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a b s t r a c t

In order to analyze the singularities of a power series function P(t)
on the boundary of its convergent disc, we introduced the space
Ω(P) of opposite power series in the opposite variable s = 1/t ,
where P(t) was, mainly, the growth function (Poincaré series) for
a finitely generated group or a monoid Saito (2010) [10]. In the
present paper, forgetting about that geometric or combinatorial
background, we study the space Ω(P) abstractly for any suitably
tame power series P(t) ∈ C{t}. For the case when Ω(P) is a finite
set and P(t) is meromorphic in a neighborhood of the closure of its
convergent disc, we show a duality between Ω(P) and the highest
order poles of P(t) on the boundary of its convergent disc.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

There seems a remarkable ‘‘resonance’’ between oscillation behavior1 of a sequence {γn}n∈Z≥0 of
complex numbers satisfying a tame condition (see Eq. (2.1.2)) and the singularities of its generating
function P(t) =


∞

n=0 γntn on the boundary of the disc of convergence in C. The idea was inspired by
and strongly used in the study of growth functions (Poincaré series) for finitely generated groups and
monoids [10, Section 11].

Let us explain the ‘‘resonance’’ by a typical example due to Machì [5] (for details, see Examples
in Sections 3.3 and 5.4 of the present paper. Other simple examples are given in Section 3.4 (see
[1,9,7]) and Section 3.5). By choosing generators of order 2 and 3 in PSL(2, Z), Machì has shown that
the number γn of elements of PSL(2, Z) which are expressed in words of length less than or equal to
n ∈ Z≥0 w.r.t. the generators is given by γ2k = 7 · 2k

− 6 and γ2k+1 = 10 · 2k
− 6 for k ∈ Z≥0. On

one hand, this means that the sequence of ratios γn−1/γn (n = 1, 2, . . .) accumulates to two distinct
‘‘oscillation’’ values {

5
7 ,

7
10 } according as n is even or odd. On the other hand, the generating function

E-mail address: kyoji.saito@ipmu.jp.
1 By an oscillation behavior, wemean that, for each fixed k ∈ Z≥0 called a period, the sequence of the rate γn−k/γn (n ∈ Z≫0)

has several different accumulation values.
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(or, so called, the growth function) can be expressed as a rational function P(t) =
(1+t)(1+2t)
(1−2t2)(1−t)

, and

it has two poles at {±
1

√
2
} on the boundary of its convergent disc of radius 1

√
2
. We see that there is

a ‘‘resonance’’ between the set {
5
7 ,

7
10 } of ‘‘oscillations’’ of the sequence {γn}n∈Z≥0 and the set {±

1
√
2
} of

‘‘poles’’ of the function P(t), in the way we shall explain in the present paper.
In order to analyze these phenomena, in [10, Section 11], we introduced a space Ω(P) of opposite

power series in the opposite variable s = 1/t , as a compact subset ofC[[s]], where each opposite series
is defined by using ‘‘oscillations’’ of the sequence {γn}n∈Z≥0 so that Ω(P) carries a comprehensive
information of oscillations (see Section 2.2 Definition (2.2.2)). On the other hand, the space Ω(P)
has duality with the singularities of the function P(t) (Section 5 Theorem). Thus, Ω(P) becomes a
bridge between the two subjects: oscillations of {γn}n∈Z≥0 and singularities of P(t). Since the method
is independent of the group theoretic background and is extendable to a wider class of series (see
Section 2.1 Example 2), which we call tame, we separate the results and proofs in a self-contained
way in the present paper. We study in details the case when Ω(P) is finite, where we have good
understanding of the abovementioned resonance by a use of rational subset explained in the following
paragraph, and Machì’s example is understood in that frame.

One key concept in the present paper is a rational subset U (Section 3), which is a subset of the
positive integers Z≥0 such that the sum


n∈U tn is a rational function in t (i.e. U , up to finite, is a finite

union of arithmetic progressions). The concept is used twice in the present paper. The first time it is
used is in Section 3, where we show that, if the space of opposite series Ω(P) is finite, then there is a
finite partition Z≥0 = ⨿i Ui of Z≥0 into rational subsets so that there is no longer oscillation inside in
each {γn : n ∈ Ui}. We call such phenomena ‘‘finite rational accumulation’’ (Section 3.2 Theorem)
(such phenomena already appeared when we were studying the F-limit functions for monoids
[10, Section 11.5 Lemma]). The second time it is used is in Section 5, where we introduce a rational
operator TU acting on a power series P(t) ∈ C[[t]] by letting TUP(t) :=


n∈U γntn. The rational

operators form a machine that ‘‘manipulates’’ singularities of the power series P(t). In this way,
rational subsets combine the oscillation of a sequence {γn}n∈Z≥0 and the singularities of the generating
function P(t) :=


∞

n=0 γntn for the case when Ω(P) is finite.
The contents of the present paper are as follows.
In Section 2, we introduce the space Ω(P) of opposite series as the accumulating subset in C[[s]]

of the sequence Xn(P) :=
n

k=0
γn−k
γn

sk (n = 0, 1, 2, . . .) with respect to the coefficient-wise
convergence topology, where the kth coefficient describes an oscillation of period k. Dividing by
period-one oscillation, we construct a shift action τΩ on the set Ω(P) to itself, which shifts k-period
oscillations to k − 1-period oscillations.

In Section 3.1, we introduce the key concept: finite rational accumulation. We show that if Ω(P) is
a finite set, then Ω(P) is automatically a finite rational accumulation set and the τΩ-action becomes
invertible and transitive. That is, τΩ is acting cyclically on Ω(P).

Starting with Section 4, we assume always finite rational accumulation for Ω(P). In Section 4, we
analyze in details of the opposite series in Ω(P) and the module CΩ(P) spanned by Ω(P), showing
that the opposite series become rational functions with the common denominator ∆op(s) in 4.1, and
that the rank of CΩ(P) is equal to deg(∆op(s)) in Section 4.4.

In Section 5, we assume that the series P(t) defines a meromorphic function in a neighborhood
of the closed convergent disc. Then we show that ∆op(s) is opposite to the polynomial ∆top(t) of the
highest order part of poles of P(t) (Duality Theorem in Section 5.3), and, in particular, the rank of
the space CΩ(P) is equal to the number of poles of the highest order of P(t) on the boundary of the
convergent disc. We get an identification of some transition matrices obtained in s-side and in t-side,
which plays a crucial role in the trace formula for limit F-function [10, 11.5.6].
Problems. The space Ω(P) is new with respect to the study of the singularities of a power series
function P(t), and the author thinks the following directions of further study may be rewarding.

1. Generalize the space Ω(P) in order to capture lower order poles of P(t) on the boundary of its
convergent disc (c.f. [10, Section 12, 2.]).

2. Generalize the duality for the case when Ω(P) is infinite. Some probabilistic approach may be
desirable (c.f. [10, Section 12, 1.]).
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2. The space of opposite series.

In this section, we introduce the space Ω(P) of opposite series for a tame power series P ∈ C[[t]],
and equip it with a τΩ-action.

2.1. Tame power series

Let us call a complex coefficient power series in t

P(t) =

∞
n=0

γntn (2.1.1)

to be tame, if there are positive real numbers u, v ∈ R>0 such that

u ≤ |γn−1/γn| ≤ v (2.1.2)

for sufficiently large integers n (i.e. for n ≥ NP for some NP ∈ Z≥0). This implies that there are positive
constants c1, c2 with c1 ≤2 so that

c1v−n
≤ |γn| ≤ c2u−n (2.1.3)

for sufficiently large integer n ∈ Z≥0 (actually, put c1 = |γNP |v
NP and c2 = |γNP |u

NP for n ≥ NP ). Let
us consider two limit values:

u ≤ rP := 1/ lim
n→∞

|γn|
1/n

≤ RP := 1/ lim
n→∞

|γn|
1/n

≤ v. (2.1.4)

Cauchy–Hadamard Theorem says that P is convergent of radius rP .

Example 1. Let Γ be a group or a monoid with a finite generator system G. Then the length l(g) of an
element g ∈ Γ is the shortest length of words expressing g in the letter G. Set Γn := {g ∈ Γ | l(g) ≤

n} and γn := #(Γn). Then the growth function (Poincaré series) for Γ with respect to G is defined by
PΓ ,G(t) :=


∞

n=0 γntn. The sequence {γn}n∈Z≥0 is increasing and semi-multiplicative γm+n ≤ γmγn.
Therefore, by choosing u = 1/γ1 and v = 1, the growth series is tame.

