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Abstract

Let X be a Tychonoff space, C(X) be the space of all continuous real-valued functions defined on X and CL(X × R) be the
hyperspace of all nonempty closed subsets of X × R. We prove the following result. Let X be a countably paracompact normal
space. The following are equivalent: (a) dimX = 0; (b) the closure of C(X) in CL(X × R) with the Vietoris topology consists
of all F ∈ CL(X × R) such that F(x) �= ∅ for every x ∈ X and F maps isolated points into singletons; (c) each usco map which
maps isolated points into singletons can be approximated by continuous functions in CL(X × R) with the locally finite topology.
From the mentioned result we can also obtain the answer to Problem 5.5 in [L’. Holá, R.A. McCoy, Relations approximated
by continuous functions, Proc. Amer. Math. Soc. 133 (2005) 2173–2182] and to Question 5.5 in [R.A. McCoy, Comparison of
hyperspace and function space topologies, Quad. Mat. 3 (1998) 243–258] in the realm of normal, countably paracompact, strongly
zero-dimensional spaces. Generalizations of some results from [L’. Holá, R.A. McCoy, Relations approximated by continuous
functions, Proc. Amer. Math. Soc. 133 (2005) 2173–2182] are also given.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let X be a Tychonoff space, C(X) be the space of all continuous real-valued functions defined on X and CL(X×R)

be the hyperspace of all nonempty closed subsets of X × R, where R is the space of real numbers. In our paper we
will identify mappings with their graphs.

The fundamental result concerning approximations of relations by continuous functions is due to Cellina [4], who
studied the approximation of relations in the Hausdorff metric (see also [3,9,10]). In [11] approximations of relations
in the Vietoris and the locally finite topologies were studied. In fact, it was proved in [11] that if X is a countably
paracompact normal space without isolated points and F ∈ CL(X × R) is the graph of cusco map, then F can be
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approximated in the Vietoris topology by continuous functions and if moreover X is also a q-space, then F can be
approximated in the locally finite topology by continuous functions.

In our paper we prove some improvements of the above results and we also give the solution of Problem 5.5
in [11] and Question 5.5 in [13] in the realm of normal, countably paracompact, strongly zero-dimensional spaces.
The following theorem is the main result of our paper.

Theorem. Let X be a countably paracompact normal space. The following are equivalent:

(a) dimX = 0;
(b) Each closed subset F of X × R, satisfying F(x) �= ∅ for every x ∈ X and F maps isolated points into singletons

is in the closure of C(X) in CL(X × R) with the Vietoris topology;
(c) The closure of C(X) in CL(X × R) with the Vietoris topology consists of all F ∈ CL(X × R) such that F(x) �= ∅

for every x ∈ X and F maps isolated points into singletons.

There are other theorems like this theorem in the literature; see [2] about relations that are approximated in the
Hausdorff distance by Baire class one functions, and [13] about the closure of densely continuous forms in the Vi-
etoris topology. Moreover there is a rich literature concerning an approximation of a multifunction from above by a
decreasing sequence of “continuous” multifunctions (see [12,5,6]).

2. Preliminaries

We refer to Beer [1] and Engelking [8] for basic notions. If X and Y are nonempty sets, a set-valued mapping or
multifunction from X to Y is a mapping that assigns to each element of X a (possibly empty) subset of Y . If T is a
set-valued mapping from X to Y , then its graph is {(x, y): y ∈ T (x)}.

If F is a subset of X×Y and x ∈ X, define F(x) = {y: (x, y) ∈ F }. Then we can assign to each subset F of X×Y ,
a set-valued mapping which takes the value F(x) at each point x ∈ X. Then F is the graph of the set-valued mapping.

Let X and Y be topological spaces, and let T be a set-valued mapping from X to Y . Following Christensen [7], T

is a usco map if T is upper semicontinuous and T (x) is a nonempty compact set for all x ∈ X. Similarly, a cusco map
is a usco map such that T (x) is a connected set for all x ∈ X.

