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We studied the effect of the diverse Goldstone boson modes in the transport properties of dense neutron 
matter. The two Goldstone bosons associated with density oscillations of the neutron and electron +
proton fluids, called superfluid phonons, mix and couple strongly to electrons reducing their mean free 
time and suppressing their contribution to transport coefficients. For typical neutron star temperatures 
in the range T = 106–109 K, the Goldstone modes associated with rotational symmetry, called angulons, 
couple weakly to each other and to electrons and, consequently, have anomalously large mean free 
paths and can contribute to both diffusive and ballistic transport of heat and momentum. Still, their 
contribution is smaller that coming from the electrons on account of their smaller density. We speculate 
that long-wavelength superfluid phonons and angulons can play a role in neutron star seismology, 
and lead to interesting phenomenology especially since angulons couple to magnetic fields and have 
anisotropic dispersion relations.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

It is likely that neutron-rich matter encountered in the neutron 
star core is both superfluid and superconducting [1]. At the den-
sities realized in the core, attractive s-wave interactions between 
protons, and p-wave interactions between neutrons naturally lead
to the formation of Cooper pairs of nucleons at the Fermi surface. 
Neutrons are expected to form a 3 P2 superfluid and protons form 
a 1 S0 superconductor. Model calculations indicate that the typical 
pairing energy or equivalently the energy gap, denoted by � are 
small (� � 1 MeV � kB 1010 K) compared to the Fermi energy, but 
are large compared the typical temperatures T � 107–108 K en-
countered in old and cold neutron stars. Hence, it has been known 
for some time that while pairing will not affect substantially the 
equation of state, it can dramatically alter key transport and cool-
ing properties of neutron stars.

When kB T � �, the excitation of neutrons and protons is ex-
ponentially suppressed by the factor exp (−�/kB T ) and the only 
relevant excitations are electrons and Goldstone bosons (GBs) as-
sociated with the symmetry breaking in the superfluid and super-
conducting ground states. Since nucleon excitations are gapped, 
the theoretical description of transport properties is dominated 
by GBs and electrons, and we show here that they are weakly 
interacting and that kinetic theory applies. As a consequence, long-
wavelength oscillations, shear viscosity and thermal conductivity, 
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which play a role in interpreting various transport phenomena in 
neutron stars, can be calculated systematically in terms of just a 
handful of low-energy constants.

The letter is organized as follows. First, we use general symme-
try arguments and simple dynamical considerations to discuss the 
structure of the low energy theory of GBs. Then, we use this ef-
fective theory to calculate the dispersion relations and mean free 
paths of all the GBs to show that some of them are especially 
weakly coupled. We conclude by estimating neutron star oscilla-
tion frequencies, and the GB mode contribution to thermal conduc-
tivity and shear viscosity, and discuss its implications for neutron 
stars. Through out this letter, unless we explicitly note otherwise, 
we use natural units with h̄ = 1, c = 1.

2. Superfluidity and superconductivity in the core

At the high densities encountered in the core, s-wave interac-
tions between neutrons are repulsive and attractive p-wave in-
teractions favor spin-one Cooper pairs with angular momentum 
in the 3 P2 channel. The resulting condensate, which we discuss 
in more detail below, breaks rotational invariance as well as the 
global U (1) symmetry associated with rotations of the phase of 
the neutron wave function. Because the proton fraction is smaller, 
typically less than 10%, s-wave interactions between protons re-
main attractive even in the core, and this leads to the formation 
of spin-zero proton Cooper pairs in the 1 S0 channel. The resulting 
superconducting condensate breaks the U (1) symmetry associated 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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with rotations of the phase of the proton wave function. In con-
trast, due to their large Fermi energy (� 100 MeV) electrons form 
a nearly ideal, relativistic and degenerate Fermi gas.