Example 2. Ramsey’s theorem says that, for any n ∈ Z>0, there exists a positive integer N such that
if the edges of the complete graph on N vertices are colored either red or blue, then there exists n
vertices such that all edges joining them have the same color. The least such integer N is denoted by
R(n), and is called the nth diagonal Ramsey number, e.g. R(1) = 1, R(2) = 2, R(3) = 6, R(4) = 18
(c.f. [6]). Then, the following estimates are known due to Erdös [3] and Szekeres:

2n/2
≤ R(n) ≤ 22n.

So, R(t) :=


∞

n=0 R(n)t
n (where put R(0) = 1) form a tame series.

2.2. The space Ω(P) of opposite series

Let P be a tame power series. Then, there is a positive integer NP such that γn is invertible for all
n ≥ NP . Therefore, for n ∈ Z≥NP , we define the opposite polynomial of degree n by

Xn(P) :=

n
k=0

γn−k

γn
sk. (2.2.1)

Regarding {Xn(P)}n≥NP as a sequence in the space C[[s]] of formal power series, where C[[s]] is
equipped with the classical topology, i.e. the product topology of coefficient-wise convergence in
classical topology, we define the space of opposite series by

Ω(P) := the set of accumulation points of the sequence
(2.2.1) with respect to the classical topology. (2.2.2)
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That is, an element ofΩ(P) can be viewed as an equivalence class of infinite convergent subsequences
{Xnm(P)}m of opposite polynomials.

The first statement on Ω(P) is the following.

Assertion 1. Let P be a tame series. Then Ω(P) is a non-empty compact closed subset of C[[s]].

Proof. For each k ∈ Z≥0, the kth coefficient γn−k
γn

of the polynomial Xn(P) for sufficiently large
n ∈ Z≥0 with respect to P and k (i.e. for n ≥ NP + k − 1) has the approximation uk

≤ |
γn−k
γn

| =

|
γn−1
γn

||
γn−2
γn−1

| · · · |
γn−k

γn−k+1
| ≤ vk, i.e. it lies in the compact annulus

D̄(0, uk, vk) := {a ∈ C | uk
≤ |a| ≤ vk

}.

Thus, for each fixed m ∈ Z≥0, the image of the sequence (2.2.1) under the truncation map π≤m :

C[[s]] → Cm+1,


∞

k=0 aks
k

→ (a0, . . . , am) accumulates to an non-empty compact subset ofm
k=0 D̄(0, uk, vk), say Ω≤m. Then, we have:

Ω(P) = ∩
∞

m=0


(π≤m)−1Ω≤m ∩

∞
k=0

D̄(0, uk, vk)


,

where the RHS, as an intersection of decreasing sequence of compact sets, is non-empty and
compact. �

An element a(s) = Σ∞

k=0aks
k of Ω(P) is called an opposite series. Its kth coefficients ak, i.e. an

oscillation value of period k, belongs to D̄(0, uk, vk). Given an opposite series a(s), the constant term
a0 is equal to 1. The coefficient a1, i.e. oscillation value of period 1, is called the initial of the opposite
series a, and denoted by ι(a).

For later use, let us introduce an auxiliary space of the initials:

Ω1(P) := the accumulation set of the sequence


γn−1

γn


n≫0

, (2.2.3)

which is a compact subset in D̄(0, u, v). The projection map Ω(P) → Ω1(P), a → ι(a) is surjective
but may not be injective (see Section 3.5 Ex.).

2.3. The τΩ-action on Ω(P)

We introduce a continuous map τΩ form Ω(P) to itself.

Assertion 2. a. Let {nm}m∈Z≥0 be a subsequence of Z≥0 tending to ∞. If the sequence {Xnm(P)}m∈Z≥0
converges to an opposite series a, then the sequence {Xnm−1(P)}m∈Z≥0 also converges to an opposite
series, whose limit depends only on a and is denoted by τΩ(a). Then, we have

τΩ(a) = (a − 1)/ι(a)s. (2.3.1)

b. Let CΩ(P) be the C-linear subspace of C[[s]] spanned by Ω(P). Then the map τ : Ω(P) −→

CΩ(P), a → ι(a)τΩ(a) naturally extends to an endomorphism of CΩ(P).

τ ∈ EndC(CΩ(P)). (2.3.2)

Proof. a. By definition, for any k ∈ Z≥0, the sequence γnm−k
γnm

converges to a constant ak ∈ D̄(uk, vk).

Then, γ(nm−1)−(k−1)
γnm−1

=
γnm−k
γnm

/
γnm−1
γnm

converges to ak/a1. That is, the sequence {Xnm−1(P)}m∈Z≥0

converges to an opposite series, whose (k − 1)th coefficient is equal to ak/a1.
b. This is trivial, since a → ι(a)τΩ(a) is a restriction on Ω(P) of an affine linear endomorphism

(a − 1)/s on C[[s]]. �
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2.4. Examples of τΩ-actions

At present, except for the trivial cases when #Ω(P) = 1 so that τΩ = id, there are only few
examples where the action (Ω(PΓ ,G), τΩ) is explicitly known: namely, the groups of the form Γ =

(Z/p1Z)∗ · · · ∗Z/pnZ for some p1, . . . , pn ∈ Z>1 (n ≥ 2) with the generator system G = {a1, . . . , an}
where ai is the standard generator of Z/piZ for 1 ≤ i ≤ n, which include Machì’s example (see
Sections 3.3 and 3.4).

For the tame series R(t) in Section 2.1 Example 2, we know nothing about (Ω(R), τΩ). It is already
a questionwhether #Ω(R) is equal to 1, finite many (>1), or infinite? The author would like to expect
#Ω(R) = 1.

2.5. Stability of Ω(P)

In the present subsection, we are (mainly) concerned with following type of questions, which we
will call stability questions concerning Ω(P): for a given tame series P , under which assumptions on
another power series Q , is P + Q again tame and Ω(P) = Ω(P + Q )? Or, if Ω(P + Q ) changes from
Ω(P), how does it change?

We discuss some miscellaneous results related to stability questions, but we do not pursue full
generalities. Except that Assertion 3 is used in the proof of Assertion 13, results in the present
paragraph are not used in the present article. Therefore, the reader may choose to skip the part of
this subsection after Assertion 3 without substantial loss.

Assertion 3. Let Q =


∞

n=0 qnt
n converge in the disc of radius rQ such that rQ > RP . Then P + Q is

tame and Ω(P) = Ω(P + Q ).

Proof. Let c be a real number satisfying rQ > c > RP . Then, one has limn→∞ qncn = 0 and cn ≥ 1/|γn|

for sufficiently large n. This implies limn→∞
γn+qn

γn
= 1 + limn→∞

qn
γn

= 1. The required properties
follow. �

Assertion 4. Let r be a positive real number with r < RP . If Ω1(P) ∩ {z ∈ C : |z| = r} = ∅.
Then there exists a power series Q (t) of radius of convergence rQ = r such that P + Q is tame and
Ω(P + Q ) ⊄ Ω(P).

Proof. We define the coefficients of Q (t) =


∞

n=0 qnt
n by the following conditions: |qn| = r−n and

arg(qn) = arg(γn). Then, for tameness of P + Q , we have to show some positive bounds 0 < U ≤

An ≤ V for An = |
γn−1+qn−1

γn+qn
|. Since |γn + qn| = |γn| + r−n, we have An =

|γn−1/γn|+r/(|γn|rn)
1+1/(|γn|rn)

. Then,
evaluating term-by-term in the numerator, one gets An ≤ v + r =: V . On the other hand, according
as 1 ≥ 1/(|γn|rn) or not, we have An ≥ u/2 or An ≥ r/2. Therefore, we may set U := min{u/2, r/2}.

Let us find a particular element d ∈ Ω(P+Q ) such that d ∉ Ω(P). For a small positive real number
ε satisfying the inequality (1−ε)/r > 1/RP , there exists an increasing infinite sequence of integers nm
(m ∈ Z≥0) such that ((1− ε)/r)nm > |γnm | form ∈ Z≥0. By choosing a suitable subsequence (denoted
by the same nm), wemay assume that Xnm(P +Q ) converges to an element, say d, in Ω(P +Q ). Its kth
coefficient dk is equal to the limit of the sequence (γnm−k + qnm−k)/(γnm + qnm) for nm → ∞. For each
fixed nm, dividing the numerator and the denominator by qnm , we get an expression (X + rkY )/(Z +1)
where |X | = |γnm−k/γnm |·|γnm r

nm | ≤ vk
·(1−ε)nm (for n ≫ k), Y ∈ S1, and |Z | = |γnm r

nm | < (1−ε)nm .
Thus, taking the limit nm → ∞, we have X → 0, Y → eiθk for some θk ∈ R and Z → 0 so that
dk = rkeiθk . On the other hand, we see that d ∉ Ω(P), since ι(d) = reiθ1 ∉ Ω1(P) by assumption. �

We do not use following Assertion in the present paper, since we know more precise information
for the cases #Ω(P) < ∞. However, it may have a significance when we study the general case with
#Ω(P) = ∞.

