Anisotropy of collagen fibre alignment in bovine cartilage: comparison of polarised light microscopy and spatially resolved diffusion-tensor measurements

S. K. de Visser B.Eng. (Med.) † ‡ ‡, J. C. Bowden B.Sc. † ‡ ‡, E. Wentrup-Byrne Ph.D. † ‡ ‡, L. Rintoul Ph.D. † ‡ ‡, T. Bostrom Ph.D. † ‡ ‡, J. M. Pope D.Phil. † ‡ ‡ and K. I. Momot Ph.D. † ‡ ‡ *

† School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia
‡ Institute of Health and Biomedical Innovation, Kelvin Grove, Qld 4059, Australia

Summary

Objective: To compare collagen fibre alignment angles obtained from polarised light microscopy (PLM) and diffusion-tensor imaging (DTI) in bovine articular cartilage.

Methods: Five samples of bovine articular cartilage from five different animals were studied using magnetic resonance imaging and PLM techniques. T2-weighted, diffusion-tensor (DT), and PLM images were acquired for each sample and average depth profiles of the PLM and DTI angles, as well as the banding patterns observed in T2-weighted magnetic resonance (MR) images, were compared. Statistical properties of the distributions of the DTI and PLM angles were examined.

Results: The samples exhibited a range of alignment morphologies. In the samples with the “conventional” three-zone alignment pattern, a correlation between the PLM and DTI alignment zones and the banding in T2-weighted MR images was observed. The shapes of the depth profiles of the PLM and DTI alignment angles were qualitatively similar for each sample. Three samples showed good quantitative correlation between the DTI and PLM alignment angles. The correlation between the diffusion and PLM alignment angles was best in the regions of low degree of disorder of fibre alignment.

Conclusions: This study provides the first quantitative comparison of DTI of cartilage with the more established PLM techniques. The correlation between alignment angles derived from PLM and DTI data was evident across a wide range of alignment morphologies. The results support the use of DTI for the quantitative measurement of collagen fibre alignment. The microscopic-scale (~10 μm) dispersion of fibre alignment angles appears to be an important factor for understanding the extent of quantitative correlation between PLM and DTI results.

© 2007 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

Key words: Collagen fibre orientation, Diffusion-tensor imaging, Polarised light microscopy, Anisotropy, Birefringence, Fibre alignment order.

Abbreviations: AS, articular surface of cartilage; Bo, the vector of the static magnetic field; DTI, diffusion-tensor imaging; FA, fractional anisotropy; MRI, Magnetic resonance imaging; NMR, Nuclear magnetic resonance; PLM, polarised light microscopy; R, correlation coefficient of linear regression; ROI, region of interest; RLMM, goodness-of-fit of the PLM polarisation angle; SEM, scanning electron microscopy; α0, PLM polarisation angle (the angle between the fast optical axis and the normal to the articular surface of the sample); θ, the angle between the principal diffusion eigenvector and the normal to the articular surface of the sample; θAS, the angle between the static magnetic field Bo and the normal to the articular surface of the sample.

Introduction

Adult articular cartilage has a zonal architecture which is determined by the alignment of its collagen fibres. Three zones of alignment are usually distinguished. The fibres are aligned parallel to the articular surface (AS) in the superficial zone (closest to the AS) and normal to the surface in the radial zone (closest to the bone), with a continuous and monotonic variation in average fibre orientation in the transitional zone between them. This architecture was proposed initially on the basis of polarised light microscopy (PLM) and scanning electron microscopy (SEM) measurements.

PLM is a transmission optical microscopy technique that measures the birefringence of the sample. The wavelength of the light is selected so as to exclude specific interactions (e.g., absorption maxima); therefore, the tissue can be considered a continuous but optically anisotropic medium. The orientation of collagen fibres is inferred on the basis of the directions of optical axes at the maximal birefringence (or optical retardance, which is linearly proportional to birefringence in a sample of uniform thickness). PLM was the first technique used to establish (albeit within the context of a model that was incorrect in detail) the curved architecture of collagen fibres in adult cartilage and remains one of the most commonly used techniques for the investigation of cartilage microstructure.

