which lack the

characterized d4EHP interaction domain, are still capable of robust repression. Error bars represent one SE.

See also Figures S1 and S2.
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was also seen with Caudal antibody stainings in early embryos
(Figure S1C). SensormRNA levels are not significantly affected
by the presence of Bicoid isoforms D to G (Figure S2A), sug-
gesting that these isoforms exert their effects primarily by
translational repression. These results show that isoforms D
to G are all potentially contributing to the transcriptional and
translational activities of Bicoid, whereas isoform A is unlikely
to do so.

Strikingly, isoforms E and F lack the d4EHP-binding domain,
which is thought to be necessary for translational repression
via d4EHP recruitment and competitive inhibition at the cap
[5]. The fact that these isoforms are equally capable of repres-
sing caudal suggests the existence of alternative mechanisms
of Bicoid-mediated translational repression.
The caudal 30 UTR Contains a Bicoid-Response Element
with a Putative MicroRNA Target Site

To examine how Bicoid exerts its repression, we identified a
short fragment of the caudal 30 UTR that can mediate Bicoid-
dependent repression in vivo. Previous work had defined a
350 nt Bicoid response element (BRE) [3]. Guided by sequence
conservation, we narrowed that activity down to a 63 nt
fragment, BRE(257–319), that encompasses nucleotides
257–319 of the caudal 30 UTR (Figure 2). When incorporated
into the control sensor construct, this fragment recapitulates
Bicoid-dependent repression (Figure 2E). Bicoid does not
significantly reduce BRE(257–319) sensor mRNA levels (Fig-
ure S2B), suggesting that the effect is largely due to transla-
tional repression.

http://flybase.org


Figure 2. The Bicoid Response Element in the Caudal 30 UTR Contains a Putative MicroRNA Binding Site

(A) Sequence alignment of BRE(257–319) among drosophilid species. The conserved sequence and putative microRNA target site are highlighted in blue

and red, respectively.

(B) Predicted interaction of putative microRNA target site in the caudal 30 UTRwith Drosophila miR-308; similar interactions are predicted with other micro-

RNAs that share the miR-2 seed sequence (miR-2, miR-6, miR-11, miR-13, and miR-308 [19, 20]).

(C) Dot plot of Drosophila melanogaster caudal 30 UTR sequence compared to the homologous 30 UTRs of other drosophilid species. Different pairwise

comparisons are shown in separate colors. The only region where all drosophilid sequences show significant conservation is indicated in the box.

(D) Putative RNA secondary structure of BRE(257–319); the conserved portion of the sequence and the putative microRNA target site are highlighted.

(E) BRE(257–319) is sufficient to mediate Bcd-dependent repression in vivo. We compare the activities of a control sensor, carrying the SV40 30 UTR, and a

sensor carrying BRE(257–319) just upstream of the SV40 30 UTR. Fluorescence was quantified in cycle 11 blastoderm embryos laid by females carrying sin-

gle insertions of each sensor and nanos-GAL4, in the presence or absence of UAS-BcdG (white and gray bars, respectively). The mean fluorescence inten-

sity of each set was quantified in relation to the control sensor in the absence of Bcd. The presence of BRE(257–319) confers Bcd sensitivity to the SV40 30

UTR. Lower overall fluorescence levels in the BRE(257–319) sensor could be mediated by the microRNA target site. Error bars represent one SE. We note

that the BRE(257–319) sensor is expressed at much higher levels than the caudal 30 UTR sensor, in the absence of Bicoid, suggesting that additional ele-

ments outside of BRE(257–319) contribute to caudal mRNA repression independently of Bicoid.

See also Figures S2 and S3.
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As we describe below, certain mutations within BRE(257–
319) abolish responsiveness to Bicoid. Thus, elements con-
tained within BRE(257–319) are both necessary and sufficient
to mediate responsiveness to Bicoid.

BRE(257–319) displays a number of interesting features.
First, within the caudal 30 UTR, it is the region with the highest
degree of sequence conservation among drosophilids (Fig-
ures 2A and 2C). Second, RNA secondary structure predic-
tions suggest that the fragment may fold into a stable hairpin
structure (Figure 2D). Third, the distal part of that hairpin
harbors a putative target site for microRNAs of the miR-2
family, including microRNAs miR-2, miR-6, miR-11, miR-13,
and miR-308, which share the same seed sequence (Fig-
ure 2B). The putative microRNA target lies at the center of
the conserved region. The presence of a conserved microRNA
target site within the Bicoid-responsive element suggests that
the translational regulation of caudal could involve an inter-
action between Bicoid and microRNAs.



Figure 3. The MicroRNA Target Site in BRE(257–

319) Is Essential for Bcd-Mediated Repression

(A) To test the role of microRNA binding, we

generated two sets of mutations in the caudal

30 UTR, named cadM1 and cadM2, which are

predicted to completely disrupt binding of

miR2 family microRNAs. The mutations (high-

lighted in red) disrupt binding at the microRNA

seed sequence [21, 22] but preserve the

secondary structure of the 30 UTR (shown in

Figure 2D).

