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The rapid development of provincial seismic networks and portable seismic arrays has provided a good
opportunity to image the detailed 3-D seismic structure of the upper mantle under the active volcanoes
in the Chinese continent. Under the Changbaishan (Tianchi) volcano prominent low-velocity (low-V)
anomalies are imaged above 400 km depth, and high-velocity (high-V) anomalies are detected within
the mantle transition zone, suggesting that the Changbaishan volcano is a back-arc volcano related to
the dehydration of the subducted Pacific slab that is stagnant in the mantle transition zone. Seismic struc-
tures under the Tengchong volcano are similar to those under the Changbaishan volcano, whereas the
subducted slab under the Tengchong volcano is the continental Indian slab. Regional and global tomo-
graphic models illustrate that obvious low-V anomalies are visible under the Hainan volcano from the
crust down to the lower mantle, suggesting that the Hainan volcano is a hotspot. A recent local tomo-
graphic model shows that the Hainan plume is imaged as a southeast tilted low-V anomaly with depth
in the upper mantle. A high-resolution upper-mantle tomographic model under the North China Craton
shows a significantly Y-shaped low-V anomaly under the Datong volcano and Bohai Sea extending down
to the lower mantle, which, for the first time, is inferred using precise teleseismic arrival times hand-
picked from high-quality seismograms recorded at densely spaced stations from the Chinese provincial
networks. The results indicate the possibility of a mantle plume beneath the region. These models sug-
gest that the Changbaishan and Tengchong volcanoes share the history of deep mantle origin, whereas
the Datong and Hainan volcanoes are comparable. All these results provide a better understanding of
the dynamics of East Asia, and also call for future volcanic hazard mitigation.
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1. Introduction

The complex tectonic architecture of East Asia includes the
growing Tibetan plateau and Tianshan mountains, the stable Sich-
uan and Tarim basins, and the lithospheric erosion beneath the
North China Craton (Fig. 1). These features have been correlated
to the collision of the Indian and Eurasian plates to the southwest
(e.g., Molnar and Tapponnier, 1975; England and Houseman,
1986; Tapponnier et al., 1986; Yin and Harrison, 2000; Liu et al.,
2004; Guo and Wilson, 2012) and the subduction of the Philippine
Sea and Pacific plates to the east (e.g., Fukao et al., 1992; Bijwaard
et al., 1998; Zhao, 2004; Abdelwahed and Zhao, 2007; Lei and Zhao,
2005, 2006a; Li and van der Hilst, 2010; Zhao et al., 2012a). Along
these tectonic boundaries are distributed many large and active
faults and rifts, such as the Tanlu fault and Shanxi rift in eastern Chi-
ig. 1. Distribution of volcanoes (large triangles with letters) in China underlain by topog
olcano; TC, the Tengchong volcano; HN, the Hainan volcano; AS, the Ashikule (Kunlun)
elt. Abaga, the Abaga volcanic group; Hlh R., the Halaha River volcanic group; Nm R., th
ravity Lineament. Color circles denotes the earthquakes with magnitude larger than 7.0
e shown at the bottom. NCC, the North China Craton; SCC, the South China Craton; SB,

HP, the Philippine Sea plate; SCS, the South China Sea; Thick arrows denote the direction
ashed lines denote depth contours of the upper boundary of the subducted Pacific
oundaries. Thin black lines denote the major active faults (Deng et al., 2002).
na, and the Kunlunshan fault, Xianshui River fault, the Longmen-
shan fault zones, and the Red-River fault in western China (Fig. 1)
(Deng et al., 2002). In addition, around these fault zones some large
earthquakes occurred historically and recently. Some well-known
examples are the 25 September 1303 Hongtong, Shanxi, earthquake
(M 8.0), the 2 February 1556 Huaxian, Shaanxi earthquake (M 8.25),
the 14 November 2001 Kunlun earthquake (M 8.1), the 12 May
2008 Wenchuan earthquake (M 8.0), and the 14 April 2010 Yushu
earthquake (M 7.1) (Song et al., 2011). These destructive earth-
quakes caused immense damage to life and property.

Active volcanoes pose another form of serious natural disasters in
the Chinese continent (Fig. 1). Volcanoes act as the vents for extre-
mely high-temperature magma ascending upward from the mantle
through the crust to the surface. Volcanoes are defined as active if
they were recorded at least one eruption in the Holocene. Accord-
raphy. WD, the Wudalianchi volcano; CB, the Changbaishan volcano; DT, the Datong
volcano. Small triangles denote the volcanoes along the Xing’an-Mongolia orogenic
e Nuomin River volcanic group. The NS oriented blue line denotes the North–South

since BC 780 (Song et al., 2011). The scales for earthquake magnitude and focal depth
the Sichuan basin; OB, the Ordos block; TB, the Tarim basin; PCP, the Pacific plate;
s of absolute plate motion, and their velocities are shown on the side of the arrows.
slab (Gudmundsson and Sambridge, 1998). Thick blue lines denote major plate
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ingly, among the volcanoes in Mainland China, the Wudalianchi,
Changbaishan (Tianchi), Tengchong, and Hainan volcanoes are con-
sidered to be active (Fig. 1) (Liu, 1999, 2000). Recent petrological
studies have demonstrated that there are several groups of active
volcanoes in the region, such as the Abaga, the Halaha river, and
the Nuomin river groups, from the southwest to the northeast along
the Xing’an-Mongolia orogenic belt (Fig. 1), with magma eruption
during the Holocene and well-preserved vents (Fig. 2) (e.g., Bai
et al., 2005, 2008; Fan et al., 2011, 2012; Chen et al., 2012b).

