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Abstract The influences of Hall current and slip condition on the MHD flow induced by sinusoidal

peristaltic wavy wall in two dimensional viscous fluid through a porous medium for moderately large

Reynolds number is considered on the basis of boundary layer theory in the case where the thickness of

the boundary layer is larger than the amplitude of the wavy wall. Solutions are obtained in terms of a

series expansion with respect to small amplitude by a regular perturbation method. Graphs of velocity

components, both for the outer and inner flows for various values of the Reynolds number, slip param-

eter, Hall and magnetic parameters are drawn. The inner and outer solutions are matched by the

matching process. An interesting application of the present results to mechanical engineering may

be the possibility of the fluid transportation without an external pressure.
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1. Introduction

The study of fluids flow induced by unsteady motion of a wall

is of great practical importance in the field of biomechanics.
Much attention has been paid to the propulsive mechanism
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of fishes and bacteria in the field of biophysics. Gray [1] stud-
ied the drag on the swimming dolphin and found that this drag

is much less than that on a solid body immersed in a fluid.
Gray proposed a number of mechanism which can reduce
the drag, such as the effect of body shape(laminar aerofoil the-
ory), the effect of flexible skin and the unsteady motive effect.

The last one related to the fluid mechanical developments con-
cerning swimming of fishes and has raised a question, how an
unsteady movement of a body immersed in a fluid can induce a

steady flow around it. A motive power of fishes is mainly due
to flapping of tail and fin, a waving motion of a body has
an effect of thrusting the body, and this effect reduced the

drag.
gyptian Mathematical Society. Open access under CC BY-NC-ND license.
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The problems of the flow of fluids induced by the sinusoidal
wavy motion of a wall have been discussed by Burns and
Parkes [2], Tanaka [3], Taylor [4] and Dhar and Nanda [5].

Tanaka studied problem both for small and moderately large
Reynolds numbers. While discussing the problem for
moderately large Reynolds numbers, he has shown that, if

the thickness of the boundary layer is larger than the wave
amplitude the technique employed for small Reynolds num-
bers can be applied to the case of moderately large Reynolds

numbers also.
The phenomenon of peristaltic transport has enjoyed in-

creased interest from investigators in several engineering disci-
plines. From a mechanical point of view peristalsis offers the

opportunity of constructing pumps in which the transported
medium does not come in direct contact with any moving
parts such as valves, plungers and rotors. The mechanism

of peristaltic transport has been also exploited for industrial
applications such as sanitary fluid transport, blood pumps
in heart lung mechanics and transport of corrosive fluids

where the contact of the fluid with the machinery parts is pro-
hibited. To understand peristaltic action in various situations,
several theoretical and experimental investigations have been

made. Important contributions to the topic on Newtonian
fluid include the studies of Fung and Yih [6], Mekheimer
[7], Mekheimer [8], Hayat et al. [9], Mekheimer and Abd
elwahab [10], Mekheimer et al. [11], Abd elmaboud and Mek-

heimer [12], Srivastava and Saxena [13], Abd elmaboud et al.
[14], Siddiqui and Schwarz [15], Hakeem et al. [16], etc.

Flow through a porous medium attracted the attention of

many researchers in the last few decades because of its very
important practical applications. It occurs in filtration of fluids
and seepage of water in river beds, sandstone, limestone, bile

duct, wood, the human lung, gall bladder with stones and in
small blood vessels. From these studies, which discussed this
point Mekheimer [17], Mekheimer and Abd elmaboud [18],

Vajravelu et al. [19], Srinvas and Kothandapani [20], Ashgar
et al. [21], Afsar Khan et al. [22], Khan et al. [23] and Afsar
Khan et al. [24].