In the neutron superfluid there are Goldstone modes associ-
ated with breaking of rotational symmetry by the 3 P2 condensate 
labeled as angulons in [2], and one superfluid phonon mode asso-
ciated with the neutron number U (1) symmetry. The relevance of 
the superfluid phonon mode to transport phenomena in the neu-
tron star core was recently studied in [3]. Our findings show that 
the angulon contribution in more relevant. Naively, one may expect 
that the Goldstone mode associated with the proton superconduc-
tor will not be massless due to long-range Coulomb interactions. 
However, due to efficient electron screening, a massless Goldstone 
does exist, and it corresponds to a charge neutral oscillation of 
the proton condensate and the electron fluid [4]. We now discuss 
in detail the theory needed to describe the propagation of these 
massless modes.

3. Low energy theory of phonons and angulons

Neutron pairing results in a non-vanishing spin-2 condensate 
given by〈
N T σ2σ

i←→∇ j N
〉 = �0

i je
iφ, (1)

where �0
i j is a symmetric traceless tensor and φ is a scalar. Dif-

ferent symmetric traceless tensors break the rotation group in dif-
ferent ways so there are several possible 3 P2 phases. Around the 
critical temperature one can rely on BCS and strong coupling es-
timates of the parameters of the Ginzburg–Landau free energy to 
conclude that the ground state is of the form �0

i j ∼ diag(1, 1, −2)

(or, of course, any rotation of this matrix) [5,6]. The structure of 
the gap equations are such that, at least within the BCS frame-
work, the relative order of the different states is not changed as 
temperature, density or microscopic interactions change [7] so it is 
reasonable to assume that the ground state of neutron matter is in 
a phase characterized by the �0

i j ∼ diag(1, 1, −2) form of the con-
densate. This assumption underlies our analysis, however our main 
qualitative conclusions are independent of it.

The presence of the condensate �0
i j ∼ diag(1, 1, −2) breaks 

spontaneously the symmetry of the system under rotations, ex-
cept for those around the z-axis. Thus, as first realized in [2] we 
expect the presence of two gapless excitations above the ground 
state, named “angulons”, corresponding to rotations of the conden-
sate around the x and y axis. Angulons were then studied in more 
detail in [8] where, with mild assumptions, their properties were 
quantitatively estimated.

The low energy dynamics is succinctly described by the la-
grangian

Lang =
∑

i=1,2

[
1

2
(∂0βi)

2 − 1

2
vi⊥

2(
(∂xβi)

2 + (∂yβi)
2) + v2‖(∂zβi)

2
]

+ egn fβ

2M
√

−∇2⊥

[
B1∂0(∂yβ1 + ∂xβ2) + B2∂0(∂xβ1 − ∂yβ2)

]

+O
(

β2 (∂β)2

f 2
β

)
,

where

v1⊥
2 = 24π

√
3

18(9 + π
√

3)
v2

F , v2⊥
2 = 81 − 4π

√
3

18(9 + π
√

3)
v2

F ,

v‖2 = 81 − 2π
√

3√ v2
F , f 2

β = MkF

π2

(
1 + π√

)
,

18(9 + π 3) 3 3
Table 1
Ambient conditions, low energy constants and eigenmode velocities v1 and v2 in 
units of the velocity of light for the equation of state from [13].

nn (fm−3) 0.08 0.16 0.20 0.24 0.32

xp 0.024 0.043 0.050 0.057 0.070
v2

p 0.029 0.049 0.060 0.072 0.104

v2
n 0.015 0.070 0.128 0.210 0.430

v2
np −0.034 −0.016 0.024 0.086 0.268

v1 0.12 0.21 0.23 0.25 0.28
v2 0.17 0.26 0.36 0.46 0.71

gn ≈ −1.91 is the neutron magnetic moment in units of the nu-
clear Bohr magneton, B is the magnetic field, kFn the neutron 
Fermi momentum, M the nucleon mass, v F = kFn/M is the neu-
tron Fermi velocity, and e = √

αem/4π2 the electron charge. The 
fields β1,2 are linear combinations of the fields describing rota-
tions of the condensate around the x and y axis which mix among 
themselves; in terms of the original fields the lagrangian is ana-
lytic at small momenta.

