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Abstract

We derive the multi-field, micropolar-type continuum theory for the two-dimensional model of crystal having finite-
size particles. Continuum theories are usually valid for waves with wavelength much larger than the size of primitive cell
of crystal. By comparison of the dispersion relations, it is demonstrated that in contrast to the single-field continuum
theory constructed in our previous paper the multi-field generalization is valid not only for long but also for short
waves. We show that the multi-field model can be used to describe spatially localized short- and long-wavelength dis-
tortions. Short-wave external fields of forces and torques can be also naturally taken into account by the multi-field
continuum theory.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Continuum approach gives many advantages in physics and mechanics of periodic and aperiodic struc-
tures with a great number of structural elements interacting with each other. An important problem of
mechanics of generalized continua is to take into account the most essential information about the micro-
scopic structure of matter.
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The classical elasticity theory takes into account three degrees of freedom for an infinitesimally small
volume, i.e., three components of displacement vector. However, there are many practically important
materials having almost rigid atomic clusters with relatively weak interaction between them and one has
to consider not only translational but also rotational and perhaps some other degrees of freedom to char-
acterize positions, orientations, and distortions of the particles. Of particular interest are the materials
where the framework of rigid clusters is organized in a way that translational and rotational degrees of free-
dom are coupled (see, e.g., Fig. 1). Some important classes of such materials are the polymorphs of silica
(SiO2) where the structural units, SiO4 tetrahedra, shear oxygen atoms in their corners and the energy cost
of deformation of tetrahedra is much greater than the cost of their mutual rotations. It has been demon-
strated that the rotational degrees of freedom can be responsible for the displacive type of phase transition
and incommensurate phase of quartz (Vallade et al., 1992; Wells et al., 2002; Dmitriev et al., 2003a), neg-
ative Poisson ratio of cristobalite and quartz (Keskar and Chelikowsky, 1993; Smirnov and Mirgorodsky,
1997; Kimizuka et al., 2000; Alderson and Evans, 2002), and negative thermal expansion of beta-quarts
(Smirnov, 1999). Similar effects can be observed in other materials with microscopic rotations, such as per-
ovskites, SrTiO3, containing corner-linked TiO6 octahedra, KH2PO4 (KDP) family of crystals with com-
paratively rigid PO4 tetrahedra and others.

Major physical effects related to the materials with rotational degrees of freedom can be discussed the-
oretically in frame of the rigid-unit-mode (RUM) model (Swainson and Dove, 1993; Dove et al., 1997;
Wells et al., 2002). The RUMs are the low-frequency modes in which the clusters can move without distor-
tion. In a real situation, any mode can include components of displacive, rotational and distortive motion,
with the relative proportions of the different types varying more or less continuously from low-frequency
modes with little distortive component to high-frequency modes with little rigid-unit component (Wells
et al., 2002). The origin of auxetic behaviour (i.e., negative Poisson ratio) of materials with finite size par-
ticles (molecules) has been discussed in frame of 2D models (Vasiliev et al., 2002; Wojciechowski et al.,
2003; Wojciechowski, 2003). Incommensurate structures have been studied in frame of 1D and 2D elasti-
cally hinged molecule (EHM) models where the mutual rotations of the finite size particles are very impor-
tant and all the phonon modes are of nearly RUM type (Dmitriev et al., 1997, 1998, 2000, 2003b; Braun
and Kivshar, 2004).
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Fig. 1. (a) The 2D microscopic model of a crystal. Absolutely rigid square particles are bound elastically and each particle experiences
the action of the rotational background potential. The lattice spacing is h, and a, a are the size and the orientation angle of particles,
respectively. C1 and C2 are the elastic constants for the corner-to-corner and center-to-center bonds, respectively. (b) Definition of
displacements u, v and u, and notations used in calculation of the potential energy of the elastic bonds, Eq. (3).
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Construction of the continuum theories taking into account microscopic rotations dates back to the
work by Cosserat and Cosserat (1909). Cosserat and micropolar continuum theories, in which the field
of rotations is incorporated in addition to the displacement fields, have found their applications in many
branches of physics and mechanics such as mechanics of granular media (Mühlhaus and Oka, 1996; Suiker
et al., 2001), structured materials (Lakes, 1991; Forest et al., 2001), repetitive beam lattice structures (Noor,
1988), physics of dielectric crystals (Pouget et al., 1986; Eringen, 1999; Maugin, 1999; Vasiliev et al., 2002),
and others. 2D continuum models for media with microscopic rotations have been developed also in fabric
mechanics (Kuwazuru and Yoshikawa, 2004a,b).

Another idea of generalization of the classical continuum theory is taking into account higher order gra-
dient terms (Mühlhaus and Oka, 1996; Fleck and Hutchinson, 1997, 2001; Aifantis, 2003; Peerlings et al.,
2001; Askes et al., 2002). A beautiful exposition of some other theories of non-classical material continua
may be found in the review by Rogula (1985).

In this paper we construct a multi-field micropolar continuum theory for the 2D model of KDP crystal
studied in our previous work (Vasiliev et al., 2002). Crystalline solids have translational periodicity and
usually the basic idea is to start from a primitive (minimum volume) periodic element of the structure, then
define the most important degrees of freedom in it, and finally, to formulate a continuum theory in terms of
these degrees of freedom under the assumption that they vary slowly in space. However, for the oriented
media, a strong coupling of long and short waves takes place very often and one may need a theory capable
of description of both long and short waves. Such a theory can be constructed considering from more than

one primitive translational cells in an extended periodic cell. To construct a N-field continuum theory we
consider a macro-cell containing N primitive cells. The number of degrees of freedom in the macro-cell
is N times larger than in a primitive cell and consequently, the number of continuum equations of the
multi-field theory is N times larger than that for a conventional theory, which will be called single-field the-
ory meaning that there is only one field for each component of vector of generalized displacements. As for
the discrete system, consideration of translational cell with more than one primitive cell adds no new phys-
ical details. However, continuum analogue constructed for an extended periodic cell with a larger number
of fields used to describe each component of displacement gives a possibility to describe the discrete system
more accurately (Il�iushina, 1969, 1972; Vasiliev, 1994, 1996).