In several flow problems, the authors assumed adherence, i.e.

that the fluid layer next to a rigid surface moves with that sur-
face. Some authors, considered hypotheses involving slippage,
i.e. a relative motion of the rigid surface and the fluid next to

it. For several fluids including water and mercury, many exper-
iments, some of them beautifully conceived and carefully per-
formed, have indicated that the adherence condition is

appropriate even when the fluid does not wet the boundary sur-
face. From time to time, an apparently carefully experiment has
seemed to lead to the opposite conclusion but further analysis
has revealed theoretical or experimental error. In many applica-

tions the flow pattern corresponds to a slip flow, the fluid pre-
sents a loss of adhesion at the wetted wall making the fluid
slide along the wall. In the study of fluid-solid surface interac-

tions the concept of slip of a fluid at a solid wall serves to de-
scribe macroscopic effects of certain molecular phenomena. In
all study on peristaltic flow, much works are studied with no slip

condition, the effects of slip conditions discussed by Ebaid [25],
Rajeev and Jain [27] and Ali et al. [26].

In all these analysis, the effects of Hall current are not con-

sidered. However, in an ionized gas, when the strength of the
magnetic field is very strong, one cannot neglect the Hall ef-
fects. Attia [28] had examined unsteady Hartmann flow with
heat transfer of a viscoelastic fluid taking the Hall effect into
account. Hayat et al. [29] studied the Hall effects on peristaltic
flow of a Maxwell fluid in a porous medium. Abo-Eldahab et
al. [30], [31] investigated the effects of Hall and ion-slip

currents on magnetohydrodynamic peristaltic transport and
couple stress fluid.

Hence it’s important to study the slip effect with Hall

current on the flow induced by sinusoidal peristaltic wavy wall
through a porous medium. Solutions are obtained in terms of
series expansion with respect to the small amplitude by regular

perturbation method. The inner (boundary layer flow) and the
outer (flow beyond the boundary layer), solutions are matched
by a matching process given by Kevorkian and Cole [32].
Graphs of the velocity components, both for the outer and

the inner flows for various values of the problem parameters
are drawn.

2. Equations of motion

We consider a two-dimensional flow of an incompressible
viscous fluid due to an infinite sinusoidal wavy stretching wall

of amplitude a and wave length k, which is oscillating vertically
with a frequency c

2p, x being the coordinate in the downstream
direction of the flow and y, the coordinate perpendicular to it.

The motion of the wall is described by:

y ¼ hðx; tÞ ¼ a cos
2p
k
ðx� ctÞ ð1Þ

where a is the amplitude of the wavy wall, k is the wave length,

and c is the wave speed. The fundamental equations governing
this model together with the generalized Ohm’s law taking the ef-
fects of Hall currents and Maxwell’s equations into account are:

r:q ¼ 0

q
@q

@t
þ ðq:rÞq

� �
¼ �rpþ lr2q� l

k1
qþ J� B ð2Þ

J ¼ r V� B� 1

e ne
J� B

� �
ð3Þ

where q is the velocity vector, p is the pressure, l is the dy-
namic viscosity, $2 is the Laplacian operator, q is the density
of the fluid, d

dt
is the material derivative, t is the time, J is the

current density, B is the total magnetic field, r is the electric
conductivity, e is the electric charge, ne is the number density
of electrons. Here we assume that a

k� 1.

The equations governing the two dimensional motion of
this model are:

q
@u

@t
þ u

@u

@x
þ v

@u

@y

� �
¼ � @p

@x
þ l

@2u

@x2
þ @

2u

@y2

� �
� l
k1

uþ rB2
0

1þm2
ðmv� uÞ

q
@v

@t
þ u

@v

@x
þ v

@v

@y

� �
¼ � @p

@y
þ l

@2v

@x2
þ @

2v

@y2

� �
� l
k1

v� rB2
0

1þm2
ðmuþ vÞ

ð4Þ

The boundary conditions are

u ¼ �a
@u

@y
; v ¼ @h

@t
at y ¼ hðx; tÞ

juj; jvj <1 as y!1;
ð5Þ

where u, v are the velocity components, m ¼ rB0

e ne
is the Hall

parameter, and a is slip parameter.
We normalize all lengths by characteristic length k

2p, all

velocities q by characteristic speed c, the fluid pressure p by
qc2, and the time by characteristic time k

2pc
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The above equations of motion of the fluid become,