We now discuss the two remaining massless modes, these now 
being associated with density fluctuations. The first mode is one 
that would exist in a pure 3 P2 (and also a 1 S0) neutron superfluid 
and it corresponds to the fluctuations of φ − the overall isotropic 
phase of the condensate. The other mode, which we call the ep
phonon, is related to density fluctuations of proton condensate +
the electron gas and is denoted by the scalar field ξ . The gen-
eral low energy effective field theory of these scalar modes is well 
studied [9–11] and the low energy lagrangian density is given by

Lphn = 1

2
(∂0φ)2 − v2

n

2
(∂iφ)2 + 1

2
(∂0ξ)2 − v2

p

2
(∂iξ)2

+ v2
np∂0φ∂0ξ + 1

fep
∂0ξψ

†
eψe + · · · ,

where we have also included the coupling to the electron field ψe. 
The coefficients of the leading order terms in the derivative ex-
pansion are related to simple thermodynamic derivates and can be 
obtained from the equation of state. They are given by

v2
n = nn

m
Enn, v2

p = np

m
E pp, v2

np = 1

2

k2
Fp

π2

√
kFn

kFp
Enp (2)

where E ij = ∂2 E(nn, np)/(∂ni∂n j) and E(nn, np) is the energy den-
sity of the neutron–proton system. The effective coupling between 
the ep phonons and electron-hole states is calculated as in the 
jellium model and is given by fep =

√
mpkFp/π2 [12]. Enp arises 

solely due to nucleon–nucleon interactions and its value depends 
on the density, the equilibrium proton fraction and the equation 
of state model chosen. The low energy constants calculated using 
a representative microscopic equation of state from [13] and the 
eigenmode velocities in units of the speed of light are shown in 
Table 1.

4. Mean free paths of Goldstone bosons

The propagation of angulons and superfluid phonons can be 
damped by several processes. In the following we estimate the su-
perfluid phonon and angulon mean free paths at low temperature 
kB T � � and find that dominant decay mechanism is through the 
excitation of electron-hole states. First, we analyze the mean free 
paths of the two longitudinal superfluid phonons. In the absence of 
any mixing between these modes the ep mode couples strongly to 
the electron-hole excitations and its damping rate and the mean 
free paths are given by
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Γep(ω = v pq) = 3π

2
v3

pq,

λep(ω = v pq) = c

Γep(ω)
� 1.4 × 10−9

(
10 keV

ω

)(
0.3

v p

)
cm,

respectively [14]. The thermal average〈
λep(T )

〉 = π/
(
18ζ(3)v p T

) ≈ 10−9 cm

at T = 108 K and v p = 0.3.
The term proportional to vnp mixes the ep mode with the neu-

tron superfluid phonon mode. We find that both eigenmodes decay 
predominantly by coupling to electron-hole excitations (Landau 
damping). This mixing is similar to the mixing between the lon-
gitudinal phonons of the nuclear lattice and the neutron superfluid 
phonons in the inner crust of the neutron star [11]. The velocity 
and damping rates of the two longitudinal eigenmodes can be ob-
tained as solutions to the equation(
ω2 − v2

nq2)(ω2 − v2
pq2 − 2iωΓe−p(ω)

) − 2v4
npω

4 = 0 (3)

In the limit of weak mixing the scattering rate of the predomi-
nantly ep-mode is ≈ Γep(ω = v pq) given in Eq. (3), and the scat-
tering rate of the predominantly neutron superfluid mode is

Γφ(ω = vnq) ≈ v4
npΓep(ω)

(1 − (v p/vn)2)2 + 9π2 v4
p
, (4)

and when vn  v p and v p � 1, Γφ(ω = vq) ≈ v4
npΓep(ω). Since 

typical values of v4
np are in the range 10−4–10−1, we can con-

clude that the mean free path of the predominantly neutron su-
perfluid mode will be in the range λφ ≈ 10−5(0.3/v)T −1

8 cm to 
λφ ≈ 10−8(0.3/v)T −1

8 cm. Here we note that this result is several 
orders of magnitude smaller than the estimate of the neutron su-
perfluid phonon mean free path made in [3] where the coupling to 
electrons is neglected. Although λφ  λep we shall see later that it 
is still too small to contribute significantly to transport phenomena 
in the neutron star core.