This paper is organized as follows. In Section 2, the 2D discrete model of KDP crystal with finite size
particles is described. In Sections 3 and 4, we derive the discrete equations of motion for a periodic cell con-
taining two particles; then we derive the corresponding two-field micropolar continuum theory; and, for the
sake of comparison, obtain the dispersion relations for the discrete model and continuum theories. In Sec-
tion 5, we derive the four-field micropolar theory and corresponding dispersion relations. In Section 6,
multi-field modelling of localized distortions in crystal is considered. In Section 7 we generalize the obtained
results and discuss the difference between the high-gradient and the multi-field continuum theories. Section
8 concludes the paper.
2. Model of crystal with finite size particles

We consider the 2D microscopic model of KDP crystal offered in Ishibashi and Iwata (2000) and Vasi-
liev et al. (2002). The model consists of absolutely rigid elastically bound square particles and each particle
experiences the action of the rotational background potential (see Fig. 1(a)). The geometry of the model can
be described by two parameters, the lattice spacing, h, and the parameter
A ¼ affiffiffi
2

p sin a; ð1Þ
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where a is the size of particles and a is the orientation angle of particles. Elastic bonds with coefficient C1

connect the corners of each particle with the nearest corners of nearest neighbours. Elastic bonds with coef-
ficient C2 connect the centres of particles with the centres of next-nearest neighbours. Each particle has
mass M, moment of inertia I, and experiences the action of the rotational background potential with coef-
ficient c. Particles have three degrees of freedom, two components of displacement vector, u, v, and the
angle of rotation u.

In order to obtain equations of motion for pth particle, the following Lagrangian is constructed:
Lp ¼
1

2
M _u2p þ

1

2
M _v2p þ

1

2
I _u2

p �
X

Eðp;iÞðq;jÞ �
1

2
cu2

p þ f xup þ f yvp þ f uup; ð2Þ
where up, vp are the components of displacements of the center gravity of pth particle and up is the angle of
rotation of this particle; the first three terms give the kinetic energy of the pth particle, the fourth term de-
scribes the potential energy of eight elastic bonds connecting the ith node of pth particle with the jth node of
qth particle, the fifth term is the energy of particle in the background potential, and the last three terms give
the work of external force with components fx, fy and external torque fu. Note that the external forces were
not taken into account in Vasiliev et al. (2002).

Potential energy of the elastic bond connecting the ith node of p th particle with the jth node of qth par-
ticle is E(p,i)(q,j) = (C/2)(L1 � L0)

2, where C is the bond stiffness, L0 and L1 are the bond lengths before and
after deformation, respectively. We linearise the change in the bond length, DL = L1 � L0, with respect to
displacements and rotations assuming that they are small and represent the potential energy in the form
Eðp;iÞðq;jÞ ¼
1

2
C ðuq � upÞ cos cþ ðvq � vpÞ sin cþ riup sinðci � cÞ � rjuq sinðcj � cÞ
� �2 ð3Þ
where C = C1 or C = C2 for corner-to-corner and for center-to-center bonds, respectively, and parameters
ri, rj, c, ci, cj are related to the undeformed geometry (see Fig. 1(b)). Particularly, ri ¼ rj ¼ a=

ffiffiffi
2

p
and

ri = rj = 0 for corner-to-corner and center-to-center bonds, respectively; ci is the angle between x-axis
and the radius vector connecting the center of mass of pth particle with its i th node; c is the angle between
x-axis and the direction from the node i to the node j. Parameters ci, cj and c can take values lp/2 ± a and
lp/4, respectively, with an integer l.
3. Discrete model with two particles in a periodic cell

In Vasiliev et al. (2002), we used a unit cell with one particle, (m,n), to write down the three discrete
equations of motion and to derive a single-field continuum theory from the discrete equations.

Here we use a cell containing two particles with coordinates (m,n) and (m + 1,n) respectively (Fig. 1). In
the present case, each particle has subscript index s which is 0 if the sum m + n is even and it is 1 if the sum
is odd. There are six degrees of freedom per unit cell, us,vs,us, s = 0,1. We also use this subscript index for
forces and torques applied to the particles.

For the two particles in a periodic cell we construct the Lagrangian Eq. (2) and derive six equations of
motion. Equations for particles with s = 0 read
M€um;n0 ¼ C1 Dxxu
m;n
1 þ 2um;n1 � 2um;n0ð Þ þ 1

2
C2 Dum;n0 þ Dxyv

m;n
0

� �
� AC1Dxu

m;n
1 þ f x

0 ;

M€vm;n0 ¼ C1 Dyyv
m;n
1 þ 2vm;n1 � 2vm;n0

� �
þ 1

2
C2 Dxyu

m;n
0 þ Dvm;n0

� �
� AC1Dyu

m;n
1 þ f y

0 ;

I €um;n
0 ¼ A2C1 Dxxu

m;n
1 þ Dyyu

m;n
1 þ 4um;n

1 � 4um;n
0

� �
� AC1 Dxu

m;n
1 þ Dyv

m;n
1

� �
� cum;n

0 þ f u
0 .