To describe the hypertopologies with which we will work, we need to introduce the following notation. Let (X, τ)

be a topological space and CL(X) be the hyperspace of all nonempty closed subsets of X. For U ⊂ X, define

U+ = {
A ∈ CL(X): A ⊂ U

}
and U− = {

A ∈ CL(X): A ∩ U �= ∅}
.

If U is a family of open sets in X, define U− = ⋂{U−: U ∈ U}.
A subbase for the Vietoris (resp., locally finite) topology on CL(X) (see [1]) are the sets of the form U+ with U ∈ τ

and the form U− with U ⊂ τ finite (resp., locally finite).
Throughout the paper X will be a Hausdorff topological space. We use CLV (X × R) and CLLF(X × R) to denote

the hyperspace of nonempty closed subsets of X × R with the Vietoris topology and the locally finite topology,
respectively.

I (X) will denote the set of all isolated points in X.

3. Relations approximated by continuous functions in the Vietoris topology

First, we note that if F is in the closure of C(X) in CLV (X × R) then F(x) �= ∅ for every x ∈ X, and also that F

maps isolated points of X to singletons (see Remark 3.1 in [11]).
The following theorem is the main result of our paper.

Theorem 3.1. Let X be a countably paracompact normal space. The following are equivalent:

(a) dimX = 0;
(b) Each closed subset F of X × R, satisfying F(x) �= ∅ for every x ∈ X and F maps isolated points into singletons

is in the closure of C(X) in CLV (X × R);
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(c) The closure of C(X) in CLV (X × R) consists of all F ∈ CL(X × R) such that F(x) �= ∅ for every x ∈ X and F

maps isolated points into singletons.

Proof. (b) ⇒ (a) Let U1,U2, . . . ,Un be a finite functionally open cover of X. W.l.o.g. we can suppose that all Ui

(i = 1,2, . . . , n) are different from X. The normality of X implies that there is a finite closed cover F1,F2, . . . ,Fn

of X with Fi ⊂ Ui for every i ∈ {1,2, . . . , n}. W.l.o.g. we can suppose that there is no Fi (i = 1,2, . . . , n) such that
Fi is covered by a union of other elements of {Fj : j �= i} (otherwise we change the family {F1,F2, . . . ,Fn} by the
removing of some elements and of course we change also the indexed system). Put

H =
⋃{

Fi × {i}: 1 � i � n
}
.

Then H is a closed set in X × R, and for every x ∈ X, H(x) has finitely many values. For each x ∈ I (X) choose
and fix some i(x) ∈ {1,2, . . . , n} with x ∈ Fi(x). Let

L =
(⋃{{x} × H(x): x /∈ I (X)

}) ∪
(⋃{(

x, i(x)
)
: x ∈ I (X)

})
.

Then of course L is a closed set in X × R, satisfying L(x) �= ∅ for every x ∈ X and L maps isolated points into
singletons.

Put I0 = {i ∈ {1,2, . . . , n}: Fi ⊂ I (X)}. For every i ∈ I0 choose xi ∈ Fi such that all xi (i ∈ I0) are different and
define

M =
(
L \

⋃{{xi} × R: i ∈ I0
}) ∪ {

(xi, i): i ∈ I0
}
.

Then also M is a closed set in X × R, M(x) �= ∅ for every x ∈ X, M maps isolated points into singletons and
M ∩ (Ui × Oi) �= ∅ for every i ∈ {1,2, . . . , n}, where Oi = (i − 1/2, i + 1/2). Now put

V =
⋂

1�i�n

(Ui × Oi)
− ∩

[ ⋃
1�i�n

Ui × Oi

]+
.