Magnetic resonance (MR) techniques [Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI)]
have been widely applied in studies of cartilage since the 1990s and have been used both clinically and in vitro. The phenomenon of banding observed in spin-density and relaxation-weighted MR images has been successfully used as a probe of the zonal structure of cartilage. Diffusion-tensor imaging (DTI) is an MRI technique that has recently found application in microimaging of cartilage. DTI yields specific and precise information about local anisotropy on the length scale of tens of microns, and is exquisitely sensitive to the local morphological structure of the studied tissue. Two recent studies of cartilage have demonstrated that spatially resolved maps of the direction of the principal diffusion eigenvector derived from DTI measurements are consistent with the known collagen fibre architecture. DTI measurements have also been used to observe changes in collagen fibre orientation under mechanical compression.

Both PLM and DTI, therefore, indirectly measure the prevailing orientation of collagen fibres, although in different ways. While PLM remains the “gold standard” for measurement of fibre orientation, there is significant interest in adapting non-destructive techniques for the observation of microstructure and molecular integrity of cartilage. DTI possesses many of the features required for this task, namely: non-invasiveness; the ability to provide sub-millimetre spatial resolution; and sensitivity to both the microscopic environment and local structure of the tissues studied. In addition, interpretation of the directional anisotropy of the diffusion-tensor (DT) is relatively straightforward compared to quantitative interpretation of MR relaxation rates. A comparison of DTI with the more established PLM techniques is important for evaluating the advantages and limitations of each technique; however, to date no quantitative comparative analysis of PLM and DTI results relating to cartilage has been available.

In this work, we compare in vitro PLM and DTI results obtained from five samples of bovine articular cartilage that exhibited a range of morphologies. In each measurement, a two-dimensional (2D) spatially resolved image of the cartilage sample was obtained. Spatial resolution in the depth dimension (the direction perpendicular to the AS) enabled the measurement of the depth profiles of the PLM polarisation angle and the direction of DTI principal diffusion eigenvector. Spatial resolution in the lateral dimension (along the AS) enabled statistical analysis of the angular distributions at a given depth. The resulting depth profiles of the PLM polarisation angle and the direction of the principal diffusion eigenvector were compared with each other and with the banding patterns observed in T2-weighted MR images of each sample. The statistical properties of the distributions of the DTI and PLM angles, as well as the relationship between the standard deviations of these angles and the degree of correlation between PLM and DTI profiles, were also examined.

Methods

SAMPLE PREPARATION

Five samples of bovine cartilage (A–E), obtained from the femoral condyles of five different animals, were examined. Four samples (A, B, D, and E) were taken from the upper medial edge of the lateral femoral condyle, and one (sample C) from the middle of the medial femoral condyle. The age of the animals at slaughter was in the range 6 months–2 years. The typical thickness of the cartilage in the samples was 2 mm. The joints had been collected fresh from the abattoir on the morning of the first day of testing. Cartilage samples approximately 1 cm × 1 cm in size were sawn off the patellar grooves to include an underlying layer of subchondral bone, as seen in Fig. 1. The samples were placed in phosphate buffered saline (PBS) for 1 h to allow re-hydration. These samples were used for MR imaging without further modification and kept in PBS during the imaging. PBS (0.01 M phosphate buffer, 0.0027 M KCl, 0.137 M NaCl, pH 7.4 at 25 °C) was prepared from PBS concentrate tablets (Sigma–Aldrich, USA). For PLM, cartilage samples were cryo-sectioned perpendicular to the AS. The sections were defrosted, hydrated, and placed on glass slides without any additional fixing. The position and orientation of the sections analysed were chosen to correspond to the imaging plane used in the respective DTI measurements. The thickness of the sections was 20 μm.