@u

@t
þ u

@u

@x
þ v

@u

@y
¼ � @p

@x
þ 1

R

@2u

@x2
þ @

2u

@y2

� �
� u

R k
þ M

Rð1þm2Þ ðmv� uÞ

@v

@t
þ u

@v

@x
þ v

@v

@y
¼ � @p

@y
þ 1

R

@2v

@x2
þ @

2v

@y2

� �
� v

R k
� M

Rð1þm2Þ ðmuþ vÞ
ð6Þ

where Reynolds number R ¼ kqc
2pl, the magnetic parame-

terM ¼ rB2
0
k2

4p2l , the porosity parameter k ¼ 4p2k1
k2

, and the bound-

ary conditions are

u ¼ �b e
@u

@y
; v ¼ @h

@t
at y ¼ hðx; tÞ

juj; jvj <1 as y!1;
ð7Þ

Where hðx; tÞ ¼ e cosðx� tÞ; b ¼ a
a
and e ¼ 2pa

k � 1.
By introducing the stream function w(x, y, t) for the fluid,

the governing Eq. (6), and the boundary condition (7) become,

@

@t
r2wþ @w

@x
r2 @w

@y
� @w
@y
r2 @w

@x
¼ 1

R
r2ðr2wÞ � 1

k R
r2 � M

Rð1þm2Þr
2w

@w
@y
¼ �b e

@2w
@y2

; � @w
@x
¼ @h
@t

at y ¼ hðx; tÞ

@w
@y

����
����; @w@x
����

���� <1 as y!1;

ð8Þ
3. Solution of the problem

When Reynolds number becomes large, the boundary layer is

formed. As we have assumed that the thickness of the bound-
ary layer is larger than the wave amplitude, following Tanaka
[5], regular perturbation technique can be applied to the pres-

ent problem. If dis the thickness of the boundary layer, the
non-dimensional may be defined as �y ¼ y

d and �w ¼ w
d. When

the viscous term is supposed to be of the same order as the
inertia terms, we have that d2R is 0(1) as usual. The boundary

conditions at y= h are expanded into Taylor series around
h = 0 in terms of the inner variables �w and �y as

@�w
@x
ð0Þþh

d
@2 �w
@x@�y

ð0Þþ1

2

h2

d2

@3 �w
@x@�y2

ð0Þþ �� � ¼�1
d
@h

@t

@�w
@�y
ð0Þþh

d
@2 �w
@�y2
ð0Þþ1

2

h2

d2

@3 �w
@�y3
ð0Þþ �� � ¼b e

1

d
@2 �w
@�y2
ð0Þþ h

d2

@3 �w
@�y3
ð0Þþ h2

2 d3

@4 �w
@�y4
ð0Þþ�� �

� �
ð9Þ

In order that Taylor series converges, 0(d) must be larger than
0(h), that is, 0(e) < 0(d). Following Tanaka [5], we take
d ¼ re

1
2, r being an arbitrary constant of 0(1). The outer flow

(the flow beyond the boundary layer) is described by (8) in terms
of the original variables (w, x, y, t) while the inner flow (bound-
ary layer flow) is described in terms of the inner variables

ð�w; x; �y; tÞ on substituting R= (r2e)�1 and d ¼ re
1
2. As e 1, we

can use perturbation method and assume that (outer flow)
and (inner flow) can be expanded as power series in e

1
2 using,

w ¼
X1
n¼1

e
n
2wn;

�w ¼
X1
n¼1

e
n
2 �wn ð10Þ

Substituting (10) and using �y ¼ y
d

� �
; �w ¼ w

d

� �
; R ¼

ðr2eÞ; d ¼ re
1
2 in (8), and the boundary conditions (9) and then

equating the coefficients of like power of e
1
2, We obtain the

equation and the boundary conditions corresponding to first
order, second order as follows.