Assertion 5. An opposite series converges with radius 1/ sup{|a| : a ∈ Ω1(P)} ≤ 1/RP .
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Proof. Let a(s) = limm→∞ Xnm(P) for an increasing sequence {nm}m∈Z≥0 be an opposite series. By the
Cauchy–Hadamard theorem, the radius of convergence of a is given by

ra = 1/ lim
k→∞

|ak|1/k = 1/ lim
k→∞

| lim
m→∞

γnm−k/γnm |
1/k,

where the RHS is lower bounded by 1/ sup{|a| : a ∈ Ω1(P)} from below. �

It seems natural to ask when we can replace sup{|a| : a ∈ Ω1(P)} by RP? Finally, we state a result,
which is not related to the stability.

Assertion 6. For any positive integerm, we have the equality

Ω(P) = Ω


dmP
dtm


(2.5.1)

which is equivariant with the action of τΩ .

Proof. It is sufficient to show the casem = 1.We show a slightly stronger statement: the subsequence
{Xnm(P)}m∈Z≥0 converges to a series a(s) if and only if {Xnm( dP

dt )}m∈Z≥0 also converges to a(s).
For an increasing sequence {nm}m∈Z≥0 and for any fixed k ∈ Z≥0, the convergence of the sequence

γnm−k
γnm

to c is equivalent to the convergence of the sequence (nm−k)γnm−k
nmγnm

= (1 − k/nm)
γnm−k
γnm

to the
same c. �

3. Finite rational accumulation

We show that, if Ω(P) is a finite set, then it has a strong structure, which we call the finite rational
accumulation (Section 3.2 Theorem and its Corollary). The whole sequel of the present paper focuses
on its study. �

3.1. Finite rational accumulation

We introduce the concept of finite rational accumulation. To this end, we start with a preliminary
concept: a rational subset of Z≥0. The following fact is easy and well known, so we omit its proof.
Fact. The following conditions for a subset U ⊂ Z≥0 are equivalent.
(i) Put U(t) :=


n∈U tn. Then, U(t) is a rational function in t .

(ii) There exists h ∈ Z>0 and a polynomial V (t) such that U(t) =
V (t)
1−th

.
(iii) There exists h ∈ Z>0 such that n + h ∈ U iff n ∈ U for n ≫ 0.
(iv) There exists h ∈ Z>0, a subset u ⊂ Z/hZ and a finite setD ⊂ Z≥0 such thatU \D = ∪[e]∈u U [e]

\D,
where, for a class [e] ∈ Z/hZ of e, put

U [e]
:= {n ∈ Z≥0 | n ≡ e mod h}. (3.1.1)

Further more, (ii)–(iv) are equivalent for a pair (U, h). The least such h for a fixed U will be called
the period of U .

Definition. 1.A subsetU ofZ≥0 is called a rational subset if it satisfies one of the above four equivalent
conditions.
2. A finite rational partition of Z≥0 is a finite collection {Ua}a∈Ω of rational subsets Ua ⊂ Z≥0 indexed
by a finite set Ω such that there is a finite subset D of Z≥0 so that one has the disjoint decomposition

Z≥0 \ D = ⨿a∈Ω(Ua \ D).

In particular, for h ∈ Z>0, the partition Uh := {U [e]
}[e]∈Z/hZ of Z≥0 is called the standard partition of

period h.
3. For a finite rational partition {Ua}a∈Ω of Z≥0, the period of a standard partition, which subdivide
{Ua}a∈Ω , is called a period of {Ua}a∈Ω . The smallest period (=lcm{period of Ua| a ∈ Ω}) of a finite
rational partition {Ua}a∈Ω is called the period of {Ua}a∈Ω .
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We, now, arrived at the key concept of the present paper.

Definition. A sequence {Xn}n∈Z≥0 of points in a Hausdorff space is finite rationally accumulating if
the sequence accumulates to a finite set, say Ω , such that for a system of pairwise-disjoint open
neighborhoods Va for a ∈ Ω , the system {Ua}a∈Ω for Ua := {n ∈ Z≥0 | Xn ∈ Va} is a finite rational
partition of Z≥0. The (resp. a) period of the partition is called the (resp. a) period of the finite rational
accumulation set Ω .

3.2. τΩ-periodic point in Ω(P)

Generally speaking, finiteness of the accumulation set Ω of a sequence does not imply that it is
finite rationally accumulating (see Section 3.5 Example a). Therefore, the following theorem describes
a distinguished property of the accumulation set Ω(P). This justifies the introduction of the concept
of ‘‘finite rational accumulation’’.

Theorem. Let P(t) be a tame power series in t. Suppose there exists an isolated point of Ω(P), say a,
which is periodic with respect to the τΩ-action on Ω(P). Then Ω(P) is a finite rational accumulation set,
whose period hP is equal to #Ω(P). Furthermore, we have a natural bijection that identifiesΩ(P)with the
τΩ-orbit of a:

Z/hPZ ≃ Ω(P)

e mod hP → a[e]
:= lim

n→∞
Xe+hP ·n(P),

(3.2.1)

where the standard subdivision UhP of the partition of Z≥0 is the exact partition for the space Ω(P) of the
opposite series of P. The shift action [e] → [e − 1] in the LHS is equivariant to the τΩ action in the RHS.

Proof. The assumption on ameans:

(i) There exists a positive integer h ∈ Z>0 such that

(τΩ)ha = a ≠ (τΩ)h
′

a for 0 < h′ < h.

(ii) There exists an open neighborhood Va of a in C[[s]] such that

Ω(P) ∩ Va = {a}.

In particular, Ω(P) \ {a} is a closed set.
Since Ω(P) is a compact Hausdorff space, it is a regular space, so we may assume further that

Ω(P)∩Va = {a}. Then, by setting Ua := {n ∈ Z≥0 | Xn(P) ∈ Va}, the sequence {Xn(P)}n∈Ua converges
to the unique limit element a. By the definition of τΩ in Section 2, the relation (τΩ)ha = a implies that
the sequence {Xn−h(P)}n∈Ua converges to a. That is, there exists a positive number N such that for any
n ∈ Ua with n > N , Xn−h(P) ∈ Va, and hence n − h belongs to Ua.

Consider the set A := {[e] ∈ Z/hZ | there are infinitely many elements of Ua which are congruent
to [e] modulo h}. By the defining property of N , if [e] ∈ A, then Ua contains U [e]

∩ Z≥N . �

Proof. For any m ∈ Z≥N with m mod h ≡ [e], there exists an integer m′
∈ Ua such that m′ > m and

m′ mod h = [e] by the definition of the set A. Then, by the definition of N , m′
− h ∈ Ua. Obviously,

either m′
− h = m or m′

− h > m occurs. If m′
− h > m then we repeat the same argument to

m′′
:= m′

− h so that m′′
− h = m′

− 2h ∈ Ua. Repeating, similar steps, after finite k-steps, we show
that m′

− kh = m ∈ Ua. �

Thus, Ua is, up to a finite number of elements, equal to the rational subset ∪[e]∈A U [e]. This implies
A ≠ ∅. Consider the rational subset U(τΩ )ia := {n − i | n ∈ Ua} for i = 0, 1, . . . , h − 1. Due to
Section 2.3 Assertion 2, {Xn(P)}n∈U

(τΩ )ia
converges to (τΩ)ia, so U(τΩ )ia is, up to a finite number of

elements, equal to the rational subset ∪[e]∈A U [e−i]. By the assumption a ≠ τ i
Ωa for 0 ≤ i < h, any pair

of rational subsets U(τΩ )ia (0 ≤ i < h) have at most finite intersection, so A is a singleton of the form
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A = {[e0]} for some e0 ∈ Z and U(τΩ )ia = U [e0−i] up to a finite number of elements. On the other hand,
since the union ∪

h−1
i=0 U(τΩ )ia already covers Z≥0 up to finite elements and since each {Xn(P)}n∈U

(τΩ )ia

converges only to (τΩ)ia, the opposite sequence Eq. (2.2.1) can have no other accumulating point than
the set {a, τΩa, . . . , (τΩ)h−1a}. That is, Ω(P) is a finite rational accumulation set with the transitive
hP -periodic action of τΩ .