Then of course M ∈ V . Thus by (b) there must exist f ∈ C(X) ∩ V . For every k ∈ {1,2, . . . , n}, f −1(Ok) is
nonempty and open. We claim that f −1(Ok) ⊂ Uk for every k ∈ {1,2, . . . , n}. Suppose this is not true. Then there
would be k ∈ {1,2, . . . , n} and x ∈ f −1(Ok) \ Uk . Thus x ∈ ⋃

i �=k Ui ; i.e., f (x) ∈ ⋃
i �=k Oi , a contradiction.

(a) ⇒ (b) Let F ∈ CL(X × R) be such that F(x) �= ∅ for every x ∈ X and F maps isolated points into singletons.
Let W0,Vi , i ∈ I , I finite, be open sets in X × R with

F ∈ W+
0 ∩

⋂{
V −

i : i ∈ I
}
.

Without loss of generality we can suppose that Vi ⊂ W0 for every i ∈ I and Vi = Ui × Ti for every i ∈ I , where
Ui,Ti are open sets in X and R, respectively.

Put I0 = {i ∈ I : Ui ⊂ I (X)}. For every i ∈ I0 choose (xi,F (xi)) ∈ F ∩ (Ui × Ti). For every i ∈ I \ I0 choose
different points xi ∈ Ui (it is possible since for i ∈ I \ I0 Ui contains also a non-isolated point and I is finite). For
every i ∈ I \ I0 choose yi ∈ Ti . For every i ∈ I \ I0 let O(xi) be an open-and-closed neighborhood of xi such that
O(xi) ∩ O(xj ) = ∅ for i �= j , i, j ∈ I \ I0. Put

S = X \
(⋃{

O(xi): i ∈ I \ I0
} ∪ {xi : i ∈ I0}

)
.

Thus S is also open-and-closed; i.e., dimS = 0 and S is a countably paracompact normal space.
Let {In: n ∈ ω} be an enumeration of open intervals with rational endpoints. Let x ∈ S. Choose yx ∈ F(x). There

are open sets Ux in S and n ∈ ω such that yx ∈ In and Ux × In ⊂ W0. For every n ∈ ω put

Un = {Ux : Ux × In ⊂ W0}.
The countable paracompactness of S implies that there is a locally finite open cover {Gi : i ∈ ω} with Gi ⊂ Ui for

every i ∈ ω.
We will define by the induction a sequence {Vi : i ∈ ω} of pairwise disjoint open-and-closed sets such that
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(1) Vn ⊂ Gn for every n ∈ ω, S = ⋃{Vn: n ∈ ω};
(2)

⋃{Gk \ ⋃
i�n Vi : k � n + 1} is open-and-closed for every n ∈ ω;

(3)
⋃{Gk \ ⋃

i�n Vi : k � n + 1} ∪ ⋃
i�n Vi = S for every n ∈ ω.

The sets G1 and
⋃{Gk: k � 2} form an open cover of S. Since dimS = 0 and S is normal, there is a finite open

refinement {V 1
i : i ∈ I1}, I1 finite, such that V 1

i ∩ V 1
j = ∅ for i �= j , i, j ∈ I1. Thus all V 1

i are open-and-closed sets.
Put

V1 =
⋃{

V 1
i : V 1

i ⊂ G1, i ∈ I1
}
.

Thus also V1 is an open-and-closed set,
⋃{Gk \ V1: k � 2} is open-and-closed too, and V1 ∪ ⋃{Gk \ V1: k � 2}

= S.
Suppose V1,V2, . . . , Vn were defined such that V1,V2, . . . , Vn are open-and-closed, Vi ∩Vj = ∅ for i �= j , i, j � n,⋃{Gk \ ⋃

i�n Vi : k � n + 1} is open-and-closed and
⋃

i�n Vi ∪ ⋃{Gk \ ⋃
i�n Vi : k � n + 1} = S.

The set H = ⋃{Gk \ ⋃
i�n Vi : k � n + 1} is normal, dimH = 0 and sets Gn+1 \ ⋃

i�n Vi ,
⋃{Gk \ ⋃

i�n Vi : k �
n + 2} form a finite open cover of H .