ð4Þ
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Here we have introduced the following notations for finite differences:
Dxum;ns ¼ umþ1;n
s � um�1;n

s ; Dxxum;ns ¼ umþ1;n
s � 2um;ns þ um�1;n

s ;

Dyum;ns ¼ um;nþ1
s � um;n�1

s ; Dyyum;ns ¼ um;nþ1
s � 2um;ns þ um;n�1

s ;

Dxyum;ns ¼ umþ1;nþ1
s � um�1;nþ1

s � umþ1;n�1
s þ um�1;n�1

s ;

Dum;ns ¼ umþ1;nþ1
s þ um�1;nþ1

s þ umþ1;n�1
s þ um�1;n�1

s � 4um;ns .

ð5Þ
Three equations for particles with s = 1 can be obtained from Eq. (4) substituting 0 ! 1, 1 ! 0, m ! m + 1
and A! �A.

Dispersion relations for free vibrations, f x
s ¼ f y

s ¼ f u
s ¼ 0, for the discrete model with one particle in a

periodic cell have been derived in Vasiliev et al. (2002). In order to derive similar dispersion relations for the
discrete system with two particles in a periodic cell we consider solution of the form
um;ns ðtÞ ¼ eus exp½iðxt � mKx � nKyÞ�;
vm;ns ðtÞ ¼ evs exp½iðxt � mKx � nKyÞ�;
um;n

s ðtÞ ¼ eus exp½iðxt � mKx � nKyÞ�;
ð6Þ
where Kx = hkx, Ky = hky, with kx, ky being the wave numbers, x is the angular frequency, and eus, evs, eus

are the amplitudes.
Substituting Eq. (6) into Eq. (4) and similar equations for s = 1, we obtain six linear equations for ampli-

tudes. In terms of new variables,
eU 0 ¼
1

2
eu1 þ eu0ð Þ; eV 0 ¼

1

2
ev1 þ ev0ð Þ; eU0 ¼

1

2
eu1 � eu0ð Þ;

eU 1 ¼
1

2
eu1 � eu0ð Þ; eV 1 ¼

1

2
ev1 � ev0ð Þ; eU1 ¼

1

2
eu1 þ eu0ð Þ;

ð7Þ
the six equations split into two independent sets of equations of the form,
ðas;0 þ as;2 þMx2
s Þ eU s þ as;3 eV s þ as;4ieUs ¼ 0;

as;3 eU s þ as;1 þ as;2 þMx2
s

� �eV s þ as;5ieUs ¼ 0;

as;4 eU s þ as;5 eV s þ as;6 þ Ix2
s

� �
ieUs ¼ 0;

ð8Þ
where s = 0,1.
For s = 0 the coefficients in Eq. (8) are
a0;0 ¼ 2C1ðcosKx � 1Þ; a0;1 ¼ 2C1ðcosKy � 1Þ; a0;2 ¼ 2C2ðcosKx cosKy � 1Þ;
a0;3 ¼ �2C2 sinKx sinKy ; a0;4 ¼ 2AC1 sinKx; a0;5 ¼ 2AC1 sinKy ;

a0;6 ¼ 2A2C1ð� cosKx � cosKy � 2Þ � c;

ð9Þ
which coincides with the coefficients derived in Vasiliev et al. (2002) for the case of one particle in a periodic
cell.

For s = 1 the coefficients are
a1;0 ¼ 2C1ð� cosKx � 1Þ; a1;1 ¼ 2C1ð� cosKy � 1Þ; a1;2 ¼ 2C2ðcosKx cosKy � 1Þ;
a1;3 ¼ �2C2 sinKx sinKy ; a1;4 ¼ �2AC1 sinKx; a1;5 ¼ �2AC1 sinKy ;

a1;6 ¼ 2A2C1ðcosKx þ cosKy � 2Þ � c.

ð10Þ
Equalizing the determinant of Eq. (8) with s = 0 and s = 1 to zero one obtains the six branches of the dis-
persion relations. Substitutions Kx ! p � Ky and Ky ! p � Kx in the coefficients a1,m given by Eq. (10) lead
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to the same determinant for dispersion relations as for the coefficients a0,m given by Eq. (9). Thus, the dis-
persion relations derived for two particles in a periodic cell define six surfaces in the reduced first Brillouin
zone, kKxj þ jKyk < p. Three of them, having coefficients a0,m, coincide with the surfaces for discrete model
with one particle in a periodic cell derived in Vasiliev et al. (2002). Three other, having coefficients a1,m, are
the same surfaces folded with respect to the four planes Kx ± Ky = ±p from the region kKxj þ jKyk > p,
jKxj < p, jKyj < p.
4. Two-field theory

We introduce two vector-functions {us(x,y, t),vs(x,y, t),us(x,y, t)}, s = 0,1, in order to describe the dis-
placements of the particles marked by the indices 0 and 1.

We assume that um;ns ðtÞ; vm;ns ðtÞ;um;n
s ðtÞ

� �
¼ usðx; y; tÞ; vsðx; y; tÞ;usðx; y; tÞf gjx¼mh;y¼nh; s ¼ 0; 1.