Volcanic eruptions cause tremendous disasters, because one
tenth of the world population lives in volcanically active areas.
For instance, the Tambora volcanic eruption in Indonesia killed
92,000 people in 1815. The Ruiz volcanic eruption in Colombia
caused about 23,000 deaths in 1985 due to the largest debris flow
in the history (Fan, 2005). The Changbaishan volcano is considered
to be the most potentially dangerous volcano in China. Within
50 km off the Changbaishan volcanic crater, the number of earth-
quakes (M > 1.0) increased significantly to 72 per month in 2002–
2006 from 7 per month in 1999–2002 and 2006–2011, and the most
active seismicity occurred in November 2003 with 243 events (Xu
et al., 2012c). Portable seismic observations from 2002 to 2003
showed that the small crustal earthquakes become shallower with
time under the Changbaishan volcanic crater, and the first-motions
go upward on the seismograms recorded at most stations from deep
earthquakes (Wu et al., 2005, 2007). These results strongly suggest
that the magma chamber beneath the Changbaishan volcano has
woken up and resumed its activity since AD 1903. The recent Toho-
ku-Oki earthquake (M 9.0) which occurred on 11 March 2011 in
Northeast Japan was caused by the active subduction of the Pacific
slab beneath the Okhotsk plate (Kato and Yoshida, 2011; Zhao et al.,
2011a), and the deep subducted Pacific plate has reached under the
Changbaishan volcano (Zhao, 2004; Lei and Zhao, 2005, 2006a;
Huang and Zhao, 2006; Zhao et al., 2009a; Li and van der Hilst,
2010). Therefore, the Tohoku-Oki earthquake may also impact the
mantle dynamics beneath the Changbaishan volcano. The millen-
nium eruption of the Changbaishan volcano destroyed the forest
with an area of over 5,000 km2 around the crater (Liu et al.,
1998), and another activity might result in the death of hundred
thousand residents within a radius of 100 km from the crater.
Wei et al. (2013) also suggested a possible future eruption. There-
fore, it is of great significance to investigate the deep seismic struc-
ture under the volcanoes in China in order to better understand the
deep origins of the volcanoes to mitigate the hazards.

Seismic tomography is a powerful tool to investigate the deep
structure under the volcanoes. With the recently rapid develop-
ment of Chinese provincial seismic networks (Zheng et al., 2009,
2010) and some portable seismic arrays (Hetland et al., 2004; Duan
et al., 2009; Lei et al., 2012b) around the volcanoes, it has become
possible to image the detailed 3-D velocity structure under some of
these volcanoes, where seismic stations are densely spaced. In this
overview, we synthesize the results from the deep seismic images
of the upper mantle under the Changbaishan, Tengchong, Hainan
volcanoes as well as the Datong volcano (Fig. 1). We also evaluate
the advantages of recently updated seismic tomographic tech-
niques for deriving potential information. This work updates a pre-
vious review of Zhao and Liu (2010) on this topic, with more
detailed synthesis of all the available information.
2. Deep structures under the volcanoes

2.1. The Changbaishan (Tianchi) volcano

The Changbaishan (Tianchi) volcano, also termed as the Baitou-
shan volcano, is located in the Changbaishan mountains, close to
the boundary between NE China and North Korea (Fig. 1). This vol-
cano erupted six times in BC 1120, AD 1050, 1413, 1597, 1668, and
1702 (Simkin and Siebert, 1994). The history of this volcano and
the resultant picturesque-landscape (Fig. 2a) attract many geosci-
entists worldwide for geological, geochemical and geophysical
investigations (e.g., Zhang and Tang, 1983; Zindler and Hart,
1986; Basu et al., 1991; Fan and Hooper, 1991; Tang et al., 1997,
2001; Fan et al., 1998, 1999; Zou et al., 2008, 2010b; Wang et al.,
2003b; Li et al., 2012). Magnetotelluric soundings show that low
resistivity anomalies exist beneath the Changbaishan volcano in
the crust (Tang et al., 1997, 2001). Seismic explosion experiments
revealed low-velocity anomalies in the crust and upper mantle
down to a depth of 40 km. These results suggest the existence of
magma chambers under the Changbaishan volcano (Zhang et al.,
2002). These geophysical results are well consistent with petrolog-
ical observations (e.g., Fan et al., 2001). The Changbaishan volcano
is about 1200 km away from the Japan Trench (Fig. 1), and its deep
origin is still unclear. Turcotte and Schubert (1982) assumed that it
is a hotspot like Hawaii volcano, whereas Tatsumi et al. (1990)
attributed a back-arc setting.

Global tomographic models (e.g., Zhao, 2004, 2009; Lei and
Zhao, 2006a; Zhao et al., 2013) show prominent high-V anomalies
in the mantle transition zone under the Changbaishan volcano and
broad low-V anomalies above the mantle transition zone, suggest-
ing that the subducting Pacific slab has reached under the Chang-
baishan volcano. However, the global models are too generalized to
evaluate the detailed structure under the Changbaishan volcano.
Therefore, Lei and Zhao (2005) applied the tomographic technique
of Zhao et al. (1994) to the relative travel-time residuals recorded
at the 19 portable seismic stations as well as 3 permanent seismic
stations (MDJ, HIA, and BJT) that are relatively close to these porta-
ble seismic stations (Fig. 3A). These portable seismic stations were
deployed around the Changbaishan volcano in the Chinese side and
were operated from late June to September 1997, ten of which con-
tinued till April 1998. In addition, the receiver-function techniques
were applied to the data set recorded by the portable seismic net-
work to study the crust and upper mantle discontinuities (Ai et al.,
2003; Li and Yuan, 2003; Hetland et al., 2004). These results re-
vealed a thick crust with low-velocity (low-V) anomalies and a
thickened mantle transition zone beneath the Changbaishan vol-
cano. From chosen 548 high-quality arrival times in original seis-
mograms recorded from 68 teleseismic events, Lei and Zhao
(2005) imaged prominent low-V anomalies of up to �3% with a
diameter of about 200 km extending continuously down to
400 km depth (Fig. 3A), the complex geometry of which may reflect
the existence of several intraplate volcanoes in the region. The
mantle transition zone under the Changbaishan volcano generally
exhibits high-velocity (high-V) anomalies (Fig. 3A).