PLM

PLM was carried out on a Nikon Labophot-pol microscope fitted with a blue 1W light-emitting-diode (LED) light source (λ = 475 nm, Δλ_{full} = 25 nm, Lumiled, USA), using a 5 × objective and 12 bit thermoelectrically cooled digital camera (Leica DFC480, Leica Microsystems GmbH, Wetzlar, Germany) with crossed polarising elements and calibration wave-plate. The samples were centred in the microscope with the normal to the AS of the cartilage directed along the x-axis of the camera, which corresponds to the x-axis of Fig. 2. Retardance images of the sections were taken, leaving the sample stationary and rotating the crossed polarising elements in 15° angular increments with the polariser moving from −45° to 45° (analyzer from −45° to 135°). This ensured pixel alignment between different photographs of the same sample. With the polariser and analyzer in the final positions, two final images of the sample were taken with the analyzer offset 5° either side from the crossed position and with a wave-plate inserted with slow axis at 90° to the x-direction. These two images are referred to as “negative” and “positive”, where the analyzer is 5° clockwise towards the x-axis, and a “positive image”, where the analyzer is 5° anti-clockwise past the 90° crossed position. To determine the direction of the optical axis of the sample, a squared sine (sin²) function with a baseline offset was fitted for each pixel to the intensity of the image as a function of the polariser angle. The phase of the fitted sin² function was taken as the analyzer offset at that pixel. The “negative” and “positive” images were used unambiguously to convert the analyzer offset into the polarisation angle α (the direction of the fast optical axis of the sample) and to distinguish between α values of + and −90°. The digital resolution was 2.73 μm^{−1} in each image.

MRI

MRI measurements were performed using a Bruker Avance NMR spectrometer with a 7.0 T vertical-bore magnet. The system was equipped with a 1.1 T m^{−1} (110 G cm^{−1}) triple-axis gradient set and a Micro2.5 microimaging probe. The radiofrequency (RF) coil used in the imaging was 15 mm birdcage 1H resonator (Bruker, Germany). Further details of the imaging system can be found in the literature. Cartilage specimens were immersed in physiological saline inside a 15 mm NMR tube and orientated at the required angle with respect to the static magnetic field B₀ using previously manufactured Tetfon plugs.

T₂-WIGHTED IMAGING

T2-weighted images of each sample were recorded at 25 °C with the normal to the AS of the sample orientated at 45° to 0° with respect to the static magnetic field B₀. The imaging slice was 2 mm thick and orientated perpendicular to the AS. The images were recorded using a multi-echo spin-echo (SE) sequence with an echo spacing of 4.3 ms. Image matrix size was 128 × 128; effective sweep width, 70 kHz; repetition time, 2500 ms; field of view, 20 mm × 20 mm. Four transients per scan were acquired; the total imaging time was 21 min per sample.

DTI

DTI images were recorded at 25 °C using a single-echo diffusion-weighted spin-echo sequence. The imaging slice was 2 mm thick and orientated perpendicular to the AS. To maximise the T2 values, the samples were orientated so that the normal to the AS formed an angle θ_{AS} = 55° with B₀. Image matrix size was 128 × 128, zero-filled to 256 × 256 prior to Fourier transform; effective sweep width, 120 kHz; repetition time, 2000 ms; echo time, 12.58 ms; field of view, 20 mm × 20 mm. The diffusion parameters were: δ, 2 ms; Δ, 8 ms; diffusion gradient, g₀ = 0.7 T m^{−1}. The DT was sampled using six independent gradient directions. The values of the elements of the tensor were obtained from a linearised Stejskal–Tanner diffusion–attenuation equation using two gradient points for each direction: zero-gradient and g₀. The DT was reconstructed using Matlab code written in-house and based on previously published work. Signal averaging was achieved by adding eight transients for each diffusion gradient direction used; the imaging time was 34 min per direction (approximately 4 h per sample).
Results and data analysis

The T_2-weighted images of each sample at $\theta_{AS} = 0^\circ$ are shown in Fig. 1. The five samples exhibited a range of banding behaviours. Two of the samples, B and E, exhibited a "conventional" three-band pattern with hypointense outside bands and a hyperintense band in the middle. Sample C exhibited a more complex, five-band behaviour with a hyperintense band near the AS and alternating hypo and hyperintense bands of comparable thickness closer to the bone. The cartilage of this sample had been removed from the bone. Sample D exhibited a similar pattern to C over most of the sample, but with a hypointense band near AS and a relatively thick middle hypointense band. Finally, sample A [the left specimen in Fig. 1(A)] exhibited a complex banding pattern with a large fraction of the sample's thickness covered by hyperintense bands.