Substituting in Eq. (4) discrete values with
wm�1;n�1
s ðtÞ ! wsðx� h; y � h; tÞ ¼

X
i

X
j

ð�hÞi

i!
ð�hÞj

j!
oiþjwsðx; y; tÞ

oxioxj
ð11Þ
with the use of the notations Eq. (5), we obtain a high-gradient multi-field theory. Assuming that the dis-
placement in the discrete model vary slowly from one macro-cell to another and using the Taylor series
expansions, Eq. (11), for field functions up to second order terms, we come to the six equations of the
two-field long-wave theory. The first three equations are
Mu0;tt ¼ C1 h2u1;xx þ 2u1 � 2u0
� �

þ C2h
2 Du0 þ 2v0;xy
� �

� 2AC1hu1;x þ f x
0 ;

Mv0;tt ¼ C1 h2v1;yy þ 2v1 � 2v0
� �

þ C2h
2 2u0;xy þ Dv0
� �

� 2AC1hu1;y þ f y
0 ;

Iu0;tt ¼ A2C1 h2Du1 þ 4u1 � 4u0

� �
� 2AC1hðu1;x þ v1;yÞ � cu0 þ f u

0 ;

ð12Þ
where subscript indices after commas denote the partial derivatives with respect to coordinates and the
notation Dw � wxx + wyy was used. Three other equations can be obtained substituting 0 ! 1, 1 ! 0,
A! �A.

In terms of the following new variables and corresponding combinations of the external forces and
torques:
Us ¼
1

2
½u1 þ ð�1Þsu0�; V s ¼

1

2
½v1 þ ð�1Þsv0�; Us ¼

1

2
½u1 � ð�1Þsu0�;

F x
s ¼

1

2
½f x

1 þ ð�1Þsf x
0 �; F y

s ¼
1

2
½f y

1 þ ð�1Þsf y
0 �; F u

s ¼ 1

2
½f u

1 � ð�1Þsf u
0 �;

ð13Þ
the six coupled equations of the continuum theory split into two independent groups. Equations for func-
tions U0, V0, U0 are
MU 0;tt ¼ C1h
2U 0;xx þ C2h

2ðDU 0 þ 2V 0;xyÞ � 2AC1hU0;x þ F x
0;

MV 0;tt ¼ C1h
2V 0;yy þ C2h

2ð2U 0;xy þ DV 0Þ � 2AC1hU0;y þ F y
0;

IU0;tt ¼ 2AC1hðU 0;x þ V 0;yÞ � A2C1ðh2DU0 þ 8U0Þ � cU0 þ F u
0 .

ð14Þ
These equations coincide with single-field equations obtained in Vasiliev et al. (2002). However, in the pres-
ent case we have three more equations for the functions U1, V1, U1,
MU 1;tt ¼ �C1ðh2U 1;xx þ 4U 1Þ þ C2h
2ðDU 1 þ 2V 1;xyÞ þ 2AC1hU1;x þ F x

1;

MV 1;tt ¼ �C1ðh2V 1;yy þ 4V 1Þ þ C2h
2ð2U 1;xy þ DV 1Þ þ 2AC1hU1;y þ F y

1;

IU1;tt ¼ �2AC1hðU 1;x þ V 1;yÞ þ A2C1h
2DU1 � cU1 þ F u

1 .

ð15Þ
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Dispersion relations for the continuum theory can be found substituting
Usðx; y; tÞ ¼ eU s exp½iðxt � kxx� kyyÞ�;

V sðx; y; tÞ ¼ eV s exp½iðxt � kxx� kyyÞ�;

Usðx; y; tÞ ¼ eUs exp½iðxt � kxx� kyyÞ�;

ð16Þ
into Eqs. (14) and (15) for free vibrations, F x
s ¼ F y

s ¼ F u
s ¼ 0. This gives the set of linear algebraic equations

of the form of Eq. (8) with coefficients
c0;0 ¼ �C1K2
x ; c0;1 ¼ �C1K2

y ; c0;2 ¼ C2ð�K2
x � K2

yÞ; c0;3 ¼ �2C2KxKy ;

c0;4 ¼ 2AC1Kx; c0;5 ¼ 2AC1Ky ; c0;6 ¼ A2C1ðK2
x þ K2

y � 8Þ � c
ð17Þ
and
c1;0 ¼ C1ðK2
x � 4Þ; c1;1 ¼ C1ðK2

y � 4Þ; c1;2 ¼ C2ð�K2
x � K2

yÞ; c1;3 ¼ �2C2KxKy ;

c1;4 ¼ �2AC1Kx; c1;5 ¼ �2AC1Ky ; c1;6 ¼ A2C1ð�K2
x � K2

yÞ � c.
ð18Þ
The coefficients c0,m are the Taylor series expansions of the coefficients a0,m for discrete model, Eq. (9), in
the vicinity of the point (Kx,Ky) = (0,0). The coefficients c1,m are nothing but second order Taylor expan-
sions of the coefficients a1,m, Eq. (10), in the vicinity of the point (Kx,Ky) = (0,0) and, in accordance to the
statement that was made in the conclusion of Section 3, corresponding dispersion surfaces folded with re-
spect to the planes Kx ± Ky = ±p approximate the dispersion surfaces of the discrete model in the vicinity
of the points (Kx,Ky) = (±p,±p).

Thus, the two-field theory contains three Eq. (14) of the single-field micropolar theory, Eq. (14), which
describes the long-wavelength solutions and three more equations, Eq. (15), describing short-wave solutions
with the wave numbers near the corners of the first Brillouin zone, (±p,±p). The two-field theory gives the
largest error near the points (±p, 0) and (0,±p) of the original first Brillouin zone. In Section 5 we derive the
four-field theory which improves the description of the vibration spectrum in the vicinity of these points.
5. Four-field theory

We consider the periodic cell containing four particles with coordinates (m,n), (m + 1,n), (m + 1,n + 1),
and (m,n + 1) (Fig. 1(a)). Particles with (m,n) = (2i, 2j), (m,n) = (2i + 1,2j), (m,n) = (2i + 1,2j + 1), and
(m,n) = (2i, 2j + 1) have indices s = 0, 1,2, and 3, respectively.