We now turn to the calculation of the angulon mean free path. 
Angulon–angulon scattering contributions are very small. Indeed, 
the angulon–angulon scattering amplitude is ∝ p2/ f 2

β since the 
powers of p are fixed by dimensional analysis. Its contribution 
to the mean free path can then be easily estimated and we find 
λang–ang ≈ v3

β f 4
β /T 5. For T � 109 K, λang–ang  R where R � 10 km

is the radius of the neutron star, and implies that angulon–angulon 
processes are irrelevant. Angulon can scatter from electrons only in 
an indirect way through their mixing to magnetic photons. Angu-
lons mix with the magnetic photons due to two processes. One 
mixing mechanism is due to the magnetic moment of the neu-
tron and is described by the lagrangian in Eq. (2). The other is 
mediated by protons which, as charged particles, couple to pho-
tons. These two processes are depicted in Fig. 1. The latter indirect 
coupling necessarily involves a spin flip of both neutrons (on ac-
count of form the angulon–neutron coupling) and protons. Thus, 
only the magnetic photon mixes with the angulon and this mixing 
is suppressed by a power of the proton velocity change ∼ p/M , 
the same suppression appearing in the magnetic moment process. 
We find that the proton mediated mixing is smaller than the mix-
ing generated by the neutron magnetic moment. For the estimates 
we present here, we will neglect the proton mediated mixing.

Since magnetic photons are damped by electron-hole excita-
tions, mixing ensures that angulons are also damped. The angulon 
scattering rate off electrons is given by

Γang(ω,q) � 1
(

efβ gn
qω

)2

Im D(ω,q), (5)

ω 2M
Fig. 1. The top line shows the magnetic moment and proton mediated mixing pro-
cesses, respectively. Angulon, photon, electron, neutron and proton propagators are 
shown as a dotted, wavy and solid black, solid red and solid blue lines, respectively 
and nucleon loops include both normal and anomalous diagrams. The lower graphs 
contribute to the imaginary part of the self-energy of the angulon-magnetic photon 
mixed mode (left) and the electron–proton–neutron phonon mode (right). (For in-
terpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

where D(ω, q) = (ω2 −q2 −ω2
P − iq2

TFe(ω/q))−1 is the dressed pho-

ton propagator, and qTFe = √
4πe2∂ne/∂μe is the electron Debye 

screening momentum, and ωP =
√

4πe2np/m is the proton plasma 
frequency. Since q2

TFe  ω2
P we can write

Γang(ω,q) � e2 f 2
β

g2
n

4M2q2
TFe

q3 = π f 2
β g2

n

16M2k2
Fe

q3. (6)

From the angulon width estimated above we can determine the 
angulon mean free path

λang(ω) = vβ

Γ (ω = vβq)
= 16M2k2

Fe v4
β

π f 2
β g2

n

1

ω3

≈ 1.7γ 4 v3
F

(
kFe

100 MeV

)2(10 keV

ω

)3

cm, (7)

where γ = vβ/v F and vβ is the mean velocity of the angulon.
Now that we have identified relevant scattering processes, 

transport properties like the heat conductivity κ and the shear vis-
cosity η can be computed by solving the Boltzmann equation for 
phonons and angulons. A quicker estimate of κ and η can be ob-
tained as follows. In kinetic theory, the thermal conductivity and 
shear viscosity are given by κ ∼ (1/3)C V v〈λ〉, η ∼ (1/3)n〈p〉〈λ〉, 
respectively, where C V � 2π2T 3/(15v3) is the specific heat, n �
ζ(3)T 3/(π2 v3) is the number density, v is the velocity, 〈p〉 � T /v
is the average thermal momentum, ζ(3) ≈ 1.2, and 〈λ〉 is an ap-
propriate thermal average mean free path of the phonon/angulon.