DT images (78 μm in-plane spatial resolution after $2 \times$ zero-filling) and PLM images (2.7 μm spatial resolution) were obtained with the image plane perpendicular to the AS of the cartilage for each of the five samples studied. DTI images covered the full depth of the cartilage (from AS to the bone) and approximately 1.5 cm in the lateral dimension (the dimension along the AS). All PLM images covered an area 1.745 mm in the depth dimension \times 1.309 mm in the lateral dimension.

From each DTI image, 2D spatially resolved maps of the following quantities were calculated: the angle between the principal eigenvector of the DT and the normal to the AS (θ); fractional anisotropy (FA) of the DT (defined in Ref. 7); and the projection of the angle θ onto the imaging plane (θ_p). A representative map of the diffusion angle θ (sample B) is shown in Fig. 3. From each PLM image, spatially resolved 2D maps of the following quantities were calculated: the optical retardance (ρ); the polarisation angle between the "fast" optical axis and the normal to the AS (PLM angle, α); and the goodness-of-fit of the polarisation angle (R_{PLM}, defined for a given pixel as the standardised covariance, or Pearson's R value, between the sets of measured and fitted retardance values for the seven orientations of the polariser and analyser used in the measurements). An example of the polarisation angle map (sample B) is shown in Fig. 2.

Fig. 1. T_2-weighted images of samples A–E. The images were acquired with the normal to the AS of the samples parallel to the static magnetic field B_0 ($\theta_{AS} = 0^\circ$). The imaging slice was 2 mm thick and orientated perpendicular to the AS. The images were recorded using a multi-echo spin-echo sequence with spacing 4.3 ms. Imaging conditions: matrix size 128 \times 128; effective sweep width, 70 kHz; repetition time, 2500 ms; field of view, 20 mm \times 20 mm; four transients per scan. The images shown correspond to the 65th echo (echo time (TE) = 279.4 ms). The dark area above the AS is the Teflon plug used to orient the sample; the bright area around the sample is saline. Scale: the field of view shown is 2 cm in each dimension. Of the two samples in A, the left sample was used for subsequent DTI and PLM measurements.

Fig. 2. Map of PLM polarisation angle α (the angle between the "fast" optical axis and the normal to AS) for sample B. White corresponds to $\alpha = 90^\circ$; black, to $\alpha = 0^\circ$.
had a minimum in the intermediate zone. The profiles for AS. For samples A and C, each of the angles generally decreased with the increasing distance from the

so that the calculated values of PLM angle was averaged over 28 or 29 rows of PLM pixels, in the previous paragraph. The depth profiles of were also averaged in the lateral dimension as described fusion angle C well as the average projected diffusion angle D. These depth profiles were calculated from the entire lateral
dimension of the sample. The average depth profiles of the sum of squared directional cosines of optical retardance (Socos2), and optical birefringence (R) were also calculated. The shape of these profiles generally was uncorrelated with the profiles of the angles (α) and (θ), The values of FA were typically in the range 0.05–0.14. The standard deviations, ΔFA, ranged from 15% to 40% of the value of FA at that depth, in a given sample. As a baseline, the nominal average value of the FA of a bulk-water region was also measured for each sample; the average baseline value was 0.07 ± 0.02. The sum of the squared DTI directional cosines, Σcos2, exhibited a weak correlation (R² = 0.37) with the quantity 1–(RPLM)².

Discussion

The PLM polarisation angle is a universally accepted measure of the alignment of collagen fibres in cartilage⁵,3¹. The orientation of the principal eigenvector in MR DT images was also recently shown to reflect the alignment of collagen fibres⁷,⁹. The objective of this study was quantitatively to compare the results obtained by the two techniques for a number of bovine cartilage samples, and to investigate the potential of DTI as a non-invasive, non-destructive imaging modality for quantitative measurement of collagen fibre orientation in articular cartilage. For a given sample, the comparison entailed acquiring PLM and DT images of ROIs of approximately the same location and orientation. This approach is consistent with the protocols used by other researchers, who found that the PLM images from parallel, 6-μm thick slices separated by up to 1 mm had the same general appearance⁵¹.

DT imaging is based on the measurement of the random thermal motion of water molecules⁶². The motion is constrained by the immobile biopolymeric scaffold of the tissue. Molecular displacement (and therefore diffusive attenuation of the NMR spin-echo) is greatest in the direction in which the molecular motion is confined to the least extent. In cartilage, this anisotropic confinement of molecular motion results in the principal eigenvector of the DT generally assuming different orientations in each of the different zones of fibre alignment. The degree of the confinement can be measured by the FA of the DT. The FA values observed were small but significant and consistent with previous DTI studies of articular cartilage⁷–⁹.