(B) The fluorescence intensity of the cadM1 and

cadM2 in vivo sensors was quantified in cycle

11 blastoderm embryos, relative to the intensity

of the wild-type caudal 30 UTR sensor (‘‘wt’’), in

the absence of Bcd. Both mutant sensors dis-

played significantly higher fluorescence levels

than the wild-type.

(C) The fluorescence intensity of the cadM1 and

cadM2 sensors was not affected by the expres-

sion of Bcd (embryos laid by nos-GAL4; UAS-

Bcd females).

(D) To rigorously test the requirement of micro-

RNA binding for Bcd-mediated repression, we

asked whether sensitivity to Bicoid can be re-

covered by providing a mutated microRNA

(miR308m) that restores binding to cadM1.

(E) The fluorescence intensity of the cadM1

sensor is reduced in the presence of miR308m,

and sensitivity to Bcd is partially restored. The

strength of Bcd-mediated repression is limited, but highly significant with Bcd isoforms G, E, and F. We do not detect an effect with Bcd isoform D, which

may point to additional isoform-specific requirements.

All error bars represent one SE (two asterisks indicate 99% statistical confidence; n.s. indicates no statistical significant difference, using a t test).
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Mutations in the MicroRNA Target Site Abolish

Bicoid-Mediated Repression
To directly test whether the putative microRNA target site is
necessary for Bicoid-mediated repression, we generated two
sets of mutations (cadM1 and cadM2) that disrupt microRNA
binding while preserving the putative secondary structure of
the caudal 30 UTR (Figure 3A). These mutations were intro-
duced into our sensor constructs in the context of the entire
caudal 30 UTR and were tested in vivo, in the presence or
absence of Bicoid.

In the absence of Bicoid, both mutant sensors gave higher
readings than the unmutated caudal 30 UTR sensor (Figure 3B),
consistent with the expected repressive effect of microRNA
binding. Remarkably, adding Bicoid produced no significant
change in expression levels of either cadM1 or cadM2
(Figure 3C); all the Bicoid isoforms tested (isoforms D to G)
were incapable of repression. These results show that the pre-
dicted microRNA target site contains essential elements for
Bicoid-mediated repression.

Providing a MicroRNA with Compensatory Changes
Restores Bicoid-Mediated Repression

The mutant sensor results are consistent with the idea that
microRNAs could be involved in Bicoid-mediated repression.
This is plausible, as miR-2 family microRNAs are expressed
during oogenesis and deposited in the early embryo [19, 23].
However, an alternative explanation could be that the same
point mutations inadvertently disrupt Bicoid binding in a
microRNA-independent manner. To address this issue, we
asked whether Bicoid responsiveness in a mutant sensor
could be rescued by providing a microRNA carrying compen-
satory changes that restore binding to the sensor. Such a
rescue would demonstrate that microRNAs have a direct role
in Bcd-mediated repression.
To conduct this experiment, we took the precursor hairpin
for a miR-2 family member, miR-308, and introduced point
mutations that restorebinding to thecadM1 sensor (Figure 3D).
We also introduced mutations to preserve the secondary
structure of the precursor hairpin, in order to allow normal
processing of the microRNA [24, 25]. We placed this mutant
microRNA, called miR-308m, under the constitutive tub-a1
promoter and inserted it into the Drosophila genome, on the
same chromosome as cadM1 (see the Supplemental Experi-
mental Procedures).
The presence of mir-308m lowered the expression of the

mutant sensor (Figure 3E), partially restoring the levels
that we observe with the unmutated caudal 30 UTR. This
result suggests that mir-308m interacts with cadM1 in vivo.
The repressive effect of mir-308m is lower than that of endog-
enous microRNAs on the wild-type caudal 30 UTR (compare
first two columns on Figure 3B with Figure 3E), which could
be due to lower expression or inefficient processing of miR-
308m, or due to lower efficiency of the microRNA-target
interaction.
Adding Bicoid further repressed cadM1 expression in

the presence of mir-308m (Figure 3E), demonstrating that
by restoring the microRNA-target interaction we can par-
tially rescue Bicoid-dependent repression. The extent of
Bicoid repression is small but reproducible for Bicoid
isoforms G, E, and F (compare with Figure 1D). This
result demonstrates that microRNA binding to the caudal
30 UTR has a direct role in Bicoid-dependent repression.
The fact that the restoration of Bcd repression is partial
may reflect a problem in the biogenesis of the mutant
microRNA, or effects of the cadM1 mutation that are
independent of microRNA binding (e.g., unanticipated effects
on secondary structure, effects on recruitment of other
cofactors).



Figure 4. Evolution of Synergy between MicroRNAs and Bcd

(A) Sensors carrying the Tribolium castaneum and Haematopota caudal 30

UTRs were assayed for their ability to mediate Bcd-dependent repression.