Since dimH = 0 and H is normal there is a finite open refinement {V n+1
i : i ∈ In+1}, In+1 finite, of Gn+1 \⋃

i�n Vi

and
⋃{Gk \ ⋃

i�n Vi : k � n + 2} with V n+1
i ∩ V n+1

j = ∅ for i �= j , i, j ∈ In+1. Put

Vn+1 =
⋃{

V n+1
i : V n+1

i ⊂ Gn+1 \
⋃
i�n

Vi, i ∈ In+1

}
.

Then of course Vn+1 is open-and-closed, V1,V2, . . . , Vn+1 are pairwise disjoint and
⋃

i�n+1 Vi ∪ ⋃{Gk \⋃
i�n+1 Vi : k � n + 2} = S.
To show that

⋃{Vi : i ∈ ω} = S, let x ∈ S. There are Gi1,Gi2 , . . . ,Gin (i1 � i2 � · · · � in) with x ∈ ⋂{Gik : k � n}.
Thus x /∈ ⋃{Gi : i � in + 1}, i.e., x ∈ ⋃{Vi : i � in + 1}.

For every n ∈ ω choose sn ∈ In. Define the function f as follows: f (s) = sn for s ∈ Vn, f (xi) = F(xi) for i ∈ I0
and f (x) = yi for x ∈ O(xi), i ∈ I \ I0. Then of course f is a continuous function and f ∈ W+

0 ∩⋂{V −
i : i ∈ I }. �

From Theorem 3.1 we can also obtain the answer to Problem 5.5 in [11] and to Question 5.5 in [14] concerning the
closure of C(X) in CLV (X × R) for countably paracompact normal spaces X with dimX = 0.

4. Relations approximated by continuous functions in the locally finite topology

We prove an analog of Theorem 3.1 for locally finite topology.

Theorem 4.1. Let X be a countably paracompact normal space. The following are equivalent:

(a) dimX = 0;
(b) Each usco map which maps isolated points into singletons is in the closure of C(X) in CLLF(X × R).

To prove Theorem 4.1 we will need the following lemma.

Lemma 4.2. Let X be a countably paracompact space and let F ∈ CL(X × R) be the graph of a usco map. If G is a
locally finite family in X × R with F ∈ G− then there is a locally finite family V = {Uλ × Gλ: λ ∈ Λ} in X × R with
F ∈ V− ⊂ G− and {Uλ: λ ∈ Λ} locally finite in X.

Proof. There is a locally bounded set W in X × R such that F ⊂ W (W is locally bounded provided that for every
x ∈ X, there exists a neighborhood O of x in X and a compact set K ⊂ R with W(z) ⊂ K for every z ∈ O).

Put V = {O ∩ W : O ∈ G}. Without loss of generality we can suppose that V = {Uλ × Gλ: λ ∈ Λ} and of course
(Uλ × Gλ) ⊂ W for every λ ∈ Λ and V is a locally finite family in X × R. To prove that {Uλ: λ ∈ Λ} is a locally
finite family in X, let x ∈ X. There are a neighborhood O of x and a compact set K ⊂ R with W(z) ⊂ K for every
z ∈ O . Since {Uλ × Gλ: λ ∈ Λ} is a locally finite family in X × R there is a neighborhood H ⊂ O of x such that the
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set {λ ∈ Λ: (Uλ × Gλ) ∩ (H × K) �= ∅} is finite. We claim that {λ ∈ Λ: Uλ ∩ H �= ∅} is finite. Suppose there is an
infinite set I ⊂ Λ with Un ∩ H �= ∅ for every n ∈ I . Let xn ∈ Un ∩ H for each n ∈ I . Then, for each n ∈ I , we have

{xn} × Gn ⊂ Un × Gn ⊂ W.