FIBRE ALIGNMENT MORPHOLOGY

The five samples of bovine cartilage showed a significant degree of variability in the behaviour of the depth profiles of the DTI and PLM alignment angles. The generally accepted model of collagen architecture in articular cartilage is that of collagen fibres perpendicular to the AS near the bone and gradually curving to become parallel to AS near the surface. This conventional model adequately described only two of the five samples studied (B and E). In sample A, the observed alignment patterns deviated from the conventional model near the bone. In samples C and D, the observed alignment patterns did not follow the conventional model at all.

This variation in the observed alignment patterns is consistent with previous studies of articular cartilage. Xia and co-workers reported an intrinsic spatial heterogeneity in the laminar appearance of cartilage in MR images, with

α ≤ 60°; and superficial if θ, α > 60°. The values of these parameters for each sample are presented in Table I.

The depth profiles of FA of the DT (FA), the goodness-of-fit parameter (RPLM), the sum of the squared DTI directional cosines (Σcos2), and optical birefringence (R) were also calculated. The values of these parameters generally was uncorrelated with the profiles of the angles (α) and (θ) - Discussion - S. K. de Visser et al.: DTI and PLM of bovine cartilage

In addition to the spatially resolved 2D maps of PLM polarisation angle α and diffusion angle θ, one-dimensional (1D) depth profiles of the following DTI quantities were calculated: average diffusion angle (θ) (and its standard deviation Δθ); average fractional anisotropy (FA) (and ΔFA), as well as the average projected diffusion angle (θ). The depth profiles of the sum of squared directional cosines of the diffusion eigenvectors (Σcos²) (defined as the cosines of the angle between the normal to the AS and a given DT eigenvector) were also calculated. The regions of interest (ROIs) for the calculation of the average depth profiles were selected in the central regions of the samples, such that the ROIs were representative of the overall appearance of the image and free of any fissures or other abnormal features. The selected ROIs covered approximately 25 pixels (2 mm) in the lateral dimension of the sample. The average depth profiles of the following PLM quantities were also calculated: the angle α and its standard deviation (Δα), optical retardance (Φ), and the goodness-of-fit (RPLM). These depth profiles were calculated from the entire lateral width of the PLM field of view (1.309 mm).

The depth profiles of PLM polarisation angle (α) and diffusion angle (θ) are shown for each sample in Fig. 4. The PLM angle was averaged over 28 or 29 rows of PLM pixels, so that the calculated values of (α) and (θ) referred to similar cross-sectional areas of the respective sample. Both α and θ were also averaged in the lateral dimension as described in the previous paragraph. The depth profiles of (α) and (θ) fell into three groups. For samples B and E, both angles generally decreased with the increasing distance from the AS. For samples A and C, each of the angles α and θ had a minimum in the intermediate zone. The profiles for sample D were relatively featureless, with both the angles α and θ close to 90° through most of the thickness of the cartilage. In order to quantify the degree of agreement between the PLM and DT depth profiles, three types of statistical measures were used: (1) the parameters of the Bland–Altman plot; (2) the number of data points for which the absolute value of the difference between the two angles, |θ − α|, was below 15°; and (3) kappa coefficients of agreement for categorically scaled data, where the data points were classified as belonging to one of three alignment zones: radial if θ, α < 30°; transitional if 30° ≤ θ, 60°; and superficial if θ, α > 60°. The values of these parameters for each sample are presented in Table I.

The depth profiles of FA of the DT (FA), the goodness-of-fit parameter (RPLM), the sum of the squared DTI directional cosines (Σcos²), and optical birefringence (R) were also calculated. The shape of these profiles generally was uncorrelated with the profiles of the angles (α) and (θ). The values of FA were typically in the range 0.05–0.14. The standard deviations, ΔFA, ranged from 15% to 40% of the value of FA at that depth, in a given sample. As a baseline, the nominal average value of the FA of a bulk-water region was also measured for each sample; the average baseline value was 0.07 ± 0.02. The sum of the squared DTI directional cosines, Σcos², exhibited a weak correlation (R² = 0.37) with the quantity 1–(RPLM)².