We construct the discrete Lagrangian Eq. (2) for four particles of the periodic cell and derive 12 equa-
tions of motion having structure similar to Eq. (4).

In order to derive the four-field theory we introduce four vector-functions {us(x,y, t),vs(x,y, t),us(x,y, t)},
s = 0, . . . , 3. Then, by using Taylor series expansions, we come to the 12 coupled equations of four-field the-
ory in the same way as it was described in Section 4 for the two-field theory.

We introduce new variables
U 0 ¼
1

4
ðu0 þ u1 þ u2 þ u3Þ; U 1 ¼

1

4
ðu1 � u0 þ u3 � u2Þ;

U 2 ¼
1

4
ðu1 � u0 þ u2 � u3Þ; U 3 ¼

1

4
ðu3 � u0 þ u2 � u1Þ

ð19Þ
and similar combinations Vs of displacements vs and combinations F x
sðF y

sÞ of forces f x
s ðf y

s Þ. We also intro-
duce the following new variables for the rotational degrees of freedom:
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U0 ¼
1

4
ðu1 � u0 þ u3 � u2Þ; U1 ¼

1

4
ðu0 þ u1 þ u2 þ u3Þ;

U2 ¼
1

4
ðu3 � u0 þ u2 � u1Þ; U3 ¼

1

4
ðu1 � u0 þ u2 � u3Þ

ð20Þ
and similar combinations F u
s of torques f u

s .
In terms of new variables the 12 equations of motion split into four independent groups. For U0, V0, U0,

equations coincide with Eq. (14) and for U1, V1, U1, they coincide with Eq. (15).
We have six new equations, for U2, V2, U2,
MU 2;tt ¼ �C1ðh2U 2;xx þ 4U 2Þ � C2½h2ðDU 2 þ 2V 2;xyÞ þ 4U 2� � 2AC1hU2;x þ F x
2;

MV 2;tt ¼ C1h
2V 2;yy � C2½h2ð2U 2;xy þ DV 2Þ þ 4V 2� þ 2AC1hU2;y þ F y

2;

IU2;tt ¼ 2AC1hðU 2;x � V 2;yÞ þ A2C1½h2ðU2;xx � U2;yyÞ � 4U2� � cU2 þ F u
2

ð21Þ
and U3, V3, U3,
MU 3;tt ¼ C1h
2U 3;xx � C2½h2ðDU 3 þ 2V 3;xyÞ þ 4U 3� þ 2AC1hU3;x þ F x

3;

MV 3;tt ¼ �C1ðh2V 3;yy þ 4V 3Þ � C2½h2ð2U 3;xy þ DV 3Þ þ 4V 3� � 2AC1hU3;y þ F y
3;

IU3;tt ¼ 2AC1hð�U 3;x þ V 3;yÞ þ A2C1½h2ð�U3;xx þ U3;yyÞ � 4U3� � cU3 þ F u
3 .

ð22Þ
Substitution of Eq. (16) with s = 0, . . . , 3 into Eqs. (14), (15), (21) and (22) gives the possibility to obtain the
dispersion relations from four independent sets of three linear algebraic equations. Coefficients of the sets
for s = 0 and s = 1 coincide with that given by Eqs. (17) and (18), respectively.

For s = 2 coefficients read
c2;0 ¼ C1ðK2
x � 4Þ; c2;1 ¼ �C1K2

y ; c2;2 ¼ C2ðK2
x þ K2

y � 4Þ; c2;3 ¼ 2C2KxKy ;

c2;4 ¼ 2AC1Kx; c2;5 ¼ �2AC1Ky ; c2;6 ¼ A2C1ð�K2
x þ K2

y � 4Þ � c
ð23Þ
and for s = 3 they read
c3;0 ¼ �C1K2
x ; c3;1 ¼ C1ðK2

y � 4Þ; c3;2 ¼ C2ðK2
x þ K2

y � 4Þ; c3;3 ¼ 2C2KxKy ;

c3;4 ¼ �2AC1Kx; c3;5 ¼ 2AC1Ky ; c3;6 ¼ A2C1ðK2
x � K2

y � 4Þ � c.
ð24Þ
Dispersion surfaces corresponding to the coefficients c2,m folded with respect to the planes Kx = ±p/2 coin-
cide with the Taylor expansions of the dispersion surfaces of the discrete model in the vicinity of the points
(Kx,Ky) = (±p, 0). Dispersion surfaces corresponding to the coefficients c3,m folded with respect to the
planes Ky = ±p/2 coincide with Taylor expansions of the dispersion surfaces of the discrete model in the
vicinity of the points (Kx,Ky) = (0,±p).

Thus, the four-field continuum theory contains the equations of two-field theory, Eqs. (14), (15), and
improves the two-field theory in the vicinity of the points (Kx,Ky) = (0,±p) and (Kx,Ky) = (±p, 0), i.e., it
is capable of description of the short waves with the wave vectors close to these points.
6. Multi-field modeling of localized distortions in crystal

In this section, multi-field modeling of static localized distortions in the 2D model of crystal is consid-
ered. We obtain a general solution and solve a boundary value problem for the discrete system and then
derive a multi-field continuum approximation for the obtained solutions.