Thus Gn ⊂ W(xn) ⊂ K . It follows that (Un × Gn) ∩ (H × K) �= ∅ for every n ∈ I , a contradiction. �
Proof of Theorem 4.1. (a) ⇒ (b) Let W be an open set in X × R and V be a locally finite family of open sets in
X × R with

F ∈ W+ ∩ V−.

Let V = {Vλ: λ ∈ Λ}. Without loss of generality we can suppose that Vλ = Uλ × Gλ for every λ ∈ Λ. By Lemma 4.2
we can suppose that {Uλ: λ ∈ Λ} is a locally finite family in X. We can suppose that | Λ |� ℵ0; the finite case is
known (Theorem 3.1). Put

β = {
λ ∈ Λ: Uλ ⊂ I (X)

}
.

For every λ ∈ β let (xλ,F (xλ)) ∈ Uλ × Gλ. Put L = {xλ: λ ∈ β}. Then of course L is closed-and-open. For every
λ ∈ Λ \ β , Uλ contains a non-isolated point. There is a closed discrete set E ⊂ X \ I (X) with

E ∈
⋂

{U−
λ : λ ∈ Λ \ β} and with |E| = |λ \ β|.

There is a discrete family {O(e): e ∈ E} of open and closed neighborhoods of E (X is zero-dimensional). For
every e ∈ E put A(e) = O(e) ∩ ⋂{Uλ | e ∈ Uλ} and Λ(e) = {λ ∈ Λ \ β | e ∈ Uλ} and choose different xλ

e ∈ A(e) for
every λ ∈ Λ(e). For every λ ∈ Λ \ β choose also yλ ∈ Gλ.

Now for every e ∈ E and λ ∈ Λ(e) let P(xλ
e ) ⊂ A(e) be an open-and-closed neighborhood of xλ

e such that
{P(xλ

e )|λ ∈ Λ(e)} is a pairwise disjoint family. Thus the family{
P

(
xλ
e

)
: e ∈ E, λ ∈ Λ(e)

}
is a discrete family. Put S = X \ L \ ⋃{P(xλ

e ): e ∈ E,λ ∈ Λ(e)}. Then S is closed-and-open. Thus dimS = 0 and S

is a countably paracompact normal space. By Theorem 3.1 there is

g ∈ (
W ∩ (S × R)

)+ ∩ C(S).

Define the function f as follows: f (s) = g(s) for every s ∈ S, f (x) = F(x) for x ∈ L and f (x) = yλ for every
x ∈ P(xλ

e ), e ∈ E,λ ∈ Λ(e). It is clear that f is continuous and f ∈ W+ ∩ V−.
(b) ⇒ (a) Suppose that (a) does not hold. By Theorem 3.1 there is F ∈ CL(X × R) such that F(x) �= ∅ for every

x ∈ X, F maps isolated points into singletons and there are open sets W0,W1, . . . ,Wn in X × R with

F ∈ W+
0 ∩ W−

1 ∩ · · · ∩ W−
n and C(X) ∩ W+

0 ∩ W−
1 ∩ · · · ∩ W−

n = ∅.

We will define a usco map H which maps isolated points into singletons and H ∈ W+
0 ∩ W−

1 ∩ · · · ∩ W−
n .

For every i = 1,2, . . . , n choose (xi, yi) ∈ F ∩ Wi . There is an open set W in X × R with F ⊂ W ⊂ W ⊂ W0.
Let {In: n ∈ ω} be an enumeration of open intervals with rational endpoints. For every x ∈ X choose yx ∈ F(x),

an open set Ox and n ∈ ω such that yx ∈ In, (Ox × In) ⊂ W . For every n ∈ ω put

On =
⋃{

Ox : (Ox × In) ⊂ W
}
.

The countable paracompactness of X implies that there is a locally finite open cover {Vi : i ∈ ω} with Vi ⊂ Oi for
every i ∈ ω. Put

L =
⋃

{Vi × Ii : i ∈ ω} and L0 = L.