Discussion

The PLM polarisation angle is a universally accepted measure of the alignment of collagen fibres in cartilage⁵,3¹. The orientation of the principal eigenvector in MR DT images was also recently shown to reflect the alignment of collagen fibres⁷,⁹. The objective of this study was quantitatively to compare the results obtained by the two techniques for a number of bovine cartilage samples, and to investigate the potential of DTI as a non-invasive, non-destructive imaging modality for quantitative measurement of collagen fibre orientation in articular cartilage. For a given sample, the comparison entailed acquiring PLM and DT images of ROIs of approximately the same location and orientation. This approach is consistent with the protocols used by other researchers, who found that the PLM images from parallel, 6-μm thick slices separated by up to 1 mm had the same general appearance⁵¹.

DT imaging is based on the measurement of the random thermal motion of water molecules⁶². The motion is constrained by the immobile biopolymeric scaffold of the tissue. Molecular displacement (and therefore diffusive attenuation of the NMR spin-echo) is greatest in the direction in which the molecular motion is confined to the least extent. In cartilage, this anisotropic confinement of molecular motion results in the principal eigenvector of the DT generally assuming different orientations in each of the different zones of fibre alignment. The degree of the confinement can be measured by the FA of the DT. The FA values observed were small but significant and consistent with previous DTI studies of articular cartilage⁷–⁹.

FIBRE ALIGNMENT MORPHOLOGY

The five samples of bovine cartilage showed a significant degree of variability in the behaviour of the depth profiles of the DTI and PLM alignment angles. The generally accepted model of collagen architecture in articular cartilage is that of collagen fibres perpendicular to the AS near the bone and gradually curving to become parallel to AS near the surface. This conventional model adequately described only two of the five samples studied (B and E). In sample A, the observed alignment patterns deviated from the conventional model near the bone. In samples C and D, the observed alignment patterns did not follow the conventional model at all.

This variation in the observed alignment patterns is consistent with previous studies of articular cartilage. Xia and co-workers reported an intrinsic spatial heterogeneity in the laminar appearance of cartilage in MR images, with
Fig. 4. Depth profiles of the average diffusion direction angle $\langle \phi \rangle$ (left column) and the average PLM polarisation angle $\langle \alpha \rangle$ (right column) for samples A–E (rows 1–5). Each plot consists of 22 equidistant individual points, which represent the average value of the respective angle in a given sample, at a given depth. The error bars represent the standard deviations, which were determined from the distributions of the angles over the respective laminae of the ROI.
the number of laminae observed being dependent upon the location of the sample in the joint20–22. Foster \textit{et al.} observed vertical striations on a sub-millimetre length scale23. Orientation of the split lines – i.e., the cleavage lines separating collagen leaves in the arch-like superstructure – also significantly affects the appearance of STM images of sectioned articular cartilage1,19. We shall refer to these factors collectively as “sample heterogeneity”, i.e., a set of factors that may cause the observed fibre alignment profile to vary within a given sample of cartilage on the length scale of millimetres. Besides sample heterogeneity, the observed alignment morphologies may be influenced by the age, exact anatomical location of the sample, and individual anatomical and physiological peculiarities of the animals. An investigation of the factors influencing the observed morphologies is outside the scope of the present study. But importantly, it could not be assumed that collagen fibres always followed the same general orientational pattern. Consequently, the results of the PLM and DTI measurements need to be compared separately for each sample studied.