First order 0 e
1
2

	 
h i	 

OUTER

@

@t
r2w1 ¼ 0 ð11Þ

INNER

@4�w1

@�y4
� @3�w1

@t@�y2
¼ 0 ð12Þ

@�w1

@�y
ð0Þ ¼ 0;

@�w1

@x
ð0Þ ¼ � sinðx� tÞ

r
ð13Þ

Second order([0(e)])

OUTER

@

@t
r2w2 ¼

@w1

@x
r2 @w1

@y
� @w1

@y
r2 @w1

@x
ð14Þ

INNER

@4�w2

@�y4
� @3�w2

@t@�y2
¼ @

�w1

@�y

@3�w1

@�y2@x
� @

�w1

@�x

@3�w1

@�y3
ð15Þ

@�w2

@�y
ð0Þ ¼ �b

r

@2�w1

@�y2
ð0Þ � cosðx� tÞ

r

@2�w1

@�y2
ð0Þ

@�w2

@�x
ð0Þ ¼ � cosðx� tÞ

r

@2�w1

@x@�y
ð0Þ

ð16Þ

Third order 0 e
3
2

	 
h i	 

OUTER

@

@t
r2w3 ¼ r2r2r2w1 þ

r2

k
r2w1 þ

r2M

1þm2
r2w1

� @w1

@y
r2 @w2

@x
� @w2

@y
r2 @w1

@x
þ @w1

@x
r2 @w2

@y

þ @w2

@x
r2 @w1

@y
ð17Þ

INNER

@4�w3

@�y4
� @3�w3

@t@�y2
¼ �2r2 @4�w1

@2x@2�y
þ r2

@3�w1

@t@x2
þ r2

k

@2�w1

@�y2

þ r2M

1þm2

@2�w1

@�y2
þ @

�w1

@�y

@3�w2

@�y2@x
þ @

�w2

@�y

� @3�w1

@�y2@x
� @

�w1

@�x

@3�w2

@�y3
� @

�w2

@�x

@3�w1

@�y3
ð18Þ

@�w3

@�y
ð0Þ ¼ �b

r

@2�w2

@�y2
ð0Þ � b

r2
cosðx� tÞ @

3�w1

@�y3
ð0Þ � 1

r

� cosðx� tÞ @
2�w2

@�y2
ð0Þ � 1

2r2
cos2ðx� tÞ @

3�w1

@�y3

�ð0Þ @
�w3

@�x
ð0Þ

¼ � 1

r
cosðx� tÞ @

2�w2

@x@�y
ð0Þ � 1

2r2
cos2ðx� tÞ

� @3�w1

@x@�y2
ð0Þ ð19Þ

Fourth order([0(e2)])
OUTER
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@

@t
r2w4 ¼ r2r2r2w2 �

r2

k
r2w2 �

r2M

1þm2
r2w2

� @w1

@y
r2 @w3

@x
� @w2

@y
r2 @w2

@x
� @w3

@y
r2 @w1

@x

þ @w1

@x
r2 @w3

@y
þ @w2

@x
r2 @w2

@y
þ @w3

@x
r2 @w1

@y
ð20Þ

INNER

@4�w4

@�y4
� @3�w4

@t@�y2
¼ �2r2 @4�w2

@2x@2�y
þ r2

@3�w2

@t@x2
þ r2

k

@2�w2

@�y2

þ r2M

1þm2

@2�w2

@�y2
þ r2

@�w1

@�y

@3�w1

@x3
� r2

@�w1

@�x

� @3�w1

@x2@y
þ @

�w1

@�y

@3�w3

@�y2@x
þ @

�w2

@�y

@3�w2

@�y2@x

þ @
�w3

@�y

@3�w1

@�y2@x
� @

�w1

@x

@3�w3

@�y3
� @

�w2

@x

@3�w2

@�y3

� @
�w3

@x

@3�w1

@�y3
ð21Þ

@�w4

@�y
ð0Þ ¼ � b

r

@2�w3

@�y2
ð0Þ � b

r2
cosðx� tÞ @

3�w2

@�y3
ð0Þ

� b
2r3

cos2ðx� tÞ @
4�w1

@�y4
ð0Þ � 1

r
cosðx� tÞ @

3�w3

@�y2
ð0Þ

� 1

2r2
cos2ðx� tÞ @

3�w2

@�y3
ð0Þ � 1

6r3
cos3ðx� tÞ @

4�w1

@�y4
ð0Þ

@�w4

@�x
ð0Þ ¼ � 1

r
cosðx� tÞ @

2�w3

@x@�y
ð0Þ � 1

2r2
cos2ðx� tÞ @

3�w2

@x@�y2
ð0Þ

� 1

6r3
cos3ðx� tÞ @

4�w1

@�y3@x
ð0Þ ð22Þ

A series of the inner solutions should satisfy the boundary con-
ditions on the wall,while the outer solutions are only restricted

to be bounded as y increases, but is

@wn

@x

����
����; @wn

@y

����
���� <1 as y!1 for n ¼ 1; 2; 3; . . . :