We consider one-dimensional problem assuming that displacements of particles do not change with n,
um;ns ¼ um; vm;ns ¼ vm; um;n
s ¼ ð�1Þmþnum ð25Þ
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and simplify the equations of motion Eq. (4):
M€um ¼ ðC2 þ C1Þðumþ1 � 2um þ um�1Þ þ AC1ðumþ1 � um�1Þ;

I €um ¼ �AC1ðumþ1 � um�1Þ � A2C1ðumþ1 þ 6um þ um�1Þ � cum.
ð26Þ
With the use of the static solution to Eq. (26) one can write the solution in terms of variables Eq. (25) for
even n in the form
ums ¼ a0 þ mha1 þ ð�1Þse�kmha2 þ ð�1Þsekmha3;

um
s ¼ ð�1Þsr1a1 þ r2e�kmha2 � r2ekmha3

ð27Þ
where s = 0, 1, and
r1 ¼ � 2AC1h

8A2C1 þ c
; r2 ¼

C1 þ C2

AC1

2½1þ coshðkhÞ�
2 sinhðkhÞ . ð28Þ
The inverse width of the localized distortion, k > 0, is defined in terms of the model parameters as
4sinh2ðkhÞ ¼ ð1þ C1=C2Þð4þ c=C1A
2Þ ð29Þ
which is obtained from the characteristic equations for Eq. (26) in static case
det
2ðC1 þ C2Þ½coshðkhÞ þ 1� 2AC1 sinhðkhÞ

2AC1 sinhðkhÞ 2A2C1½coshðkhÞ � 3� � c

" #
¼ 0. ð30Þ
Constants aj, j = 0, 1,2,3 in Eq. (27) must be chosen to satisfy boundary conditions.
For example, for the crystal layer, 0 < m < N, solution to Eq. (27) satisfying the boundary conditions
u00 ¼ 0; u0
0 ¼ 0; uN1 ¼ uN ; uN

1 ¼ 0; ð31Þ

has the form
ums ¼
�
1þ r2mh=r1 � ð�1Þse�kmh � ð�1Þse�kðN�mÞh�puN ;

um
s ¼

�
ð�1Þs � e�kmh þ e�kðN�mÞh�r2puN ; ð32Þ
where p = 1/(2 + r2Nh/r1). For sake of simplicity we have assumed that N is sufficiently large so that the
distortions introduced by the boundary conditions at m = 0 and m = N do not overlap and we have ne-
glected the term e�kNh in comparison with 1 in Eq. (32).

Let us now apply the multi-field approach to solve the above problem. We simplify the four-field theory
Eqs. (14), (15), (21) and (22) applying the assumptions Eq. (25) which, in view of Eqs. (19) and (20), suggest
that the fields Us(x,y), Vs(x,y), Us(x,y) are zero for s = 1 and s = 3.

We start from the single-field theory Eq. (14) which in the one-dimensional case considered here obtains
the form
MU 0;tt ¼ ðC1 þ C2Þh2U 0;xx � 2AC1hU0;x;

IU0;tt ¼ 2AC1hU 0;x � A2C1ðh2U0;xx þ 8U0Þ � cU0.
ð33Þ
Characteristic polynomial for the static problem defined by Eq. (33) has a second-order root equal to zero.
Corresponding static solution has the form
U 0ðxÞ ¼ a0 þ a1x

U0ðxÞ ¼ �R1a1
ð34Þ
where R1 = �2AC1h/(8A
2C1 + c), and a0, a1 are arbitrary constants.
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Note that the two other roots of the characteristic polynomial of Eq. (33) are purely imaginary and
hence, the general solution Eq. (33) corresponding to the single-field theory does not contain exponentially
decaying terms describing the localized distortions.

Exponential part of the solution Eq. (27) can be obtained from Eq. (21) of the four-field theory which,
after the reduction to one-dimension, obtains the following form:
MU 2;tt ¼ �ðC2 þ C1Þðh2U 2;xx þ 4U 2Þ � 2AC1hU2;x;

IU2;tt ¼ 2AC1hU 2;x þ A2C1ðh2U2;xx � 4U2Þ � cU2.
ð35Þ
Eq. (35) has the static solution
U 2ðxÞ ¼ �e�Kxa2 � eKxa3;

U2ðxÞ ¼ �R2e
�Kxa2 þ R2e

Kxa3
ð36Þ
where
R2 ¼
C1 þ C2

AC1

4þ ðKhÞ2

2Kh
. ð37Þ
The inverse width of the distortion, K > 0, can be obtained from the characteristic polynomial
det
ðC1 þ C2Þ½ðKhÞ2 þ 4� 2AC1Kh

2AC1Kh A2C1½ðKhÞ2 � 4� � c

" #
¼ 0: ð38Þ
With the use of the solutions Eqs. (34) and (36) and the following relations:
usðxÞ ¼ U 0ðxÞ � ð�1ÞsU 1ðxÞ;
usðxÞ ¼ �ð�1ÞsU0ðxÞ � U1ðxÞ

ð39Þ
we express the solution in terms of the original variables:
usðxÞ ¼ a0 þ a1xþ ð�1Þse�Kxa2 þ ð�1ÞseKxa3;

usðxÞ ¼ ð�1ÞsR1a1 þ R2e
�Kxa2 � R2e

Kxa3.
ð40Þ
Arbitrary constants aj, j = 0, . . . , 3, in Eq. (40) are to be found from the boundary conditions. Analog of the
boundary conditions Eq. (31) is
u0ð0Þ ¼ 0; u0ð0Þ ¼ 0; u1ðLÞ ¼ uN ; u1ðLÞ ¼ 0; ð41Þ

and corresponding solution has the form
usðxÞ ¼ 1þ R2x=R1 � ð�1Þse�Kx � ð�1Þse�KðL�xÞ� �
PuN ;

usðxÞ ¼ ð�1Þs � e�Kx þ e�KðL�xÞ� �
R2PuN ;