Corollary. If the set of isolated points of Ω(P) is finite, then Ω(P) is a finite rational accumulation set
with the presentation (3.2.1).

Proof. Since the τΩ action preserves the set of isolated points of Ω(P), there should exists a periodic
point. �

3.3. Example by Machì [5]

Let Γ := Z/2Z ∗ Z/3Z ≃ PSL(2, Z) with the generator system G := {a, b±1
} where a, b are the

generators of Z/2Z and Z/3Z, respectively. Then, the number #Γn of elements of Γ expressed by the
words in the letters G of length less or equal than n for n ∈ Z≥0 is given by

#Γ2k = 7 · 2k
− 6 and #Γ2k+1 = 10 · 2k

− 6 for k ∈ Z≥0.

Therefore, we get the following expression of the growth function:

PΓ ,G(t) :=

∞
k=0

#Γktk =
(1 + t)(1 + 2t)
(1 − 2t2)(1 − t)

.

Then, we see that Ω1(PΓ ,G) and, hence, Ω(PΓ ,G) are finite rationally accumulating of period 2.
Explicitly, they are given as follows.

Ω1(PΓ ,G) =


a[0]
1 :=

n→∞

lim
#Γ2n−1

#Γ2n
=

5
7
, a[1]

1 :=
n→∞

lim
#Γ2n

#Γ2n+1
=

7
10


Ω(PΓ ,G) = { a[0](s) , a[1](s)}

where

a[0](s) :=

∞
k=0

2−ks2k +
5
7
s

∞
k=0

2−ks2k

=


1 +

5
7 s


1 −
s2
2

 =
1
2

·
1 +

5
7

√
2

1 −
s

√
2

+
1
2

·
1 −

5
7

√
2

1 +
s

√
2

,

a[1](s) :=

∞
k=0

2−ks2k +
7
10

s
∞
k=0

2−ks2k

=


1 +

7
10 s


1 −
s2
2

 =
1
2

·

1 +
7
5

1
√
2

1 −
s

√
2

+
1
2

·

1 −
7
5

1
√
2

1 +
s

√
2

.

In Section 5.4, these coefficients of fractional expansions are recovered by a use of, so called,
rational operators (see Section 5.3 Theorem (ii)).

We calculate also r2P = R2
P = a[0]

1 a[1]
1 =

5
7

7
10

=
1
2
.

3.4. Simply accumulating examples

A tame power series P(t) is called simply accumulating if #Ω(P) = 1. Growth functions PΓ ,G(t) for
surface groups and Artin monoids are simply accumulating, respectively (Cannon [1], [9,7]). This fact
for Artin monoids enables one to determine their F-functions [8].
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3.5. Miscellaneous examples

Before going further, we use a simple model of oscillating sequence {γn}n∈Z≥0 to give some
examples of the power series P(t) such that
(a) Ω1(P) is finite but is not finite rationally accumulating,
(b) Ω1(P) is finite rationally accumulating but #Ω1(P) < #Ω(P),
(c) Ω(P) ≠ Ω(P + Q ) for a power series Q (t) for any RP > rQ > rP .
We do not use these results in the sequel so that the readers may skip present subsection without
substantial loss.

Given a triple U := (U, a, b), where U ⊂ Z≥1 is any infinite subset with infinite complement
and a, b ∈ C \ {0}, we associate a sequence {γn}n∈Z≥0 defined by an induction on n : γ0 := 1 and
γn := γn−1 · a if n ∈ U and γn−1 · b if n ∉ U . Set PU(t) :=


∞

n=0 γntn. Then:

Fact (i) The series PU(t) is tame and Ω1(PU) = {a−1, b−1
}.

(ii) The series PU(t) is finite rationally accumulating if and only if U is a rational subset of Z≥0.

Proof. (i) The inequalities: min{|a|, |b|} ≤ |γn/γn−1| ≤ max{|a|, |b|} imply the tameness of PU. The
latter half is trivial since the proportion γn/γn−1 takes only the values a or b.
(ii) This follows from: PU is rational ⇔ The sets {n ∈ Z≥1 | γn/γn−1 = a} = U and {n ∈ Z≥1 |

γn/γn−1 = b} = U c are rational ⇔ U is rational. �

(a) By choosing a non-rational subset U , we obtain an example (a).
(b) Even if U (and, hence, U c also) is a rational subset, if {U,U c

} is not the standard partition of Z≥0 of
period 2, then the period of the partition {U,U c

} = #Ω(PU) > 2 = #Ω1(PU). This gives an example
(b).
(c) To get an example satisfying (c), we need a bit more consideration. Define pU :=

limn→∞
#(U∩[1,n])

n and qU := limn→∞

#(U∩[1,n])
n . If U is a rational subset, then pU = qU is a rational

number. In general, the pair (pU , qU) can be any of {(p, q) ∈ [0, 1]2 | p ≥ q}. Suppose |a| ≥ |b|.

1/rP := lim
n→∞

|a|
#(U∩[1,n])

n · |b|1−
#(U∩[1,n])

n = |a|pU |b|1−pU ,

1/RP := lim
n→∞

|a|
#(U∩[1,n])

n · |b|1−
#(U∩[1,n])

n = |a|qU |b|1−qU .

Thus, rP and RP can take any values, satisfying: |a|−1
≤ rP ≤ RP ≤ |b|−1. If there is a gap rP < RP ,

then for any r ∈ R>0 such that rP < r < RP , Q (t) :=


∞

n=0 e
iθn(t/r)n for θn = #(U ∩ Z1≤·≤n) arg(a)+

(n − #(U ∩ Z1≤·≤n)) arg(b) gives example (c) (since Ω1(PU) ∩ {z ∈ C : |z| = r} = ∅ and Section 2.4
Assertion 4).

4. Rational expression of opposite series

From this section, we restrict our attention to a tame power series having the finite rational
accumulation set Ω(P).

4.1. Rational expression

We show that opposite series become rational functions of special form. We start with a
characterization of a finite rational accumulation.

Assertion 7. Let P(t) be a tame power series in t . The set Ω(P) is a finite rational accumulation set of
period hP ∈ Z≥1 if and only if Ω1(P) is so. We say P is finite rationally accumulating of period hP .
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Proof. If Ω(P) is finite rationally accumulating, then, in particular, the sequence γn−1
γn

is finite
rationally accumulating. To show the converse and to show the coincidence of the periods, assume
that {γn−1/γn}n∈Z≥0 accumulate finite rationally of period h1. Then, for the standard subdivision
Uh1 := {U [e]

}[e]∈Z/h1Z, the subsequence {γn−1/γn}n∈U[e] for each [e] ∈ Z/h1Z converges to some
number, which we denote by a[e]

1 ∈ C.
For any k ∈ Z≥0 and sufficiently large (depending on k) n, one has

γn−k

γn
=

γn−1

γn

γn−2

γn−1
· · ·

γn−k

γn−k+1
.

For n ∈ U [e] with [e] ∈ Z/h1Z, we see that the RHS converges to a[e]
1 a[e−1]

1 . . . a[e−k+1]
1 . Then, for

[e] ∈ Z/h1Z and k ∈ Z≥0, by putting

a[e]
k := a[e]

1 a[e−1]
1 . . . a[e−k+1]

1 , (4.1.1)

the sequence {Xn(P)}n∈U[e] converges to a[e]
:=


∞

k=0 a
[e]
k sk with a[e]

1 = ι(a[e]) so that Ω(P) is finite
rationally accumulating. Its period hP is a divisor of h1, but it cannot be strictly smaller than h1, since
otherwise the sequence {γn−1/γn}n∈Z≥0 gets a period shorter than h1. �

Remark. That the period of the finite rational accumulation of Ω1(P) is equal to hP does not imply
#Ω1(P) = hP . That is, the map a ∈ Ω(P) → ι(a) ∈ Ω1(P) is not necessarily injective (see Section 3.5
Example b).