The Tribolium caudal 30 UTR sensor showed no significant difference in

the presence or absence of Bcd. In contrast, the Haematopota caudal 30

UTR sensor was significantly repressed by Bcd. To dissect the Bcd-respon-

sive element in Haematopota caudal 30 UTR, we subdivided that sequence

into three fragments (H1, H2, and H3) predicted to form distinct stem-loop

structures. Sensor constructs show that only one of these fragments, the

42 nt long H2, can mediate Bcd-dependent repression. Error bars represent

one SE; two asterisks indicate 99% statistical confidence using a t test.

(B) Previous studies have indicated that translational repression of maternal

caudalmRNA is likely to be an ancient feature that predates the evolution of

Bicoid [26, 27]. Although caudal mRNAs from Tribolium, Haematopota, and

Drosophilamay share some cis-regulatory signals that can mediate repres-

sion by Bcd ([26] and present work), our results suggest that the synergy

between microRNAs and Bcd probably arose after the divergence of these

species, concomitant with the functional specialization of Bcd in cyclorrha-

phan flies [11–15].

See also Figure S4.
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MicroRNA-Bicoid Synergy Evolved Recently and Is
Context Specific

Translational repression of caudal at the anterior pole of the
embryo may be an ancient feature that predates the evolution
of Bicoid: caudal appears to be translationally repressed in
the beetle Tribolium castaneum, which does not possess a
distinct Bicoid homolog [26, 27]. Strikingly, Wolff et al. showed
that Tribolium caudal mRNA could be repressed in a Bicoid-
dependent manner when expressed in Drosophila embryos
[26], suggesting that Bicoid recognizes the same cis-
regulatory signal on caudal mRNA as the ancestral (Bicoid-
independent) mechanism of repression. Could the microRNA
target site represent that ancestral conserved signal?
To address this question, we examined the functional

properties of caudal 30 UTRs from the beetle Tribolium
castaneum and the noncyclorrhaphan dipteran Haematopota
pluvialis, two insects that do not possess Bicoid [11, 13]. A
sensor carrying the entire Tribolium caudal 30 UTR showed
no significant Bcd-dependent repression in Drosophila (Fig-
ure 4A), suggesting that the result of Wolff et al. is not medi-
ated through the 30 UTR. However, we found that a sensor
carrying the Haematopota caudal 30 UTR sequence is able
to mediate a moderate Bicoid-dependent repression in
Drosophila (Figure 4A). We mapped this activity to a 42 nt
fragment of the 30 UTR, that we name H2, which is sufficient
for Bicoid-dependent repression (Figure 4A). H2 is predicted
to form a hairpin structure and it is capable of weakly binding
Bicoid in a gel shift assay in vitro (see Figure S4). Impor-
tantly, H2 lacks any predicted microRNA target sites
(including targets for Drosophila microRNAs), which sug-
gests that Bicoid acts on this fragment in the absence of
microRNA binding.
Thus, we find no evidence to suggest that the role of micro-

RNAs in anterior caudal repression predates the evolution of
Bicoid (Figure 4B). The synergy of Bicoid with microRNAs
appears to have evolved in the context of a specific caudal
BRE and may be absent outside of the cyclorrhaphan fly
lineage.

Conclusions
Our results show that Bicoid cooperates with microRNAs to
repress Drosophila caudal mRNA. The interaction occurs
within a 63 nt region of the caudal 30 UTR and is essential for
repression of that specific target. However, microRNAs do
not appear to be necessary for Bicoid repression on all targets
(see results on the Haematopota 30 UTR), which suggests that
the target mRNA plays an important role in determining which
components are involved in the repression. Target mRNAs
with different sequence or structural motifs may assemble
different repressive complexes, involving different sets of
proteins and regulatory RNAs.
Bicoid and microRNAs could cooperate in a number of

different ways to achieve caudal repression. One possible
mechanism could involve cooperative binding of Bicoid and
microRNA/RISC complexes on the BRE. Although previous
work indicated that Bicoid can bind specifically to the caudal
30 UTR in vitro [4, 16, 17], our gel shift experiments suggest
that this interaction is weak and not highly specific (see Fig-
ure S3). Cooperative binding of microRNAs and Bicoid could
enhance the strength and the specificity of this interaction.
Bicoid and microRNAs might also cooperate in establishing
a translational repression complex that involves several com-
ponents, including d4EHP and Ago [5, 28]. Thus, the synergy
between Bicoid and microRNAs may occur at the level of
both mRNA binding and translational repression.
These results point to a previously unappreciated level of

complexity in caudal repression, involving both proteins and
microRNAs, echoing some recent findings in other systems
[2, 29, 30]. Bicoid remains the factor that provides the spatial
specificity in caudal repression, which serves to transmit
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positional information in the developing embryo. However, the
synergy with microRNAs provides an additional layer of regu-
lation and opportunities for regulatory evolution.

Supplemental Information

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be foundwith this article online at http://dx.doi.org/

10.1016/j.cub.2013.06.041.
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