ð42Þ
where P = 1/(2 + R2L/R1).
Note that the exact solutions Eq. (27) for the discrete system and corresponding multi-field solution,

Eq. (40), have similar structures. Eq. (38) for the parameter K of multi-field theory can be obtained from
Eq. (30) for the corresponding parameter k expanding the hyperbolic functions in Taylor series up to
second order terms. The formulae for parameters R1, R2, P of approximate continuum solution can also
be obtained by Taylor expansion of the hyperbolic functions in the formulae for corresponding para-
meters r1, r2, p in the discrete solution. The differences between the hyperbolic functions and correspond-
ing Taylor series expansions up to second order around the zero point define the accuracy of the
continuum solutions.
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Further analysis and comparison of the discrete model Eq. (26) with the multi-field model Eqs. (33), (35)
will be carried out with respect to the dynamical solutions of the form
Fig. 2.
curves
show t
and ra
h = 1,
umðtÞ ¼ eu exp½ixt � mK�;
umðtÞ ¼ eu exp½ixt � mK�;

ð43Þ
for the discrete system and of the form
Usðx; tÞ ¼ eus exp½ixt � Kx=h�;
Usðx; tÞ ¼ eus exp½ixt � Kx=h�

ð44Þ
for the multi-field continuum, where K is a complex parameter.
Substituting Eq. (43) and (44) into corresponding equations of motion we obtain the relations between x

and ReK, ImK. We compare these relations for the discrete model and multi-field theory in Fig. 2. Without
the loss in generality, one can fix, for example, C1, h, and M. Then we introduce the dimensionless quan-
tities �um ¼ um=h, �t ¼ t=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C1=M

p
, �x ¼ x=h, set C2 = 2C1, A = 0.5h, I =Mh2, and, as in Vasiliev et al. (2002),

consider two different magnitudes of rotational background potential, c = 4h2C1 and c = 40h2C1, in Fig.
2(a) and (b), respectively. Curves for the discrete system are shown by solid lines and for multi-field theory
by dashed lines. The roots of characteristic equations in static case, i.e., in the x = 0 plane, are depicted by
dots. K = 0 is a second-order root for both discrete model and continuum theory. Two other roots differ
noticeably for discrete system and multi-field theory, but qualitatively they belong to similar branches in
the plane ImK = p. Solid and dashed curves are tangent at the point K = (p, 0). The difference is small
for K near this point and increases with the distance from it. Difference in the curves for the discrete
and continuum theories is rather large in the static case (x = 0) at the considered set of parameters. This
can be explained by the very sharp localization of the distortion in our examples. However, even for such a
sharp localization which cannot be accurately captured by a long-wave continuum theory we have obtained
a very good qualitative agreement between discrete and multi-field theories because the multi-field theory
contains short-wave decaying solution which does not exist in the single-field theory. As it can be seen from
Eq. (29), the width of the localized distortion can be very large if at least one of the model parameters, C1,
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Fig. 3. Comparison of the rotational displacements for the boundary-value problem considered in Section 6. Dots show the exact
solution for the discrete model, um
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C2, or c, can obtain negative values. In this case, the multi-field theory will give not only qualitative but also
quantitative solutions.

As an illustration, in Fig. 3 we present the values um
s ¼ um

s =jr2puN j given by Eq. (32) by dots and plot the
dashed zigzag line to show the short-wave character of the solution. Two solid lines show the two-field solu-
tion usðxÞ ¼ usðxÞ=jr2puN j, Eq. (42), which approximately describes the rapidly oscillating solution in the
discrete system, one solid line for the points 2mh and another one for the points (2m + 1)h. Near the points
m = 0 and m = N, the zigzag solution (�1)sr2puN is corrected by the localized solutions in order to satisfy
the boundary conditions.

Multi-field solution Eq. (32) describes not only slowly varying displacements usm in the discrete system
(the first two terms in the first equations of Eq. (32)) but also the short-wave spatially localized displace-
ments (the third and fourth terms). The latter are not reproduced by the single-field micropolar model
Eqs. (14), (33).
7. Discussion

In this work, for the 2D discrete model with finite size particles, we have constructed two- and four-field
continuum theories. Standard single-field continuum theory derived in Vasiliev et al. (2002) was valid only
for wave numbers close to the origin of the first Brillouin zone while the two-field theory improves the
approximation of the discrete spectrum for the short waves near the points (±p,±p) and the four-field the-
ory gives an additional improvement near the points (±p, 0) and (0,±p). Consideration of a periodic cell
containing several primitive cells leads to the reduction of area of the first Brillouin zone and folding of
the dispersion surfaces of discrete system. For two particles in a periodic cell the folding occurs with respect
to planes Kx ± Ky = ±p and points (Kx,Ky) = (±p,±p) become (0,0) point in the new reciprocal basis. The
two-field theory is accurate at these points. Dispersion surfaces for the cell with four particles can be ob-
tained by folding the original dispersion surfaces with respect to Kx = ±p/2 and Ky = ±p/2. As a result of
folding, points (Kx,Ky) = (±p,±p), and also (Kx,Ky) = (0,±p), and (Kx,Ky) = (±p, 0) become (0,0) points
and the four-field continuum theory is valid for short waves in the vicinity of these points.