In order to update the tomographic images of Lei and Zhao
(2005) under the Changbaishan volcano, some researchers at-
tempted to integrate the seismic data from temporary and perma-
nent seismic stations. For example, Duan et al. (2009) used 1378
relative travel time data recorded at 8 permanent seismic stations
and 53 temporary seismic stations from 186 teleseismic events.
These temporary seismic stations come from three seismic net-
works. One is the same seismic network as used by Lei and Zhao
(2005). The second was operated during June to September 2002
in and around the Jingpohu volcanic area, comprising 15 broad-
band seismometers. The third was operated during May 2005 to
May 2006 from the Changbaishan to Jingpohu volcanic areas,
which consisted of 20 seismic stations. Using the comprehensive
dataset, they obtained a new tomographic image which revealed
some intermittent low-V anomalies under the Changbaishan vol-
cano in the upper mantle, with some weak (small amplitude)
high-V anomalies in the mantle transition zone. Although the mod-
el of Duan et al. (2009) has some differences from Lei and Zhao
(2005), they show a similar pattern of velocity anomalies.



Fig. 2. Photographs of the Changbaishan (Tianchi) (a), and Tengchong (b and c), Hainan (d and e), and Abaga (f and g) volcanoes.
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In contrast to Lei and Zhao (2005) and Duan et al. (2009), Zhao
et al. (2009a) used a large number of arrival times including rela-
tive travel-time residuals from teleseismic events as well as abso-
lute residuals from local and regional events. These data were
collected from 19 portable seismic stations as used in the study
of Lei and Zhao (2005) and from 645 analog and digital seismic sta-
tions of the Chinese provincial seismic networks. The model of
Zhao et al. (2009a) (Fig. 3B) shows a similar pattern of velocity
anomalies as revealed in previous studies (Fig. 3A) (Lei and Zhao,
2005; Duan et al., 2009), and the results (Fig. 3B) are close to the
model of Lei and Zhao (2005). The analysis Zhao et al. (2009a)
shows a clear pattern of velocity anomalies, a broad and continu-
ous low-V anomaly under the Changbaishan volcano in the upper
mantle and a strong (large amplitude) high-V anomaly in the man-
tle transition zone (Fig. 3B).

Regional and global tomographic models all show prominent
low-V anomalies in the upper mantle and obvious high-V anoma-
lies under the Changbaishan volcano in the mantle transition zone
(e.g., Fukao et al., 1992; Bijwaard et al., 1998; Zhao, 2004; Lei and
Zhao, 2005, 2006a; Zhao et al., 2009a, 2013) (Fig. 3). The Harvard
CMT solutions of deep earthquakes at 200–600 km depths under
the Japan sea and East Asia show the compressive stress regime
nearly parallel to the down-dip direction of the slab (Ekstrom
et al., 2005; Zhao et al., 2009a). The receiver function analyses
illustrate a much thick mantle transition zone under the Changbai-
shan volcano (Ai et al., 2003; Li and Yuan, 2003). All these results
suggest that the Pacific slab did not penetrate down the lower
mantle directly, but met a strong resistance at the 660-km discon-
tinuity and has been stagnant there for a long time (Maruyama,
1994; Zhao, 2004, 2009).

Tatsumi et al. (1990) first proposed the asthenospheric injection
to explain the formation of Changbaishan volcanoes, but they did
not mention the stagnant Pacific slab under the region because such
a slab was unknown at that time. Lei and Zhao (2005) and Zhao et al.
(2007a) modified their model to emphasize the role of the stagnant
slab and the big mantle wedge in the formation of intraplate volca-
nism in Northeastern Asia. This big mantle wedge structure was
also supported by recent S-wave splitting (Liu et al., 2008b) and
geochemical analysis (Zou et al., 2008). Although Zou et al. (2008)
argued against the deep dehydration processes, they suggested that