Assertion 8. Let P be finite rationally accumulating of period hP ∈ Z≥1. Then the opposite series
a[e]

=


∞

k=0 a
[e]
k sk in Ω(P) associated with the rational subset U [e] converges to a rational function

a[e](s) =
A[e](s)

1 − AP shP
, (4.1.2)

where the numerator A[e](s) is a polynomial in s of degree hP − 1:

A[e](s) :=

hP−1
j=0


j

i=1

a[e−i+1]
1


sj (4.1.3)

and

AP :=

hP−1
i=0

a[i]
1 = a[0]

hP
= · · · = a[hP−1]

hP
. (4.1.4)

We have a relation

(rP)hP = (RP)
hP = |AP |, (4.1.5)

where rP is the radius of convergence of P(t) and RP is given by (2.1.4).

Proof. Due to the hP -periodicity of the sequence a[e]
1 (e ∈ Z), formula (4.1.1) implies the ‘‘semi-

periodicity’’ with respect to the factor (4.1.4):

a[e]
mhP+k = (AP)

ma[e]
k for m ∈ Z≥0, k = 0, . . . , hP − 1.

This implies a factorization a[e]
= A[e]

·


∞

m=0(AP shP )m and hence (4.1.2).
To show (4.1.5), it is sufficient to show the existence of positive real constants c1 and c2 such that

for any k ∈ Z≥0 there exists n(k) ∈ Z≥0 and for any integer n ≥ n(k), one has c1rk ≤ |
γn−k
γn

| ≤ c2rk. �
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Proof. We may choose c1, c2 ∈ R>0 satisfying c1 < min{|
a[e]i
r i

| | [e] ∈ Z/hZ, i ∈ Z ∩ [0, h − 1]} and

c2 > max{| a
[e]
i
r i

| | [e] ∈ Z/hZ, i ∈ Z ∩ [0, h − 1]}. �
This completes a proof of Assertion 8. �

Corollary. Let Ω(P) be finite. For any power series Q (t) of radius rQ of convergence larger than rP , P +Q
is tame and Ω(P) = Ω(P + Q ).

4.2. Coefficient matrix Mh of numerator polynomials

In this and the next section, we study the linearly dependent relations among the opposite series
a[e](s) for [e] ∈ Z/hPZ.

For the purpose, let us consider the matrix

Mh :=


f

i=1

a[e−i+1]
1


e,f∈{0,1,...,h−1}

(4.2.1)

of the coefficients of the numerator polynomials (4.1.3). Regarding a[0]
1 , . . . , a[h−1]

1 as variables, let us
introduce the ‘‘discriminant’’ by

Dh(a
[0]
1 , . . . , a[h−1]

1 ) := det(Mh) ∈ Z[a[0]
1 , . . . , a[h−1]

1 ]. (4.2.2)

Actually, Dh is an irreducible homogeneous polynomial of degree h(h − 1)/2. Under the cyclic
permutation σ = (0, 1, . . . , h − 1) of the variables,

Dh ◦ σ = (−1)h−1Dh. (4.2.3)

Our next task in Section 4.3 is to stratify the zero-loci ofDh according to the rank ofMh. This is achieved
by introducing the opposite denominator polynomial∆op, whose degreedescribes the rankof thematrix
Mh (see (4.3.3)). Here the coefficient is an arbitrary field K . In particular, for the case of K = R, we give
a precise stratification of the positive real parameter space (R>0)

h of the parameter (a[0]
1 , . . . , a[h−1]

1 ),
whose strata are labeled by cyclotomic polynomials i.e. an integral factor of 1− sh which contains also
the factor 1 − s (see Assertion 9(iv)).

4.3. Linear dependence relations among opposite series

Assertion 9. Fix h ∈ Z>0. For each [e] ∈ Z/hZ and each A ∈ K×, let A[e](s) be the polynomial defined
in equations Eqs. (4.1.3) and (4.1.4) associated with any h-tuple ā = (a[0]

1 , . . . , a[h−1]
1 ) ∈ (K×)h.

(i) In K [s], we have the equality of the greatest common divisors:

gcd(A[0](s), 1 − Ash) = · · · = gcd(A[h−1](s), 1 − Ash)
= gcd(A[0](s), A[1](s)) = · · · = gcd(A[h−1](s), A[h](s))

(whose constant term is normalized to 1), which we denote by δā(s).
Let us introduce the opposite denominator polynomial by

∆
op
ā (s) := (1 − Ash)/δā(s). (4.3.1)

(ii) For [e] ∈ Z/hZ, put

b[e](s) := A[e](s)/δā(s). (4.3.2)

The polynomials b[e](s) for [e] ∈ Z/hZ span the space K [s]<deg(∆op
ā ) of polynomials of degree less

than deg(∆op
ā ). Hence, one has the equality:

rank(Mh) = deg(∆op
ā ). (4.3.3)
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(iii) For ϕ(s) ∈ K [s], ϕ(s) | ∆
op
ā if and only if ϕ(s) | 1 − Ash and gcd(ϕ(s), A[e](s)) = 1. In particular, if

ā ∈ (R>0)
h, then ∆

op
ā is always divisible by 1−

h
√
As.

(iv) Let h ∈ Z>0. There exists a stratification Rh
>0 = ⨿∆op C∆op , where the index set is equal to

{∆op
∈ R[s] : 1 − s|∆op(s)|1 − sh&∆op(0) = 1}, (4.3.4)

and C∆op is a smooth semi-algebraic set of R-dimension deg(∆op) − 1, such that ∆
op
ā (s) =

∆op(h
√
As) for ∀ā ∈ C∆op and C∆

op
1

⊃ C∆
op
2

⇔ ∆
op
1 |∆

op
2 .

Proof. (i) By Definitions (4.1.3), (4.1.4) and (4.1.1), we have the following relations:

a[e+1]
1 sA[e](s) + (1 − Ash) = A[e+1](s) (4.3.5)

for [e] ∈ Z/hZ. This implies gcd(A[e](s), 1 − Ash) | gcd(A[e+1](s), 1 − Ash) for [e] ∈ Z/hZ. Thus,
one may conclude that all of the polynomials gcd(A[e](s), 1 − Ash) = gcd(A[e](s), A[e+1](s)) for
[e] ∈ Z/hZ are the same up to a constant factor. It is obvious that a factor of 1 − Ash contains a
nontrivial constant term, which we shall normalize to 1.

(ii) Let V be the subspace of K [s]/(∆op
ā ) spanned by the images of b[e](s) := A[e](s)/δā(s) for [e] ∈

Z/hZ. Relation (4.3.5) implies that V is closed undermultiplication by s. On the other hand, b[e](s)
and∆

op
ā are relatively prime, so they generate 1 as a K [s]-module. That is, V contains the class [1]

of 1. Hence, V = K [s] · [1] = K [s]/(∆op
ā ). Since deg(b[e](s)) = h−1−deg(δā(s)) = deg(∆op

ā )−1,
V ∩ K [s]∆op

ā = 0. This means that the polynomials b[e](s) for [e] ∈ Z/hZ span the space of
polynomials of degree less than deg(∆op

ā ). In particular, one has rank(Mh) = rankKV = deg(∆op
ā ).

(iii) The first half is a reformulation of the definition of δā and (4.3.1). We see that if 1 − rs ̸ |∆
op
ā then

1 − rs | A[e](s) (4.3.2) so A[e](1/r) = 0. This is impossible, since all coefficients of A[e] and 1/r are
positive reals.

(iv) Let ∆op be a polynomial as given in (4.3.4) and put d = deg(∆op). Consider the set C∆op :=

{c(s) = 1 + c1s + · · · + cd−1sd ∈ R[s] | ∃r ∈ R>0 s.t. all coefficients of A[0]
c := c(s)(1 −

rhsh)/∆op(rs) are positive}. Then C∆op is an open semi-algebraic set in Rd, which is non-empty
since∆op(rs)/(1−rs) belongs to C∆op . In particular, it is pure dimensional of real dimension d−1.
To any c ∈ C∆op , one can associate a unique ā ∈ (R>0)

h such that the associated polynomial A[0]

(4.1.3) is equal to A[0]
c . We identify C∆op with the semi-algebraic subset {a ∈ (R>0)

h
| a ↔

c ∈ C∆op} of pure dimension d − 1 embedded in (R>0)
h. Similarly, for any factor ∆′ of ∆op

(over R) divisible by 1 − s, we consider the semi-algebraic subsets C∆′ in Rh
>0 of pure dimension

deg(∆′). Then, the multiplication of ∆op/∆′ induces the inclusion C∆′ ⊂ C∆op . Then we define
the semi-algebraic set C∆op inductively by C∆op \∪∆′ C∆′ , where the index ∆′ runs over all factors
of ∆op which are not equal to ∆op and are divisible by 1 − rs. By the induction hypothesis,
d − 1 > dimR(C∆′) so that the difference C∆op is a non-empty open semi-algebraic set with
pure real dimension d − 1.