It is necessary to match the outer and the inner solutions, Fol-

lowing cole xxxx the matching is carried out for both x and y
components f the velocity by the following principles:

lim
e!0

1

e
N
2

XN
n¼1

e
n
2
@wn

@y
�
XN
n¼1

e
n
2
@�wn

@�y

" #
¼ 0 ð23Þ

lim
e!0

1

e
N
2

XN
n¼1

e
n
2
@wn

@x
� re

1
2

XN
n¼1

e
n
2
@�wn

@x

" #
¼ 0 ð24Þ

where �y is fixed up to Nth order of magnitude, let us find out

first order solutions in the form:

�w1ðx; �y; tÞ ¼ F1ð�yÞeiðx�tÞ þ F�1ð�yÞe�iðx�tÞ þ F1sð�yÞ
w1ðx; y; tÞ ¼ f1ðyÞeiðx�tÞ þ f�1e

�iðx�tÞ þ f1sðyÞ
ð25Þ

By substituting (25) in the first order differential equations (11)

and (12) and the boundary conditions (13) we obtain the fol-
lowing system of equations

d4F1

d�y4
� i

d2F1

d�y2
¼ 0;

d4F1s

d�y4
¼ 0;

d2f1

dy2
� f1 ¼ 0;

d4F1s

d�y4
¼ 0 ð26Þ
and their solutions

F1 ¼ A1e
�k�y þ kA1�y� A1 þ

1

2r
dF1s

d�y
¼ B1�y2 þ B2�y

f1 ¼ ae�y

Following tanaka½3� df1s
dy
¼ C1

ð27Þ

where k ¼
ffiffiffiffiffi
�i
p

and A, B, a are constants. Substituting (27)

into (23), we have

lim
e!0

1

e
1
2

e
1
2
@w1

@y
� e

1
2
@�w1

@�y

� �
¼ lim

e!0
½�ae�yeiðx�tÞ þ c:c:þ C1

� ð�A1ke
�k�y þ kA1 þ c:c:Þ � B1�y2

� B2�y�
¼ 0

where c.c. stands for the corresponding complex conjugate.
Taking account that y ¼ re

1
2�y, expanding the exponential as

e�y ¼ e�re
1
2�y ¼ 1� re

1
2�yþ r2e�y2 þ � � �

and noting that expð�k�yÞ ¼ exp �k

re
1
2

y
	 


decays very rapidly as

e fi 0 (which is called transcendentally small (T.S.T) and is ne-
glected in the matching process), we have

lim
e!0
½ð�a� kA1Þ þ c:c:þ C1 � B1�y2 � B2�yþ T:S:T� ¼ 0

Thus the matching condition is satisfied only if

�a� kA1; B1 ¼ B2 ¼ 0; C1 ¼ 0

when similar process is carried out for (24), we have

lim
e!0

1

e
1
2

e
1
2
@w1

@x
� re

1
2
@�w1

@x

� �
¼ lim

e!0

1

e
1
2

e
1
2ðiaÞe�yeiðx�tÞ þ c:c:þ oðeÞ

h i
¼ 0

so that matching condition is satisfied a= 0. Thus we have

A1 ¼ B1 ¼ B2 ¼ 0

C1 ¼ 0

and the first order solution are obtained as

w1 ¼ 0

�w1 ¼
1

2r
eiðx�tÞ þ 1

2r
e�iðx�tÞ

ð28Þ

Next we seek the solutions w2;
�w2 in the following form

�w2ðx; �y; tÞ ¼ F2ð�yÞe2iðx�tÞ þ F21ð�yÞeiðx�tÞ þ c:c:þ F2sð�yÞ
w2ðx; y; tÞ ¼ f1ðyÞe2iðx�tÞ þ f21e

iðx�tÞ þ c:c:þ f2sðyÞ
ð29Þ

Substituting (29)and (28) into (14)–(16) we get after some
calculations

�w2 ¼ � ik
2
e�k�y � �y

2
þ ik

2

� �
eiðx�tÞ þ c:c:

w2 ¼
1

2
e�yeiðx�tÞ þ c:c:

ð30Þ

Let us now seek third order solutions in the form

�w3ðx; �y; tÞ¼F3ð�yÞe3iðx�tÞ þF32ð�yÞe2iðx�tÞ þF31ð�yÞeiðx�tÞ þ c:c:þF3sð�yÞ
w3ðx;y; tÞ¼ f3ðyÞe3iðx�tÞ þ f31e

2iðx�tÞ þ f32ðyÞeiðx�tÞ þ c:c:þ f3sðyÞ
ð31Þ
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where

F3 ¼ 0
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1
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� 1

4r
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� b
2r

� �
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þ ir

2
þ b
2r

f31 ¼
irk
2
e�y

dF3S

d�y
¼ k

4r
e�k�y þ k�

4r
e�k� �y

ð32Þ

We shall now seek the fourth order solutions in the following

form

�w4ðx; �y; tÞ ¼ F4ð�yÞe4iðx�tÞ þ F43ð�yÞe3iðx�tÞ þ F42ð�yÞe2iðx�tÞ

þ F41ð�yÞeiðx�tÞ þ c:c:þ F3sð�yÞ
w4ðx; y; tÞ ¼ f4ðyÞe4iðx�tÞ þ f43e

3iðx�tÞ þ f42ðyÞe2iðx�tÞ

þ f41ðyÞeiðx�tÞ þ c:c:þ f3sðyÞ ð33Þ
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Figure 1 Induced steady axial velocity component of the fluid

Uis in the boundary layer for different values of the slip parameter

b at R= 500 and e = 0.1.
dF4S
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¼ 1

4

4. Discussion problem

Here, we should note that the third order solution has a steady
streaming component F3s. However, it attenuates very rapidly
as �y increases and is confined only in the boundary layer, while

no steady streaming is induced in the outer layer up to this or-
der of approximation. But the fourth order solutions consist of
Figure 2 Induced steady axial velocity component of the fluid

Uis in the boundary layer for different values of the Reynolds

number R at b = 0.1 and e = 0.1.

Figure 3 Axial velocity component of the fluid Ui in the

boundary layer for different values of the magnetic parameter M

at R = 500, e = 0.1, b = 0.1, k = 1 and m= 0.5.



Figure 4 Axial velocity component of the fluid Ui in the

boundary layer for different values of the porosity parameter k

at R = 500, e = 0.1, M= 2, b = 0.1 and m = 0.5.

Figure 5 Axial velocity component of the fluid Ui in the

boundary layer for different values of the Hall parameter m at

R= 500, e = 0.1, M= 600, b = 0.1 and k = 1.

Figure 6 Axial velocity component of the fluid Ui in the

boundary layer for different values of the slip parameter at

R= 500, e = 0.1, M= 2, m = 0.5 and k = 1.

Figure 7 Axial velocity component of the fluid Ui in the

boundary layer for different values of the Reynolds number R at

e = 0.1, M = 2, b = 0.1, m= 0.5, k = 1.
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the steady part in addition to the periodic one, so we shall take
up for discussion the fourth order solution.

We may say that the progressive motion of the wall causes,

at first, the periodic flow in the boundary layer having the same
phase as that of the wall motion and then it causes flows of
higher harmonic in the boundary layer and induces the

periodic flow in the outer layer successively. The components
of velocities for outer and inner flows have been plotted
against y and �y respectively for various values of the Reynolds
numbersR, the slip parameterb, the magnetic parameterM, the

Hall parameter m and x � t, taking e = 0.1.
Figs. 1 and 2 illustrates the behavior of the inner steady

streaming flow Uis. We find from Fig. 1 the fluid of the inner

steady streaming part approach to a constant value in the form
of the damped oscillation with respect to the distance from the
wall and the increase of the slip parameter b increases the

velocity of the inner steady streaming flow Uis. When the slip
parameter b = 0, the same results that given by Tanaka [3]
in the case of large Reynolds number are obtained, where
the steady flow velocity approaches 1/4 away from the wall.