Fig. 3. (A) (a and b) Vertical cross sections of P-wave velocity anomalies (Lei and Zhao, 2005). Red and blue colors denote low-V and high-V anomalies. Velocity perturbations
are shown at the bottom. Two dashed lines denote the 410 and 660 km discontinuities. White arrows denote possible directions of hot material upwelling. Color circles
denote the earthquakes determined by Engdahl et al. (1998). The scales for magnitude and focal depth are shown at the bottom. Topographies along the cross sections are
illustrated on the top. (c) Location of vertical cross-sections (black lines), 19 portable seismic stations (open triangles) and permanent stations (diamonds) used in this study.
Solid triangles denote the intraplate volcanoes. CB, Changbaishan; JBH, Jingbohu; LG, Longgang; XJD, Xianjindao; CUR, Ch’Uga-Ryong (Simkin and Siebert, 1994). Dotted lines
show depth contours of the Wadati-Benioff deep seismic zone (Gudmundsson and Sambridge, 1998). Modification after Lei and Zhao (2005). (B) (d and e) Tomographic
images (Zhao et al., 2009a,b) along vertical cross sections passing through the Changbaishan volcano (CB, a big triangle). Red and blue colors denote low-V and high-V
anomalies. The scale for velocity perturbations is shown on the right of (d). Location of cross-sections is shown on the insert map (f).
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the piling up and thickening of the stagnant Pacific slab in the man-
tle transition zone as well as the convection circulation process in
the mantle wedge would help drive the asthenosphere upwelling
and induce decompression melting. However, a recent estimate of
water content and geotherm from electrical conductivity and P-
wave velocity in this mantle wedge under northeastern China
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showed that neither a dry pyrolite nor a dry harzburgite condition
provides consistent electrical and seismic geotherms in the deeper
part of the upper mantle (250–400 km depth), but the observed fea-
tures can be explained by allowing for a small amount of water
(500–1000 ppm H/Si) with the seismic geotherm (Ichiki et al.,
2006). In the shallower part of the upper mantle (<250 km depth),
the electrical and seismic geotherms are consistent with each other
within 1500–1700 �C under a dry harzburgite condition, whereas
they are not consistent by 100 �C under a dry pyrolite condition
(Ichiki et al., 2006). Alternately, if a wet pyrolite condition exists
in the deeper part of the upper mantle, the electrical conductivity
and seismic P-wave structure can be consistent with each other
in the shallower part of the upper mantle (Ichiki et al., 2006). These
results suggest the presence of fluids in the entire upper mantle or
at least the asthenosphere under northeastern China including the
Changbaishan volcanic field, which is consistent with obvious low-
V anomalies in the mantle wedge (Fig. 3). This wet upper mantle
could be likely caused by the deep stagnancy and dehydration of
the subducted Pacific slab in the mantle transition zone (Shieh
et al., 1998; Huang et al., 2005; Ohtani et al., 2004; Komabayashi
et al., 2004). Seismological studies and numerical models also dem-
onstrate that tens of kilometers thick hydrous layers above the slab
carried a considerable amount of water (e.g., �1 wt% H2O on the
average within the hydrous layer beneath the central Japan) and
reached the mantle transition zone (Tonegawa et al., 2008; Iwa-
mori, 2004; Richard and Iwamori, 2010). Because the very old Paci-
fic plate is subducting beneath East Asia at a rapid rate (7–10 cm/
year), the dehydration reactions may not completely cease at the
shallow depth (100–200 km) of the mantle. Hydrous Mg–Si miner-
als in the stagnant Pacific slab may continue to release fluids
through dehydration reactions in the mantle transition zone (Inoue,
1994; Huang et al., 2005; Ohtani et al., 2004; Komabayashi et al.,
2004). Similar dehydration reactions are also observed in the Tonga
subduction zone (Zhao et al., 1997; Conder and Wiens, 2006).

Volcanism on the globe are generally of four types: mid-ocean
ridge volcanism, subduction zone volcanism, hotspots related to
mantle plumes, and intraplate volcanism associated with litho-
spheric extension and asthenospheric injection (Tatsumi et al.,
1990; Yin, 2000; Zhao, 2001). Apparently, the Changbaishan volca-
nism does not belong to the first type. Because of the stagnant
Pacific slab beneath Northeast Asia, the deep origin of Changbai-
Fig. 4. A schematic east–west vertical section showing the origin of the Changbaishan vol
Lei and Zhao, 2005). LG, the Longgang volcano. Color circles denote the earthquakes dete
ranges of 41.5�N and 42.5�N. The scales for earthquake magnitude and focal depth are sh
shan volcano differs from that of the Hawaii, Iceland, and Eifel vol-
canoes which are considered to be related to hotspots overlying
the mantle plumes (e.g., Wolfe et al., 1997; Ritsema et al., 1999;
Ritter et al., 2001; Zhao, 2001; Lei and Zhao, 2006b). The Changbai-
shan volcano is located about 1200 km away from Japan Trench,
and the subducting Pacific slab has arrived under the volcano in
the mantle transition zone. Therefore, Northwestern Pacific sub-
duction zone is considered to be a very broad deformation zone,
and the deep subduction of the Pacific slab has influenced the vol-
canic activity in the interior of the Eurasian continental plate.

All these results further correlate the Changbaishan volcano as a
back-arc volcano generated by the hot and wet material upwelling
in the big mantle wedge above the stagnant Pacific slab in the
mantle transition zone accompanied by slab dehydration (Fig. 4)
(Zhao et al., 2004, 2011b; Lei and Zhao, 2005; Zhao and Liu, 2010).

2.2. The Tengchong volcano

The Tengchong volcano in southwest China is located on the
southeastern margin of the Tibetan plateau (Fig. 1) with several ac-
tive faults and large earthquakes recorded around the volcano
(Fig. 5a). More recent moderate-strong earthquakes occurred in
the region and well-known examples are the 4 February 2011 In-
dia-Burma earthquake (M 6.4), the 10 March 2011, Yingjiang, Chi-
na, earthquake (M 5.8) and the 24 March 2011 Burma earthquake
(M 7.2) (Fig. 5). Although the 10 March 2011 Yingjiang earthquake
was moderate in size, it caused 25 deaths and 250 injuries, and left
numerous people homeless (Lei et al., 2012a, 2012b), perhaps be-
cause its focal depth is �8.3 km (Lei et al., 2012b) and the hypocen-
ter is only 3 km from the center of the Yingjiang county. In
particular, to the west, some intermediate-depth earthquakes de-
fine a clear Wadati-Benioff deep seismic zone down to �180 km
depth (Fig. 5) (Engdahl et al., 1998). These recent earthquake activ-
ities may indicate that the Indian plate is still active and currently
subducting eastward, which could affect the Tengchong volcanism
(Lei et al., 2012a).