This completes the proof of Assertion 9. �

Suppose char(K) ̸ | h, and let K̃ be the splitting field of ∆
op
ā with the decomposition ∆

op
ā =d

i=1(1 − xis) in K̃ for d := deg(∆op
ā ). Then, one has the partial fraction decomposition:

A[e](s)
1 − Ash

=

d
i=1

µ[e]
xi

1 − xis
(4.3.6)

for [e] ∈ Z/hZ, where µ[e]
xi is a constant in K̃ given by the residue:

µ[e]
xi =

A[e](s)(1 − xis)
1 − Ash


s=(xi)−1

=
1
h
A[e](x−1

i ). (4.3.7)
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Corollary. The matrix ((µ[e]
xi )

[e]∈Z/hZ,x−1
i ∈V (∆

op
ā )

) is of maximal rank d.

Proof. The rational function on the LHS of (4.3.6) for [e] ∈ Z/hZ span a vector space of rank
d := deg(∆op

ā ). Therefore, the coefficient matrix on the RHS has rank equal to d. �

Remark. 1. One has the equivariance σ(µ[e]
xi ) = µ

[e]
σ(xi)

with respect to the action σ ∈ Gal(K̃ , K) of
the Galois group of the splitting field.

2. The index xi in (4.3.7)may run over all roots x of the equation xh−A = 0. However, if x−1
∉ V (∆

op
ā )

(i.e. ∆op
ā (x−1) ≠ 0), then µ[e]

x = 0.
3. For the given h ∈ Z>0, to consider the space of finite parameters (a[0]

1 , . . . , a[h−1]
1 ) is equivalent to

consider the space of infinite parameters (ai)i∈Z with ‘‘quasi’’-periodicity ai+h = Aai. Then it was
suggested by the referee to regard the latter space over C as a h-’’quasi’’-periodic representation
of Z and to decompose it to the direct sum the sequence (ai = Ai/hχ(i)) for χ ∈ Z/hZ → C×.

4.4. The module CΩ(P)

We return to a tame power series P(t) (2.1.1). Suppose P(t) is finite rationally accumulating of a
period hP . Let a

[e]
1 be the initial of the opposite series a[e]

∈ Ω(P) for [e] ∈ Z/hPZ. Since ∆
op
ā (s) (4.3.1)

for ā := (a[0]
1 , . . . , a[h−1]

1 ) depends only on P but not on the choice of a period hP , we shall denote it by
∆

op
P (s) and call it the opposite denominator polynomial of P . Then, Section 4.3 Assertion 9.(ii) says that

we have the C-isomorphism:

CΩ(P) ≃ C[s]/(∆op
P (s)),

a[e]
→ b[e]

:= ∆
op
P · a[e] mod ∆

op
P .

(4.4.1)

Let us rewrite equality (4.3.2) and introduce the key number:

dP := rankC(CΩ(P)) = deg(∆op
P ). (4.4.2)

Define an endomorphism σ on CΩ(P) by letting

σ(a[e]) := τ−1
Ω (a[e]) =

1

a[e+1]
1

a[e+1]. (4.4.3)

Assertion 10. The actions ofσ on the LHS and themultiplication of s on the RHS of (4.4.1) are naturally
identified. Hence, the linear dependence relations among the generators a[e] ([e] ∈ Z/hZ) are obtained
by the linear dependence relations ∆

op
P (σ )a[e] for [e] ∈ Z/hZ.

Proof. The first part of Assertion 10 is amatter of calculation.


[e]∈Z/hZ c[e]b[e]
≡ 0 mod ∆

op
P (σ )b[e]

=

0 for [e] ∈ Z/hZ. �

Note that the σ -action on CΩ(P) is not s|CΩ(P) in the ring C[[s]].

5. Duality theorem

In this section, we restrict the class of functions P(t) to those that are analytically continuable to a
meromorphic function in a neighborhood of the closed disc of convergence.2 Under this assumption,
we show a duality between Ω(P) and poles of P(t) on the boundary of the disc.

2 This assumption is necessary, since the finite rational accumulation of P(t) does not imply that P(t) is meromorphic on the
boundary of its convergent disc.

Example. Consider the function P(t) :=


1+t
1−t =


∞

n=0
(n−1)!

2n[n/2]![(n−1)/2]! t
n which is tame. We see that the sequence of the

proportion γn−1/γn of its coefficients accumulates to the unique values 1, i.e. Ω1(P) = {1} and Ω(P) = {1/(1 − s)}. On the
other hand, we observe that the function P(t) has two singular points on the boundary of the unit disc D(0, 1) which are not
meromorphic but algebraic. Such algebraic branching cases shall be treated in a forthcoming paper.
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5.1. Functions of class C{t}r

For r ∈ R>0, we introduce a class

C{t}r :=

P(t) ∈ C[[t]]


(i) P(t) converges on the open disc D(0, r).
(ii) P(t) is analytically continuable to a meromorphic
function on an open neighborhood of D(0, r).

 . (5.1.1)

For an element P(t) of C{t}r , let us introduce a monic polynomial ∆P(t), called the polar part
polynomial of P(t), characterized by

(i) ∆P(t)P(t) is holomorphic in a neighborhood of the circle |t| = r ,
(ii) ∆P(t) has lowest degree among all polynomials satisfying (i).

Next, we decompose

∆P(t) =

N
i=1

(t − xi)di (5.1.2)

where xi (i = 1, . . . ,N , N ∈ Z≥0) are mutually distinct complex numbers with |xi| = r and di ∈ Z>0
(i = 1, . . . ,N).

Definition. The top denominator polynomial ∆top
P (t) of P(t) is

∆
top
P (t) :=


i,di=dm

(t − xi) where dm := max{di}Ni=1. (5.1.3)

Note that ∆P(t) may be equal to 1, and then ∆
top
P (t) = 1. The converse: if ∆P(t) ≠ 1, then

∆
top
P (t) ≠ 1, is also true.

5.2. The rational operator TU

Associated with a rational subset U of Z≥0, we introduce a linear operator TU acting on C{t}r to
itself, which we call a rational operator or a rational action of U .

Definition. The action TU on C[[t]] of a rational subset U of Z≥0 is

TU : P =


n∈Z≥0

γntn → TUP :=


n∈U

γntn. (5.2.1)

One may regard TUP as a product of P with the rational function U(t) (Section 3.1 Definition) in the
sense of Hadamard [4].

The action TU is continuous w.r.t. the adic topology on C[[t]] since TU(tkC[[t]]) ⊂ tkC[[t]] for any
k ∈ Z≥0. It is also clear that the radius of convergence of TUP is not less than that of P .

Assertion 11. For h ∈ Z≥0 and [e] ∈ Z/hZ, let us define the rational operator T [e]
:= TU[e] . Then, we

have

h−1
e=0

T [e]
= 1, (5.2.2)

T [e]
· t = t · T [e−1] & T [e]

·
d
dt

=
d
dt

· T [e+1]. (5.2.3)
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Proof. The Eq. (5.2.2) is a consequence of Z≥0 = ⊔
h−1
e=0 U [e]. The (5.2.3): for any tm (m ∈ Z≥0),

both sides return the same tm+1δ[e],[m+1] = tm+1δ[e−1],[m] and mtm−1δ[e],[m−1] = mtm−1δ[e+1],[m],
respectively. �

Corollary. The action TU for a rational subset U ⊂ Z≥0 preserves C{t}r for any r ∈ R>0. The highest
order of poles on |t| = r of TUP does not exceed that of P ∈ C{t}r .

Proof. By decomposing the subset U as in Section 3.1 Fact (iv), we need to prove this only for the case
U = U [e] for some [e ∈ Z/hZ] with 0 ≤ e < h. Since (5.2.3) implies T [e]

= te−hT [0]th−e, we have
only to prove the case when U = U [0]

= hZ. But, then, TU[0] , which maps P(t) to 1
h


ζ P(ζ t), has the

required property. �

5.3. Duality theorem

The following is the goal of the present paper.