COMPARISON OF DTI AND PLM DEPTH PROFILES

Visual examination of Fig. 4 reveals that the shapes of the depth profiles of the PLM and DTI alignment angles were qualitatively similar for each of the five samples studied. In order to quantify the degree of agreement between the two sets of data, we employed the comparison parameters of Table I. Bland–Altman parameters and $N_{\text{agreement}}$ are based on the raw values of $\langle \alpha \rangle$ and $\langle \theta \rangle$; these parameters report on the quantitative degree of agreement between the two angles. The kappa coefficients are based on categorically scaled data and report on the agreement between the two techniques in identifying a particular layer of cartilage as belonging to radial, transitional, or superficial (see Results and data analysis).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Bland–Altman parameters (*)</th>
<th>$N_{\text{agreement}}$</th>
<th>χ	extsuperscript{2}</th>
<th>Degree of agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>+23</td>
<td>32</td>
<td>5</td>
<td>0.18</td>
</tr>
<tr>
<td>B</td>
<td>+5</td>
<td>22</td>
<td>18</td>
<td>0.86</td>
</tr>
<tr>
<td>C</td>
<td>–3</td>
<td>38</td>
<td>12</td>
<td>0.11</td>
</tr>
<tr>
<td>D</td>
<td>+2</td>
<td>16</td>
<td>21</td>
<td>0.93</td>
</tr>
<tr>
<td>E</td>
<td>+6</td>
<td>18</td>
<td>20</td>
<td>0.73</td>
</tr>
</tbody>
</table>

*Defined as twice the standard deviation of the Bland–Altman plot.
†The number of points (out of 22) for which $|\theta - \alpha| < 15^\circ$.
‡Kappa coefficient of agreement for the data points classified as “radial”, “transitional”, or “superficial” (see Results and data analysis).

COMPARISON WITH T$_2$-WEIGHTED IMAGES

It is useful to compare the DTI and PLM profiles shown in Fig. 4 with the bands observed in the T$_2$-weighted images of the same samples (shown in Fig. 1). The laminae seen in T$_2$-weighted images of cartilage have been shown to be statistically equivalent to the histological zones observed in the PLM images of unstained cartilage sections31,34. The two samples that exhibited the conventional PLM and DTI alignment patterns (samples B and E) also showed conventional banding in the T$_2$-weighted images acquired at $\theta_{\text{BD}} = 0^\circ$. In sample A, the hyperintense bands approximately corresponded to the DTI regions in which the apparent fibre orientation was close to 55°, and the hypointense bands, to the regions with θ close to either 0° or 90°. In samples C and D there was no obvious correlation between the PLM and DTI profiles and the T$_2$-weighted banding patterns. The DTI profile of sample C was similar to that of sample A; however, the T$_2$-weighted image of sample C exhibited an order of the bands different from sample A. Sample D showed little structure in the DTI and PLM profiles but a complex banding pattern in the T$_2$-weighted image. It therefore appears that the correlation between PLM alignment zones and T$_2$-weighted banding, which has been observed previously31, may be present only in samples with the conventional alignment pattern but absent in “non-conventional” samples.

MICROSCOPIC DISORDER OF FIBRE ALIGNMENT

The error bars shown in Fig. 4 reflect the fact that, at a given depth within a particular sample, neither the PLM polarisation angle α nor the DTI diffusion angle θ were perfectly uniform. The standard deviations of each angle at a given depth typically fell within the range from 5° to 20°. We shall refer to this as “fibre alignment disorder”, i.e., the presence of a distribution of fibre orientations at a given depth in a given sample. In some samples, this distribution may be contributed to by the presence of uniform but distinct domains within a given volume of cartilage (sample heterogeneity). However, the assumption of a multi-domain structure is not required, because on the microscopic-length scale collagen fibres are subject to a statistical distribution of orientations, even if the observed alignment pattern is uniform on the length scale of hundreds of microns or millimetres. For example, the paper by Xia \textit{et al.} concluding that the prevailing collagen orientation does not vary significantly over a 1 mm distance, also clearly shows local non-uniformity of the PLM images on the length scale of tens of microns31. The SEM micrographs observed in numerous studies also reveal the presence of...
a distribution of fibre orientations on the length scale 5–10 μm. The presence of a microscopic-orientational distribution does not preclude the observed alignment pattern from being uniform in a given sample. The conservation of the prevailing fibre orientation over a macroscopic region requires only that the average orientation be conserved; it does not require a perfectly uniform alignment of all collagen fibres in that region.

In both the PLM and DTI profiles the relatively large values of the standard deviations of θ and α (Δθ, Δα ≥ 15°) tended to coincide with the regions where the alignment angles θ, α were between 30° and 60°. This suggests that the degree of disorder of fibre orientation is greatest in the transitional zones, where the fibres undergo a change in their alignment.