The last eruption of the Tengchong volcano was in 1609, which
is similar to that of the 1702 eruption of the Changbaishan volcano
(Simkin and Siebert, 1994), but the Tengchong volcanic field is dif-
ferent from the Changbaishan volcanic field. In the Tengchong
volcanic field, in addition to picturesque landscapes, numerous
cano and intraplate volcanoes in NE Asia (after Tatsumi et al., 1990; Zhao et al., 2004;
rmined by Engdahl et al. (1998). These earthquakes and volcanoes are located in the
own at the bottom. Topography along the cross sections is illustrated on the top.



Fig. 5. (a) Location of the Tengchong intraplate volcano (Tc, black triangle) and tectonic settings. Black circles with numbers 1, 2, and 3 denote the 4 February 2011 India-
Burma earthquake (M 6.4), the 10 March 2011 Yingjiang, China, earthquake (M 5.8) and the 24 March 2011 Burma earthquake (M 7.2). Black traces denote the major active
faults (Deng et al., 2002). Small dots denote earthquakes with magnitude greater than 3.0 (Engdahl et al., 1998), while stars show larger earthquakes with magnitude larger
than 6.0. The scales for earthquake magnitude and focal depth are shown at the bottom. Two rectangles represent the two vertical cross section locations in (b and c). NH,
Naga Hills; BLL, Burma Lower Lands; MMF, Mandalay-Myityina fault; RRF, Red River fault; NJF, Nujiang fault; LCF, Lancang River fault. (b and c) Vertical cross sections
showing the earthquakes within the rectangles as shown in (a). After Lei et al. (2012a).v
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hot springs with temperatures of about 90oC also exist (Fig. 2b–c)
(Zhao et al., 2006, 2011, 2012c). A gneissic basement with minor
amphibolites and rift-related volcanic activity over the last ca.
5 Ma has been identified in the region (Zhu et al., 1983; Yin,
2000; Wang et al., 2001). The Tengchong volcanic field exhibits a
high geothermal gradient (Zhao et al., 2006), low seismic velocity
in the crust and uppermost mantle (Wang and Huangfu, 2004;
Huang and Zhao, 2006; Hu et al., 2008), and high ratio of He3/
He4 (Shangguan et al., 2000), suggesting the presence of magma
chambers and hot material upwelling under the region. Based on
carbon isotope analyses of CO2 and CH4 collected from hot springs,
Zhao et al. (2011) suggested that the temperature of magma cham-
bers could be around�650–1200 �C. More recent studies identified
three He3/He4 anomalous areas: Tengchong-Rehai, Qushi, and
Wuhe-Puchuan-Xinhua, with the He3/He4 ratios of 5.5 Ra, 4.5 Ra,
and 2.0 Ra and over 70%, 50%, and 25% of the mantle-derived he-
lium. The He3/He4 ratios in the three areas show a gradual increase
with time from 1986 to 2006, suggesting the ongoing hot material



Fig. 6. (a) Locations of three vertical cross-sections (black lines), local earthquakes (circles), and seismic stations (white triangles) used by Lei et al. (2009b). The scales for
earthquake magnitude and focal depth are shown at the bottom of (c,d). (b–d) Tomographic images (Lei et al., 2009b) under the Tengchong volcano (red triangle) along these
three vertical cross-sections. Red and blue colors denote low-V and high-V anomalies. The scale for velocity perturbations is shown at the bottom of (d). An inverted triangle
denotes the Red-River fault. Two dashed lines denote the Moho and 410-km discontinuities. White arrows denote possible directions of hot material upwelling. The
topographies along the cross-sections are shown on the top.
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upwelling from the mantle which intensifies with time (Zhao et al.,
2012c). However, the origin of Tengchong volcano is still debated.
Some researchers suggested that the origin of the Tengchong vol-
cano is related to the subduction of the Indian plate down to
�150 km depth (Hu et al., 2008) or even �200 km depth (Wang
and Huangfu, 2004), whereas others ascribed its origin to the sub-
duction of the Burma micro-plate down to depths of 400 km or
more (Huang and Zhao, 2006; Li et al., 2008). Global tomographic
models provide no useful information on the volcano because of
their lower spatial resolution of 300–500 km (e.g., Zhao, 2001,
2004; Lei and Zhao, 2006a). Local tomographic models for this re-
gion are valid down to only 80 km depth (e.g., Huang et al., 2002;
Wang et al., 2003a).

With the recent upgrading of 35 seismic stations from analogue
to digital recording in the Yunnan province, China since 1998,
abundant high-quality local and teleseismic data have been accu-
mulated. Lei et al. (2009b) collected 17,190 first P-wave arrival
times from 2761 local earthquakes (M > 2.5) (Fig. 6a) and
hand-picked 11,608 first P-wave arrival times from high-quality
seismograms recorded from 602 teleseismic events. Applying the
tomographic technique of Zhao et al. (1994) to these arrival times,
Lei et al. (2009b) obtained a new tomographic model (Fig. 6b–d).



Fig. 7. A 3-D view of tomographic images (Lei et al., 2009b) under the Tengchong volcano (triangle). Red and blue colors denote low-V and high-V anomalies. The scale for
velocity perturbation is shown on the right. The topography is shown on the top.