Theorem (Duality). Let P(t) be a tame power series belonging to C{t}r for r = rP (= the radius of
convergence of P). Suppose that P(t) is finite rationally accumulating of period hP . Then

(i) The opposite denominator polynomial ∆
op
P (s) (4.3.1) and the top denominator polynomial ∆

top
P (t)

(5.1.3) of P(t) are opposite to each other. That is,

deg
t

(∆
top
P (t)) = dP = deg

s
(∆

op
P (s)), (5.3.1)

and

tdP ∆op
P (t−1) = ∆

top
P (t), equivalently sdP ∆top

P (s−1) = ∆
op
P (s). (5.3.2)

(ii) We have an equality of transition matrices:
P(t)

T [e]P(t)


t=xi


[e]∈Z/hPZ, xi∈V (∆

top
P (t))

= (A[e]
|s=x−1

i
)
[e]∈Z/hPZ, x−1

i ∈V (∆
op
P (s)). (5.3.3)

In particular, ( P(t)
T [e]P(t)

|t=xi)[e]∈Z/hPZ, xi∈V (∆
top
P (t)) is of maximal rank dP .

Proof. We start with the following obvious remark. �

Assertion 12. Let c ∈ C× be any non-zero complex constant. Change the variable t to t̃ := t/c and
the opposite variable s to s̃ := cs, and, for any tame series P , define a new tame series P̃ := P|t=ct̃ .

Then we have,

Ω(P̃) = Ω(P)|s=s̃/c := {a(s̃/c) | a(t) ∈ Ω(P)},

Ω1(P̃) = Ω1(P)/c := {a1/c | a1 ∈ Ω1(P)}.

Proof. The equalities follows immediately from direct calculations. �

According to Assertion 12, we prove the theorem by changing the variable t to t̃ = t/c for
c =

hP
√
AP (recall (4.1.4)) so that the new tame series has the constant AP̃ equal to 1. Therefore,

from now on, in the present proof, we shall assume that P is a finite rationally accumulating tame
series with AP = 1. In particular, this implies that the radius rP of convergence of P is equal to 1 (recall
(4.1.5)).

We first prove the theorem for a special but the key case when #Ω(P) = 1.

Assertion 13. If P(t) is simply accumulating then ∆
top
P = t − 1.
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Proof. Consider the partial fractional expansion of P:

P(t) =

N
i=1

di
j=1

ci,j
(t − xi)j

+ Q (t), (5.3.4)

where xi (i = 1, ·,N) is the location of a pole of P of order di on the unit circle |xi| = 1, ci,j
(j = 1, . . . , di) is a constant in C, and Q (t) is a holomorphic function on a disc of radius > 1.

We apply stability (Assertion 3 in Section 2.5) to the partial fractional expansion (5.3.4), to obtain
Ω(P) = Ω(P − Q ). That is, the principal part P0 := P − Q gives rise to a simply accumulating

power series. That is, Xn(P0) =
n

k=0

N
i=1


1≤j≤dm ci,jx

k−n−1
i (n−k;j)/(j−1)!N

i=1


1≤j≤dm ci,jx
−n−1
i (n;j)/(j−1)!

sk (n = 0, 1, 2, . . .) converges to
1

1−s =


∞

k=0 s
k. Then, under this assumption, we will show that if ci,dm ≠ 0 then xi = 1.

For each fixed k ∈ Z≥0, the numerator and denominator of the coefficient of sk in Xn(P0) are
polynomials in n of degree ≤ dm. Let vn :=

N
i=1 ci,dmx

−n−1
i be the coefficients of the top-degree

term ndm/(dm − 1)! in the denominator. Since the range of vn is bounded (i.e. |vn| ≤


i |ci,dm | due to
the assumption |xi| = 1), the sequence for n = 0, 1, 2, . . . accumulates to a non-empty compact set
in C.

First, consider the case when the sequence {vn}n∈Zge0 has a unique accumulating value v0. Let us
show that v0 is non-zero and the result of Assertion 13 is true.

Proof. The mean sequence: {(
M−1

n=0 vn)/M}M∈Z>0 also converges to v0 = limn→∞ vn. This means

that
N

i=1 ci,dm
M−1

n=0 x−n−1
i

M converges to v0. If xi ≠ 1, the mean sum
M−1

n=0 x−n−1
i

M =
1−x−M

i
(xi−1)M tends to

0 as M → ∞. That is, v0 = c1,dm , where we assume x1 = 1 (even if, possibly c1,dm = 0). That is,
the sequence v′

n := vn − c1,dm =
N

i=2 ci,dmx
−n−1
i converges to 0. For a fixed n0 ∈ Z>0, consider the

relations: v′

n0+k =
N

i=2(ci,dmx
−n0
i )x−k+1

i for k = 1, . . . ,N − 1. Regarding ci,dmx
−n0
i (i = 2, . . . ,N)

as the unknown, we can solve the linear equation for them, since the Vandermonde determinant for
the matrix (x−k+1

i )i=2,...,N,k=1,...,N−1 does not vanish. So, we obtain a linear approximation: |ci,dm | =

|ci,dmx
−n0
i | ≤ c · max{|v′

n0+k|}
N−1
k=1 (i = 2, . . . ,N) for a constant c > 0 which depends only on

x′

is and N but not on n0. The RHS tend to zero as n0 → ∞, whereas the LHS are unchanged. This
implies |ci,dm | = 0, i.e. di < dm for i = 2, . . . ,N . As we have already remarked ∆P(t) ≠ 1 implies
∆

top
P (t) :=


di=dm

(t − xi) ≠ 1, and hence c1,dm cannot be 0. So ∆
top
P (t) = t − 1.

Next, consider the casewhen the sequence vn hasmore than two accumulating values. Then, one of
them is non-zero. Suppose the subsequence {vnm}m∈Z>0 converges to a non-zero value, say c . Recall the
assumption that the sequence γn−1/γn converges to 1. So, the subsequence γnm−1

γnm
=

vnm−1+lower terms
vnm+lower terms

should also converge to 1 asm → ∞. In the denominator, the first term tends to c ≠ 0 and the second
term (= (a polynomial innof degree dm−1)/ndm ) tends to zero. Similarly, in thenumerator, the second
term tends to zero. This implies that the first term in the numerator also converges to c ≠ 0. Repeating
the same argument, we see that for any k ∈ Z≥0, the subsequence {vnm−k}m∈Z≫0 converges to the
same c. Then, for each fixedM ∈ Z>0, the average sequence {(

M−1
k=0 vnm−k)/M}m∈Z≫0 converges to c ,

whereas the values is given by
N

i=2 ci,dmx
−nm
i

1−x−M
i

(1−x−1
i )M

+ c1,dm which is close to c1,dm for sufficiently

large M and nm ≫ M . This implies c = c1,dm . Thus, the sequences {v′

nm−k =
N

i=2 ci,dmx
nm−k
i }m∈Z≫0

for any k ≥ 0 converge to 0. Then, an argument similar to that of the previous case implies |ci,dm | = 0,
i.e. di < dm (i = 2, . . . ,N). Hence, we have ∆

top
P (t) = t − 1.

The proof of Assertion 13 is complete. �

We return to the proof of the general case, where P is finite rationally accumulating of period h,
but may no longer be simply accumulating.

Assertion 14. Let P ∈ C{t}1 be finite rational accumulating and the top denominator polynomial of
P is defined as in (5.1.3). Then,
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(i) The top denominator polynomial of P is a factor of th − 1.
(ii) For any 0 ≤ f < h, T [f ]P as a power series in τ := th is simply accumulating, where top order of

its denominator is equal to dm.

Proof. Since P is rationally finite accumulating of period h with radius of convergence rP = 1, we
have limm→∞ γf+(m−1)h/γf+mh = 1(= rhP ) for any 0 ≤ f < h. Regarding T [f ]P = t f


∞

m=0 γf+mhτ
m as

a power series in τ = th and t f as a constant factor of the series, this implies that Ω1(T [f ]P) = {1}
and, hence, that T [f ]P is simply accumulating. Then, Assertion 13 implies that the highest order poles
of T [f ]P (in the variable τ ) is only at τ −1 = 0 for all [f ] ∈ Z/hZ, and Corollary to Assertion 11 implies
that the order of the pole at τ = 1 is less or equal than dm :=the highest order of poles of P(t). Thus,
we get an expression T [f ]P = t f g[f ](τ )

(τ−1)dm
, where g [f ]

∈ C{τ }1 such that orders of poles of g [f ] is strictly
less than dm. In view of (5.3.4), we obtain

P =

h−1
f=0

T [f ]P =

h−1
f=0

t f g [f ](τ )

(τ − 1)dm
. (∗)

This means, in particular, the location of poles of P of top order df is contained in the solutions of
th − 1 = 0, i.e. ∆top(t)|(th − 1) and (i) is proven. To show the latter half of (ii), we need to show that
g [f ](1) ≠ 0 for all f . However, (∗) says that g [f0](1) ≠ 0 for some f0.