Then L0 ⊂ W0 and L0 is an usco map, since for every x ∈ X there is a neighborhood O∗
x and a compact set Kx

such that L0(z) ⊂ Kx for every z ∈ O∗
x . Now put

H =
(

L0 ∪
⋃ {

(xi, yi)
}) \

(⋃{{x} × (
R \ F(x)

)
: x ∈ I (X)

})
.

1�i�n
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Then H is an usco map which maps isolated points into singletons and H ∈ W+
0 ∩ W−

1 ∩ · · · ∩ W−
n , a contradic-

tion. �
The following result is an improvement of Lemma 3.5 in [11] and shows that for q-spaces to be a usco map is a

necessary condition for an element F ∈ CL(X × R) to be in the closure of C(X) in CLLF(X × R); where a q-space
is a space in which every point has a sequence (Un) of neighborhoods such that if xn ∈ Un for each n, then (xn) has
a cluster point. This concept of q-space was introduced in [16] and has been useful, among other things, for studying
function spaces (see [15]).

Proposition 4.3. Let X be a q-space. If F ∈ CL(X × R) is in the closure of C(X) in CLLF(X × R), then F is locally
bounded; i.e., F is the graph of a usco map.

Proof. Suppose F is not locally bounded; i.e., there is x ∈ X such that for every open neighborhood O of x, F(O)

is an unbounded set in R. Let {On: n ∈ ω} be a sequence of neighborhoods of x from the definition of the q-space.
Choose x1 ∈ O1 and y1 ∈ F(x1) with |y1| > 1. Define by the induction points xn ∈ On,n ∈ ω, and points yn ∈ F(xn)

with |yn+1| > max{|yn|, n}. The family {On × (yn − 1/n, yn + 1/n): n ∈ ω} is a locally finite family and

F ∈ {
On × (yn − 1/n, yn + 1/n): n ∈ ω

}−
.

Thus there must exist f ∈ C(X) ∩ {On × (yn − 1/n, yn + 1/n): n ∈ ω}−. Let (bn, f (bn)) ∈ On × (yn − 1/n, yn +
1/n) for every n ∈ ω. By the definition of the q-space, the sequence {bn: n ∈ ω} must have a cluster point b ∈ X. Now
we have a contradiction with the continuity of f at b. �

The following example shows that the condition of a q-space in Proposition 4.3 is essential.

Example 4.4. Let W be the set of all ordinal numbers less than or equal to the first uncountable ordinal number ω1
with the usual topology. Let L be the set of all limit ordinal numbers different from ω1. Put X = W \ L and equip X

with the induced topology from W . X is not a q-space. Let F ∈ CL(X × R) be such that F(ω1) = R and F(x) = {0}
otherwise. Then of course F cannot be locally bounded, but F is approximated by continuous functions in the locally
finite topology.

We have the following description of the closure of C(X) in CLLF(X×R) for strongly zero-dimensional countably
paracompact normal q-spaces X.

Theorem 4.5. Let X be a countably paracompact normal q-space with dimX = 0, and let F ∈ CL(X × R). Then the
following are equivalent:

(a) F is in the closure of C(X) in CLLF(X × R);
(b) F is the graph of a usco map which maps isolated points into singletons.

The following theorem is an improvement of Theorem 4.6 in [11]. We omit the proof of it since it is based on ideas
from Lemmas 4.1, 4.3 from [11] and Theorem 4.1 and Lemma 4.2 of our paper.

Theorem 4.6. Let X be a countably paracompact normal space. If F ∈ CL(X ×R) is the graph of a cusco map which
maps isolated points into singletons, then F is in the closure of C(X) in CLLF(X × R).

We finish with the following improvement of Theorem 4.7 in [11].

Theorem 4.7. Let X be a countably paracompact normal q-space which is locally connected, and let F ∈ CL(X×R).
Then the following are equivalent:

(a) F is in the closure of C(X) in CLLF(X × R);
(b) F is the graph of a cusco map which maps isolated points into singletons.
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