Fig. 8. Schematic tectonic settings showing how to form the Tengchong volcano (TCV, red triangle). The earthquakes determined by Engdahl et al. (1998) are plotted within a
range of 35 km off the profile of 25.6�N. The scales for earthquake magnitude and focal depth are shown at the bottom. The topography along the profile is illustrated on the
top. After Lei et al. (2009b).
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This new model shows a prominent low-V anomaly under the
Tengchong volcano extending down to about 400 km depth, and
this low-V anomaly spreads horizontally towards the northeast
at depths of 250–400 km. High-V anomalies are clearly observed
in the mantle transition zone, which could represent the cold sub-
ducted Indian slab. To more clearly evaluate the seismic structure
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under the Tengchong volcano, a 3-D view is shown in Fig. 7. Li et al.
(2008) illustrated high-V anomalies related to the subducted In-
dian slab down to the mantle transition zone with a steep dip angle
of �60� in the aseismic zone below �200 km depth. Recent recei-
ver-function analyses demonstrated that the 660-km discontinuity
is depressed to 690 km depth under the Tengchong volcano (e.g.,
Shen et al., 2008). Integrating these results, Lei et al. (2009b) pro-
posed a tectonic model (Fig. 8). The Indian slab has subducted
down to the mantle transition zone, though the seismicity within
the slab ends at �200 km depth. The dip angle of the slab varies
from �30o above �200 km depth in the seismic zone to �60� be-
low this depth in the aseismic zone, which are quite similar to
those observed in the subducted Philippine Sea slab (e.g., Abdel-
wahed and Zhao, 2007; Zhao et al., 2012a). The eastward subduc-
tion of the Indian slab around the Burma arc has also been
demonstrated by petrological and geochemical studies (Guo
et al., 2005; Zou et al., 2010a; Zhou et al., 2011; Xu et al., 2012a),
because the whole rock in the Maanshan (Tengchong) volcanic
area is characterized by negative eNd (�7.0), high 87Sr/86Sr
(0.7076) and excess 238U, which may reflect magma generation
from an enriched mantle produced by continental subduction
(Zou et al., 2010a). Thus, a firm correlation can be established be-
tween the Tengchong volcano and the subduction and dehydration
of the Indian continental slab or the Burma microplate (Lei et al.,
2009b).

Because of its low density, the continental lithosphere has been
traditionally assumed to be too light to be subducted. However,
several processes contribute to the subduction of the continental
lithosphere (Molnar and Gray, 1979). One is the negative buoy-
ancy of the relative cold mantle part of continental lithosphere,
which is consistent with previous studies (Forsyth and Uyeda,
1975; Turcotte and Schubert, 1982; Shemenda, 1993; Cloos,
1993). Another mechanism is the pull of a downgoing slab of oce-
anic lithosphere on continental lithosphere trailing behind it. Re-
cent studies have demonstrated the process of continental crust
subduction even down to the mantle transition zone, based on
geological, geophysical and numerical modeling studies (e.g.,
Senshu et al., 2009; Kawai et al., 2013, and references therein).
In subduction zones, continental crust is generated through arc
magmatism and part of it is returned to the mantle through sedi-
ment subduction, subduction erosion, and continental subduction.
Kawai et al. (2013) based on first principles calculations showed
that continental crust can be subducted down to 660 km depth.
The best natural example for deep subduction of continental crust
comes from ultrahigh-pressure metamorphic rocks, some of which
record diamond-facies conditions (e.g., Dobrzhinetskaya, 2012). In
the Burma region, the negative buoyancy could be the primary
force that causes the subduction of the Indian continental slab,
due to the absence of oceanic slab. The lower crust above the sub-
ducting continental slab could transform to eclogite around
100 km depth, which would contribute to the negative buoyancy
proportionally to the volume of the continental crust (Ranalli
et al., 2000), because eclogite is denser than the surrounding man-
tle material down to the top of the mantle transition zone. The
dehydration of the subducting slab might continue to depth be-
cause of the large amount of wet sediments being dragged down
(Regenauer-Lieb et al., 2001).

Such a model may explain how and why the 10 March 2011
Yingjiang, China, earthquake (M 5.8) and the 24 March Burma (M
7.2) earthquake (Fig. 5) occurred (Lei et al., 2012a). The 4 February
2011 Indo-Burma earthquake occurred at �90 km depth, suggest-
ing that the Indian plate is still active and currently subducting
eastward. The Yingjiang earthquake could be closely related to flu-
ids contained in the upwelling flow under the Tengchong volcano.
These fluids could enhance the stress concentration on the seism-
ogenic layer, as well as decrease the effective normal stress across
the fault planes of the Da Yingjiang fault. The occurrence of the 24
March Burma earthquake is quite similar (Lei et al., 2012a).

2.3. The Hainan volcano

The Hainan volcano is located at the Hainan island in the south-
ernmost portion of the South China block and is separated from
Mainland China by the Qiongzhou strait (Fig. 1). The Hainan vol-
cano erupted several times since the Eocene. The Pliocene and
Quaternary volcanism at the Hainan island can be grouped into
two major eruptive stages, late Tertiary and Quaternary and
mainly distributed in six eruptive areas, Chinniuling, Penglei-Ged-
ing, Lungtang, Yangpukang, Towenling, and Maanling (Ho et al.,
2000). The volcanic eruption generated excellent physiographic
features, but all the craters are not that high and the highest crater
is only �222.8 m above sea level (Fig. 2d,e). The basaltic lava flows
are widely distributed and cover an area of over 7000 km2 includ-
ing the Leizhou peninsula, and the number of volcanic craters that
can be distinguished amount to 177 (Liu, 2000). Such intensive
Cenozoic magmatism should have connection with the deep struc-
ture of the region. Based on the low-V anomalies in the upper man-
tle and thinned mantle transition zone under the Hainan hotspot, a
plume was hypothesized by Lebedev et al. (2000). Recent studies
confirmed that the Hainan volcano to be of hotspot-type (e.g.,
Lebedev and Nolet, 2003; Liang et al., 2004; Montelli et al., 2004;
Zhao, 2007).