In cgs units the phonon/angulon contribution can be written as

κphn/ang = 1.7 × 1021T 3
8

(
0.3

v

)3( 〈λ〉
cm

)
erg

cm s K
(8)

The electron contribution to thermal conductivity has been cal-
culated in earlier work and was found to be in the range 
1022–1024 erg/cm/s/K for typical ambient conditions in the neu-
tron star core [15]. Since 〈λep〉 � 〈λφ〉 � 10−5 cm, we can safely 
neglect the contribution from both longitudinal phonons to ther-
mal conductivity.

Estimating the angulon contribution is bit trickier because 
λang(ω) ∝ 1/ω3 and the naive thermal average mean free path di-
verges. Here it is appropriate to write the thermal conductivity as

κang = 1

3

∫
d3q

(2π)3

d

dT

(
v̄q

eβ v̄q − 1

)
v̄λang(q)

� 8γ 2 v F k2
Fe

3π g2
n

∞∫
x̄

xex

(ex − 1)2

� 2.5 × 1019
(

kFe
)2

γ 2 v F
(
1 − ln (x̄)

) erg
100 MeV cm s K
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where β = 1/kB T and v̄ is the angle average velocity. The lower 
limit x̄ = β v̄qc � 1 is introduced because the Bose distribution 
function is meaningful for low energy angulons only when the 
mean free path λang(ω = v̄qc) � Rc where Rc � 5–10 km is radius 
of the core. Angulons with larger mean free path will not ther-
malize inside the star. For relevant neutron star temperatures we 
find that x̄ is in the range 10−4–10−3. κang is nearly independent 
of temperature and for typical values γ � 0.5–0.7, v F � 1/3 and 
x̄ � 10−3, κang ≈ 1.6 × 1019 erg/(cm s K). This is a few orders of 
magnitude smaller than earlier estimates of the electron thermal 
conductivity. Similarly, an estimate of the shear viscosity shows 
that it too is small compared to the electronic contribution. The 
elementary process between electrons and GBs could nevertheless 
play role in coupling the dynamics of the multicomponent core of 
the neutron star. In addition, long wavelength modes with q < qc

are ballistic, and despite their low production rates, could trans-
port energy and momentum and warrants further study.

5. Global oscillations of neutron stars

Perhaps the most consequential finding is the long lifetime of 
the long wavelength angulon and phonon modes. This implies that 
they would play a central role in neutron star seismology. If excited 
these modes will have different characteristic frequencies given by 
Ω = 2π v/R where v is the phonon/angulon velocity, and damp-
ing timescale τ = λ(q � 2π/R)/v where λ is the corresponding 
mean free path and are likely to produce a unique spectrum and 
time evolution that may be observationally discernible. The low 
frequency longitudinal mode will damp quickly in the core, the su-
perfluid phonon modes will also damp in the core but on a longer 
time scale. The angulon modes, in contrast, will likely be damped 
only at the crust–core interface. The long decay constant of an-
gulons is a unique property among oscillations modes of neutron 
stars and it can be traced back to the fact that angulon interac-
tions with electrons are mediated by magnetic forces suppressed 
by powers of q/M . Further, the anisotropy of the angulon modes, 
and the fact that they couple to the magnetic field suggests unique 
observable consequences that need to be explored. For example, 
catastrophic processes such as giant flares or tidal perturbations 
that occur prior to binary neutron star mergers could trigger seis-
mic activity in the core leading to coupled dynamics of the angu-
lon fields and the large scale magnetic field anchored in the star.

We hope that our calculation of the mode velocities and damp-
ing rates for the elementary excitations with macroscopic and 
microscopic wavelengths in the neutron star core will motivate fur-
ther study. There are several issues that warrant a more detailed 
analysis. These include the role of ballistic angulon modes, dissipa-
tion of long wavelength angulons at the crust–core boundary, and 
the role of phonon-emission and absorption reactions on the elec-
tronic transport properties.
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