The presence of a microscopic disorder of fibre alignment is significant for the interpretation of DTI measurements. In a mesh of fibres disordered on a length scale of 10 μm, a particular water molecule will access a range of fibre orientations on the timescale of a DTI measurement. This will result in the measured DT and the DTI angle θ behaving as weighted-average quantities within a given DTI pixel, with the averaging depending in a complicated and non-linear way on the relative anisotropy and the degree of disorder. On the other hand, the apparent PLM angle is a simple vector average of the contributions from the individual fibres. Because of the different averaging behaviour of the PLM and DTI angles, the techniques could yield identical values of the alignment angles only in the limit of perfectly uniform fibre alignment, but not when microscopic disorder is present. We therefore believe that disorder of fibre alignment on a microscopic (≈10 μm) scale is important in order to understand the extent of agreement between the (α) and (θ) profiles of Fig. 4.

CORRELATION BETWEEN PLM AND DTI ANGLES

It is instructive to compare the full sets of angles (α) and ⟨θ⟩ for all five samples. A cumulative correlation plot between the average diffusion–orientation angle, ⟨θ⟩, and the average PLM polarisation angle, ⟨α⟩ is shown in Fig. 5(a). This plot includes all the individual data points shown in Fig. 4. Linear regression on the plotted points yielded $R^2 = 0.77$. Figure 5(a) also reveals a small but systematic positive difference between the DTI angle θ and the PLM angle α in the low-angle region of the plot. Figure 5(b) shows the subset of the points of Fig. 5(a) for which the standard deviation Δθ was less than 15°. These points can be thought of as representing the laminae of cartilage where the fibre alignment was relatively uniform. Because the relatively large values of Δθ tended to occur in the transitional zones, the points of Fig. 5(b) contain mostly (albeit not exclusively) the points from the radial and superficial zones. Linear regression of the points of Fig. 5(b) yielded $R^2 = 0.90$. This suggests that the agreement between ⟨α⟩ and ⟨θ⟩ was best in the regions of low degree of disorder of fibre alignment. Conversely, in the transitional zones, where the disorder was relatively high, the agreement between ⟨α⟩ and ⟨θ⟩ was relatively poor. We hypothesise that one of the reasons for this is the different averaging behaviour of the angles ⟨α⟩ and ⟨θ⟩, which means that the difference between the two angles is greatest when the width of the statistical distribution of fibre orientations is large.

The PLM polarisation angle can be thought of as a projection of the three-dimensional (3D) direction of a collagen fibre onto the 2D plane as sampled in microscopy measurements. Conversely, DTI measurements yield the complete 3D orientation of the DT in each of the pixels in the imaging slice. Therefore, it can be argued that the proper way to compare PLM and DTI results is to use the diffusion angle θ projected onto the DT imaging plane. To test this hypothesis, the projected value $θ_p$ of the angle θ was calculated for each DTI pixel, for each sample. The average depth profiles of $θ_p$ were then calculated in the same way as for the original angle θ. The use of projected $θ_p$ values did not improve, and in most samples worsened, the agreement between α and θ. This finding is consistent with the data of Fig. 5: If the angle α were indeed the PLM equivalent of the projected DTI angle $θ_p$, then the value of α would have significantly underestimated the true fibre orientation angle in the areas where the fibres run almost parallel to the AS.

![Fig. 5](image-url) (a) Average diffusion angle, ⟨θ⟩, plotted vs average PLM polarisation angle, ⟨α⟩, for all five samples: sample A, □; sample B, ■; sample C, Δ; sample D, ▲; sample E, ●. Each point refers to a given distance from the AS in a particular sample. The squared coefficient of linear regression $R^2 = 0.77$. The solid line corresponds to $⟨θ⟩ = ⟨α⟩$ and is given as a visual guide. The empty symbols correspond to the samples that failed to show a good agreement between the values of ⟨θ⟩ and ⟨α⟩ (samples A and C). (b) The same plot, but with all points with $Δθ > 15°$ excluded. The squared coefficient of linear regression $R^2 = 0.90$.

The subset of such fibres that are also almost perpendicular to the imaging plane would have appeared to be almost perpendicular to the AS as well (apparent $\alpha = 0^\circ$). But in fact, the agreement between α and θ near $\alpha = 90^\circ$ was good, meaning that no such underestimation occurred.

References