Generally speaking, the N-field theory is constructed as a continuum analogue for the discrete system
with a periodic cell containing N primitive cells. Consideration of more than one primitive cell in a periodic
cell is meaningless for a discrete periodic system because the dispersion surfaces in this case are just the ori-
ginal dispersion surfaces N times folded in the N times reduced first Brillouin zone. The number of equa-
tions of motion increases by N times but they do not contain any new information. However, the N-field
continuum theory derived for a periodic cell with N primitive cells gives a piecewise approximation to the
exact dispersion surface and the number of pieces is equal to N. Each piece approximates the exact disper-
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sion surface in the vicinity of point (Kx,Ky) = (0,0) of the reduced reciprocal basis. Thus, the N-field theory
gives a good approximation of dispersion surfaces not only for long waves but also for short waves and, in
the case of multiple folding, for the waves inside the first Brillouin zone.

In Fig. 4 we compare the exact dispersion curves of the discrete model (solid lines) with the single-field
continuum theory derived in Vasiliev et al. (2002) (dotted lines) and its two different generalizations,
namely, the high-gradient (dashed lines in (a)) and the multi-field (dashed lines in (b)) theories. The sin-
gle-field theory gives a good approximation only near the origin of the first Brillouin zone. The high-
gradient theory (fourth order terms retained in Taylor expansions) extends the region of validity of the
long-wave theory but gives no improvement near the zone boundary, Kx = p. In (b), the three branches
of the dispersion curves for the four-field continuum theory, Eqs. (14), (21), are shown unfolded. Near
the origin the multi-field theory gives the accuracy of the single-field theory (second order). The four-field
theory also gives a good approximation near the zone boundary, and it is exact at the point Kx = p, where
the single-field and the high-gradient theories give maximum error. Thus, the high-gradient and the multi-
field approaches improve the long-wave single-field theory in different ways. Taking into account the higher
order terms in the Taylor series expansions Eq. (11) the high-gradient multi-field theories can be con-
structed so that one can combine the advantages of both theories.

The present study is based on the assumption of rigid finite size particles, which is often used in the solid
state physics and materials science (Grima and Evans, 2000; Ishibashi and Iwata, 2000; Swainson and
Dove, 1993; Dove et al., 1997; Wells et al., 2002; Dmitriev et al., 1997, 1998, 2000, 2003b; Vasiliev
et al., 2002). If necessary, the model can be generalized for the case of deformable particles taking into
account additional degrees of freedom.

Since the multi-field theory is valid for both long and short waves, it is an appropriate theory to describe
the coupling between them. The physical situation where short and long waves are strongly coupled can be
easily realized in periodic systems (some natural crystals or manmade structures) having comparatively
rigid finite size particles with rotational degrees of freedom. This can be intuitively understood, for example,
by inspection of the structure presented in Fig. 1. It can be seen that a homogeneous deformation, e.g., uni-
axial or hydrostatic compression, results in staggered rotations of particles. Such coupling of long and short
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waves usually does not take place for materials consisting of pointwise particles or for materials having fi-
nite size particles linked such that the mutual rotations are suppressed or they are not of a staggered type in
response to a homogeneous strain. For the materials of these kinds the use of well developed classical or
single-field micropolar theories can be sufficient. However, when short and long waves are strongly coupled
the use of a multi-field theory can be indispensable. Some of the crystalline materials having finite size par-
ticles with rotational degrees of freedom, for which the coupling between long and short waves can be
important, we would like to mention the ones described in the Introduction, i.e., polymorphs of silica
(SiO2), KH2PO4 (KDP) family of crystals, some perovskites, e.g., SrTiO3. It has been also proved that
microscopic rotations can be responsible for the negative Poisson ratio exhibited by some natural and man-
made auxetic materials (Grima and Evans, 2000; Ishibashi and Iwata, 2000; Vasiliev et al., 2002; Wojcie-
chowski et al., 2003; Wojciechowski, 2003).

It is important to note that the multi-field approach gives a natural way of incorporating the short-wave
external fields of forces and torques into a continuum theory. For example, for the model studied in this
paper, the short-wave external force (or torque) of the form (�1)m+nf, transforms to a smooth field of
forces, F0 = 0, F1 = �f, F2 = 0, F3 = 0 (or torques, F0 = �f, F1 = 0, F2 = 0, F3 = 0), and they can be taken
into account in frame of the four-field continuum theory, Eqs. (14), (15), (21) and (22).
8. Conclusions

For the 2D discrete model of KDP crystal we have derived the two- and four-field micropolar continuum
theories. The N-field theory is obtained as a continuum analogue for the discrete model with a periodic cell
containing N primitive cells by using N vector fields to describe deformation of the crystal. This approach
gives the possibility to construct a hierarchy of theories with increasing complexity and accuracy.

Comparison of the dispersion relations for the multi-field and the high-gradient theories suggests that
the latter improves the classical long-wave theory in the vicinity of small wave numbers while the former
near the zone boundaries and, if desired, inside the first Brillouin zone. We have shown that the multi-field
approach makes it possible to describe the localized structural distortions rapidly oscillating in space.

The use of several fields describing external forces and/or torques makes it possible to construct a con-
tinuum theory taking into account the external fields rapidly changing in space.

Since the multi-field theory is valid for both long and short waves, it is an appropriate theory to describe
the coupling between them, mode softening, and other related phenomena for the crystals with the rota-
tional degrees of freedom. The multi-field theory can be also useful in the rapidly developing theory of
the lattice instability (Van Vliet et al., 2003; Dmitriev et al., 2005, in press), particularly in the study of
the post-critical behaviour for the instability with the mode softening inside the first Brillouin zone (mod-
ulated and incommensurate phase). One example of the successful use of multi-field approach can be found
in Dmitriev et al. (1997) where the domain-wall regime of incommensurate phase has been described.
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