Petrological results showed a high potential mantle tempera-
ture of 1400–1660��C that is 100–360 �C higher than the normal
temperature of basalt mantle (Yan and Shi, 2007; Wang, 2011;
Hoang and Flower, 1998), suggesting the existence of thermal
anomalies under the Hainan mantle. This supports the concept
of the Hainan plume. However, from the ocean-bottom magnetic
anomaly observations, it was inferred that the South China Sea
spreading started from 32 Ma and culminated at 15.5 Ma (Briais
et al., 1993; Kido et al., 2001). The volcanism in the South China
Sea may be divided into three periods, pre-spreading (>32 Ma),
syn-spreading (32–16 Ma) and post-spreading (<16 Ma), with
distinct features in the spatial distribution of magmatic activity
during different periods (Xu et al., 2012b). The distribution of
Cenozoic volcanic rocks in South China Sea and surrounding re-
gions seems to indicate the effect of the mid-oceanic ridge suc-
tion on the Hainan plume, but there are no features of volcanic
rifted margins in the transition zone between the South China
continental margin and South China Sea basin (Xu et al.,
2012b). These discrepancies led to the debate on whether the
Hainan plume has any impact on the South China Sea spreading
(Xu et al., 2012b).

A large amount of geophysical data is available from the Hainan
volcanic field. Seismic explosion experiments reveal a thinner crust
with low-V anomalies under the Hainan volcanic field (e.g., Jia
et al., 2006). Local seismic tomographic models inferred from arri-
val time data recorded at portable seismic stations demonstrate
low-Vp and low-Vs anomalies around the northern Hainan island
and these low-V anomalies extend northward above 20 km depth
(Ding et al., 2004). Pn tomographic model shows a prominent
low-V anomaly in the uppermost mantle (Liang et al., 2004). Global
tomographic models illustrate pronounced low-V anomalies under
the Hainan down to the lower mantle (Fig. 9), and suggest that the
Hainan plume originated from the lower mantle (e.g., Zhao, 2004;
Lei and Zhao, 2006a; Montelli et al., 2006). The U–Th disequilib-
rium data and Nd isotopic compositions support the mode of the
lower mantle origin of the Hainan plume (e.g., Zou and Fan,
2010). However, some differences exist between these two tomo-
graphic models with regard to depth ranges. Lei and Zhao
(2006a) and Zhao (2007) show a low-V anomaly extending down
to the lowermost mantle (Fig. 9A), whereas Montelli et al. (2006)



Fig. 9. Global velocity models in map view at different depths under the Hainan island. Red and blue colors denote low-V and high-V anomalies. The triangle denotes the
Hainan hotspot. (A) The P-wave velocity model from Lei and Zhao (2006a); (B) The P-wave and S-wave velocity models from Montelli et al. (2006).
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demonstrates a low-V anomaly down to only the middle mantle
(Fig. 9B). These differences may be due to the different data sets
used. Montelli et al. (2006) used only P, pP and PP seismic phases,
whereas Lei and Zhao (2006a) and Zhao (2007) used ten types of
seismic phases, such as P, pP, PP, PcP, Pdiff, PKPab, PKPbc, PKKPab,
PKKPbc, PKiKP, which have a good coverage of seismic rays in the
lowermost mantle around the Hainan island. However, the shal-
lower structure of the Hainan plume is still unclear.

Lei et al. (2009a) picked 850 high-quality teleseismic P-wave
arrival time data from original seismograms of 138 teleseismic
events recorded at 9 seismic stations of the Hainan provincial
network (Fig. 10a). Integrating with 3500 local arrival time data
from selected 464 earthquakes, Lei et al. (2009a) obtained a clear
image of the Hainan plume down to 300 km depth (Fig. 10b–d),
which shows a southeastward titled low-V anomaly with depth
under the Hainan island. Such a tilt of the plume is also sup-
ported by magnetotelluric results (Hu et al., 2007) and could
be related to the double-sided subduction realms: the eastward
subduction of the Indian slab and the westward subduction of
the Philippine Sea slab (Qu et al., 2007; Liu et al., 2008a; Zhao
and Liu, 2010), but the most likely explanation is that the plume
was distorted by the lower mantle flow and then rose directly
upward to the upper mantle (Steinberger and Antretter, 2006).
This is supported by the existence of the ultra-low-V anomalies
in the lowermost mantle around the Philippine island as seen
from waveform modeling (Idehara et al., 2007).
2.4. The Datong volcano

The Quaternary Datong volcano is located in the northernmost
portion of the Shanxi rift (Fig. 1). There are 30 small volcanoes in
the Datong volcanic filed, and they are distributed about 3 km
away from the Datong county. The volcanic field can be mainly di-
vided into two domains: a northern area where at least 13 volcanic
cones are distributed and a southeastern area where the volcanic
cones have a small height (Xu et al., 2005). Potassium–Argon (K–
Ar) dating constrains the timing of volcanism in the northern area
as late Pleistocene (�0.4 Ma), which is later than that in the south-
eastern area since early Pleistocene (�0.74 Ma) (Chen et al., 1992).
However, the mechanism of the origin of the Datong volcano has
remained unclear.

Recent regional tomographic models showed low-V anomalies
under the Datong volcano in the upper mantle (e.g., Tian et al.,
2009; Zhao et al., 2009b). However, we cannot judge whether these
low-V anomalies are related to the dehydration of the stagnant Pa-
cific slab in the mantle transition zone under eastern China be-
cause the Datong volcano is about 2400 km away from the Japan
Trench (Fig. 1). To examine the correlation between the Pacific sub-
duction and the Datong volcanism, some researchers inverted the
tomographic images on a large scale, and their models illustrate
obvious low-V anomalies in the upper mantle under the volcano
that are connected westward to those under the Japan Islands
(e.g., Huang and Zhao, 2006; Li and van der Hilst, 2010). The results