Assuming g [f ](1) = 0 for some f , we show a contradiction. Consider the sequence
{γf+mh/γf0+mh}m∈Z≥0 . On one side, this converges to a non-zero number since P is finite rational
accumulating of order h. On the other hand, since g [f0](τ )/(τ − 1)dm has pole of order dm only at
τ = 1, we have γf0+mh = g [f0](1)mdm + O(mdm−1) and order of poles of g [f ](τ )/(τ − 1)dm are strictly
less than dm by assumption, we have γf+mh = O(mdm−1). Thus the sequence converges to 0, which
contradicts to the non-zero limit! �

For 0 ≤ e, f < h, let us calculate the value of the proportion T [f ]P
T [e]P

(t) at a root x of the equation
th − 1 (defined by canceling the poles at the point as a meromorphic function).

T [f ]P
T [e]P

(t)

t=x

= xf−e g [f ]
|τ=1

g [e]|τ=1
. (∗∗)

In order to calculate this value, we prepare an elementary Fact.
Fact. Let A(τ ) =


∞

m=0 amτm, B(τ ) =


∞

m=0 bmτm
∈ C{τ }1 such that their highest order poles of the

same order d exist only at τ = 1. Then,

A(τ )

B(τ )


τ=1

= lim
m→∞

am
bm

. (∗ ∗ ∗)

Proof. Replacing t and cij in (5.3.4) with τ and aij or bij, respectively, the RHS of (∗ ∗ ∗) is written as

limm→∞

N
i=1


j≤d ai,jx

−m−1
i (m;j)/(j−1)!N

i=1


j≤d bi,jx
−m−1
i (m;j)/(j−1)!

, where xi is a complex number with |xi| = 1 and x1 = 1. Since

a1,d = (τ − 1)dA(τ )|τ=1 and b1,d = (τ − 1)dB(τ )|τ=1 are non-zero but ai,d = bi,d = 0 for i ≠ 1, this

is equal to limm→∞

a1,d(m;d)/(d−1)!+O(md−1)

b1,d(m;d)/(d−1)!+O(md−1)
=

a1,d
b1,d

=
A(τ )

B(τ )
|τ=1. �

Applying this Fact, the RHS of (∗∗) is equal to xf−e limm→∞

γf+mh
γe+mh

. Then, applying to this expression
a similar argument for (4.1.1), we obtain:

T [f ]P
T [e]P

(t)

t=x

=

xf−e/a[f ]
1 a[f−1]

1 · · · a[e+1]
1 if e < f

1 if e = f
xf−ea[e]

1 a[e−1]
1 · · · a[f+1]

1 if e > f .
(5.3.5)
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Since the RHS are non-zero in all cases, the order of the poles of T [e]P(t) at a solution x of the
equation th − 1 is independent of [e] ∈ Z/hZ. Summing up both sides of (5.3.5) for 0 ≤ f < h, we
obtain

P
T [e]P

(t)

t=x

= A[e](x−1) (5.3.6)

(recall the A[e](s) (4.1.3)). Let x be a solution of th − rh = 0 but ∆
op
P (x−1) ≠ 0. Then δa(x−1) = 0

(see (4.3.1)) and A[e](x−1) = 0 for all [e] ∈ Z/hZ (see Assertion 9(i)). That is, T [e]P
P (t) has a pole at

t = x. This implies that P(t) cannot have a pole of order dm at t = x (otherwise, due to Corollary to
Assertion 11, the pole at t = x of T [e]P is at most of order dm, which is canceled in T [e]P

P (t) by dividing
by P , yielding a contradiction!). That is, we get one division relation.

Assertion 15. ∆
top
P (t) | tdP ∆op

P (t−1) and deg(∆top
P ) ≤ dP .

Finally, let us show the opposite division relation.

Assertion 16. Let P(t) be a tame power series belonging to C{t}r , which is finite rationally
accumulating of period h. Then

(i) There exists a constant c ∈ R>0 such that |γn| ≥ cr−nndm for n ≫ 0.
(ii) td∆op

P (t−1) | ∆
top
P (t) .

Proof. (i) Consider the Taylor expansion of the partial fractional expansion Eq. (5.3.4). Using notation
vn in Assertion 13, we have γn = −vn

r−n−1(n;dm)

(dm−1)! + (terms coming from poles of order < dm) +

(terms coming from Q (t)), where vn =


i ci,dm(xi/r)−n−1 depends only on n mod h since xi is
the root of the equation th − rh = 0. They cannot all be zero (otherwise, by solving the equations
vn = 0 (0 ≤ n < h), we get ci,dm = 0 for all i, which contradicts to the vanishing of dm). Let
us show that none of the vn is zero. Suppose the contrary and ve = 0 ≠ vf for some integers
0 ≤ e, f < h. Then, one observes easily that limm→∞

γe+mh
γf+mh

= 0. This contradicts to formula

(5.3.5) and the non-vanishing of a[e]
1 ([e] ∈ Z/hZ).

(ii) Since ∆
top
P cancels all poles of maximal order, the fractional expansion of ∆top

P (t)P(t) has poles of
order at most dm − 1. Set ∆

top
P (t) = t l + α1t l−1

+ · · · + αl. Then, this means that the sequence
{γN} (Taylor coefficients of P) satisfies

γN · αl + γN−1 · αl−1 + · · · + γN−l · 1 ∼ o(Ndm r−N) (∗ ∗ ∗∗)

as N → ∞. Let


k aks
k
∈ Ω(P) be an opposite series given by a sequence {Xnm(P)}m∈Z≥0 (2.2.1).

For each fixed k ∈ Z≥l, substitute N by nm − k+ l in (∗ ∗ ∗∗) and divide it by γnm . Then, taking the
limitm → ∞ using the part (i), the RHS converges to 0, so that we get

ak−lαl + ak−l+1αl−1 + · · · + ak = 0.

Thus sl∆top
P (s−1)a(s) is a polynomial of degree < l and the denominator ∆

op
P (s) of a(s) divides

sl∆top
P (s−1). So, dP ≤ l and (ii) is proved.

This completes a proof of Assertion 16. �

The proof of the theorem: (5.3.1) and (5.3.2) are already shown by Assertions 15 and 16, and (5.3.3)
is shown by (4.3.7) and (5.3.6). �

5.4. Example by Machì (continued)

Recall Section 3.3 Machì’s example, where we learned that the growth function PΓ ,G(t) =
∞

n=0 #Γntn for themodular group Γ = PSL(2, Z)with respect to certain generator system G is equal
to (1+t)(1+2t)

(1−2t2)(1−t)
and that it is finite rationally accumulating of period h = 2.
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Using this data, we calculate further the rational actions on it.

T [0]PΓ ,G(t) =

∞
k=0

#Γ2kt2k =
1 + 5t2

(1 − 2t2)(1 − t2)
,

T [1]PΓ ,G(t) =

∞
k=0

#Γ2k+1t2k+1
=

2t(2 + t2)
(1 − 2t2)(1 − t2)

.

The opposite denominator polynomial of the series a[e] ([e] ∈ Z/2Z) and the top denominator
polynomial of PΓ ,G(t) are given as follows.

∆
op
PΓ ,G

(s) = 1 −
1
2
s2 & ∆

top
PΓ ,G

(t) = t2 −
1
2
.

Then the transformation matrix is given by
PΓ ,G(t)
T [0]P(t)

=
(1 + t)2(1 + 2t)

1 + 5t2


t= 1√

2

PΓ ,G(t)
T [1]P(t)

=
(1 + t)2(1 + 2t)

2t(2 + t2)


t= 1√

2

PΓ ,G(t)
T [0]P(t)

=
(1 + t)2(1 + 2t)

1 + 5t2


t= −1√

2

PΓ ,G(t)
T [1]P(t)

=
(1 + t)2(1 + 2t)

2t(2 + t2)


t= −1√

2


=

1 +
5
7

√
2 1 +

7
5

1
√
2

1 −
5
7

√
2 1 −

7
5

1
√
2

 .

In fact, this matrix coincides with the matrix 2 · (µ[e]
xi )

[e]∈Z/2Z,xi∈{±
√
2
−1

}
(4.3.7), which was already

calculated in Section 3.3 Example as the coefficient of fractional expansion of the opposite series a[0]

and a[1]. In particular, its determinant, equal to
√
2

35 , is non-zero. The matrix is an essential ingredient
of the trace formula for limit F-functions [10, (11.5.6)].
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