Fig. 2 shows that the greater of the Reynolds number R the
higher of the velocity of the inner steady streaming flow. It is
also, should be remarked that when Reynolds number
becomes very large, the steady flow velocity approaches to 1/

4 away from the wall, which coincides with the results of [J
Phy Soc Japan]

Now we will study the nature of the inner axial velocityUi

through the Figs. 3–7. It is clear that from Fig. 3 at
x � t= 0, the increases of the magnetic parameter M slightly
decrease the velocity of the inner axial velocity Ui in the region

very close to the wall and as y increases and far away from the
wall, the increase of the magnetic field accelerate the inner ax-
ial velocity Ui, and contrast in the case of x � t = p. It is also
interesting to note that the inner axial velocity Ui become stea-



Figure 8 Transverse velocity component of the fluid Vi in the

boundary layer for different values of the slip parameter b at

R = 500, e = 0.1, M= 2, k = 1 and m= 0.5.

Figure 9 Transverse velocity component of the fluid Vi in the

boundary layer for different values of the Reynolds number R at

e = 0.1, M= 2, b = 0.1, m = 0.5 and k= 1.

Figure 10 Transverse velocity component of the fluid Vi in the

boundary layer for different values of the magnetic parameter M,

at R = 500, e = 0.1 and b = 0.1.

Figure 11 Outer flow axial velocity component of the fluid U0

for different values of the slip parameter b at e = 0.1, M= 2,

m= 0.5 and k = 1.
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dy as y increases and approach almost equal value. In Fig. 4
we find that the effect of the porosity parameterK have a re-

verses influence of that of the effect of the magnetic parameter
M on the inner velocity Ui. It is noted from Fig. 5 at x � t= 0
that the increasing of the Hall parameter m produce a slight

increases in the inner axial velocity Ui near the wall whereas
a reverse effect is observed far a way from the wall while the
inverse behaviour for the curves occurs at x � t= p. Fig. 6
indicate that the increases of the slip parameter b increases
the inner axial velocity Ui for at x � t = 0 and vice versa at
x � t = p. Through Fig. 7 we see that the effect of the Rey-

nolds number R increases the inner axial velocity Ui at
x � t = 0 and vice versa at x � t= p, and it is interesting to
note that the inner axial velocity Ui is oscillating between po-
sitive and negative values for all figures and steady as y in-

creases, where we go away from the wall.
Now we will study the inner transverse velocityVi through

Figs. 8 and 9. From Fig. 8 we find that the increase of the slip
parameter b decreases the inner transverse velocityVi. And
through Fig. 9 we see that the effect of increasing Reynolds

number R increases the inner transverse velocity Vi at
x � t= p, but the inverse occurs at x � t = 0. But we see that
the change of the magnetic parameter M do not make an effect

in the inner transverse velocity Vi and gives the results as a
constant value as shown in Fig. 10. The same effect for differ-
ent values of the Hall parameter m and porosity parameter k.

Fig. 11 describes the axial outer velocity Uo, and from this
figure, we see that the increases of the slip parameter b increase
the outer axial velocity Uo at x � t= p and decreases at
x � t= 0. Also we see that as y increases al curves of the outer

axial velocityUo approach almost to an equal value, and we
find that the velocity Uo for x � t= 0 is less than that for
x � t= p.



Figure 12 Outer flow transverse velocity component of the fluid

Vo for different values of the Reynolds number R at e = 0.1 and

b = 0.1.

Figure 13 Outer flow transverse velocity component of the fluid

Vo for different values of the slip parameter b at e = 0.1 and

R= 500.
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From Fig. 12 we observe the nature of the transverse outer
velocity Vo. The increases of Reynolds number R increase the

transverse outer velocity Vo for x � t= p and decrease the
transverse outer velocity Vo for x � t= 0. But for both
x � t= p and x � t= 0 the transverse outer velocity Vo be-
comes steady as y increases and the transverse outer velocity

Vo for x � t= p is less than x � t= 0, and the different values
of the slip parameter b do not make an effect on the transverse
outer velocity Vo and give the same results as shown in Fig. 13.
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