Fig. 10. (a) Locations of the Hainan hotspot (red triangle), vertical cross-sections (blue lines), seismic stations (open triangles), and local earthquakes (circles) used by Lei et al.
(2009a). The scales for earthquake magnitude and focal depth are shown at the bottom of (c,d). (b–d) P-wave tomographic images (Lei et al., 2009a) along these three vertical
cross sections. Red and blue colors denote low-V and high-V anomalies. The scale for velocity perturbation is shown at the bottom. Dashed lines denote the Moho
discontinuity, while color circles denote the earthquakes within 25 km off the profiles. The topography along the cross-sections is shown on the top.
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seemly suggest that the deep origin of Datong volcano could be re-
lated to the subduction of the Pacific slab. To demonstrate such a
correlation, Lei (2012) collected a large number of high-quality ar-
rival-time data recorded at provincial seismic networks in the
North China Craton and manually picked from original seismo-
grams (Zheng et al., 2009, 2010) of teleseismic events. His tomo-
graphic model shows an obviously Y-shaped low-V anomaly
under the Datong volcano and Bohai Sea, and this low-V anomaly
extends down to the lower mantle (Figs. 11 and 12), suggesting
that the Datong volcano might originate from the lower mantle.
It is also found that the high-V anomalies representing the stag-
nant Pacific slab in the mantle transition zone show a clear gap
(Fig. 11g and h), which may correspond to the upwelling of the
hot material from the lower mantle. A vertical view of tomographic
image illustrates the low-V anomalies under the Datong volcano
ascending from the lower mantle to about 200 km depth and then
branching out (Fig. 12). One of these branches ascends eastward to
under the Bohai Sea, whereas the other moves westward to under



Fig. 11. Tomographic images (Lei, 2012) under the Datong volcano (red triangle) in map view. Red and blue colors denote low-V and high-V anomalies, respectively. The color
scale for velocity perturbation is shown at the bottom. Solid and black lines denote the boundaries of the eastern, western and central North China Cratons. The gray line
marks the North–South Gravity lineament. Dashed lines denote the Shanxi rift and Tanlu fault zone, respectively.
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the Datong volcano (Fig. 12). From these results Lei (2012) con-
cluded that the origin of the Datong volcano is more likely from
the lower mantle, although it may be related to the dehydration
and deep subduction of the Pacific slab that is stagnant in the man-
tle transition zone. This is somewhat similar to that of the Yellow-
stone plume, where low-V anomalies may penetrate the gap of the
Farallon slab from the lower mantle to the upper mantle (Xue and
Allen, 2007; Liu and Stegman, 2012; Tian and Zhao, 2012). Such a
gap of the stagnant Pacific slab in the mantle transition zone could
be caused by slab tearing due to differential movement (Obayashi
et al., 2009). A similar tearing is also reported under the Italian
peninsula (Rosenbaum et al., 2008). Another possibility is the
instability of the stagnant Pacific slab in the mantle transition zone
due to the gravity influence related to the phase changes (Ai et al.,
2008). The lower mantle origin of the Datong volcano could be re-
lated to either the collapsed slab in the mantle transition zone
down to the lower mantle ascribed to the gravity influence (Zhu
et al., 2011) or to the existence of the thermal boundary layer at
certain depth in the lower mantle (Sleep et al., 1988; Steinberger
and Torsvik, 2012). Therefore, the model of Lei (2012) does not
only explain the mechanism of the formation of the Datong vol-
cano, but also supports the concept of the Bohai plume hypothe-
sized by Teng et al. (1997). Under the Bohai Sea area there are a
higher thermal gradient, a shallower Moho discontinuity, diffused
stress field and shallower high-conductive layers in the upper
mantle, the channels for hot material upwelling in the crust, and
buried basalts beneath the surface (Teng et al., 1997).

2.5. The Xing’an-Mongolia volcanic group

The Xing’an-Mongolia volcanic group mainly includes the Nuo-
min-river volcanoes, the Halaha-river volcanoes, and the Abaga
volcanoes from northeast to southwest along the North–South
Gravity Lineament (Fig. 1). They could be active, because their last
eruptions were in the Holocene time (Fig. 2f,g) (e.g., Bai et al., 2005,
2008; Zhao et al., 2008; Fan et al., 2011, 2012). Global and large-
scale regional tomographic models are too generalized to see sig-
nificant deep structures related to these volcanoes on the surface
(e.g., Zhao, 2004; Lei and Zhao, 2006a; Huang and Zhao, 2006),
whereas detailed seismic tomography has been seldom conducted,
because few seismic stations are installed and few events occurred
there. However, recent geochemical and petrological studies have
contributed to a better understanding of magmatism associated
with these active volcanoes. From investigations of volcanic field
and K–Ar dating, the activities of both the Halaha-river volcanoes
and Nuomin-river volcanoes can by divided into four periods, the
early Pleistocene, middle Pleistocene, late Pleistocene, and Holo-
cene (Fan et al., 2011, 2012). However, distinct differences can be
noticed between these two volcanic groups in major active periods.
For the Halaha-river volcanoes, the most active period was in the
middle Pleistocene, and the volcanism became weak in the late
Pleistocene but strong again in the Holocene (Fan et al., 2011).
For the Nuomin-river volcanoes, the middle Pleistocene marks
the flare-up with the most intensive activity during the Quater-
nary, and the volcanism became weak in the late Pleistocene and
Holocene (Fan et al., 2012).

The Abaga volcanic field is situated in the southern end of the
Xing’an-Mongolia orogenic belt. Analyses of the mantle peridotite
xenoliths from this Abaga volcanic field show a medium–low-
temperature thermal state and a fertile-transitional lithospheric
mantle, which is similar to the Datong volcanic field but different
from the Halaha-river volcanic field that displays an ancient litho-
spheric mantle (Chen et al., 2012b). These differences suggest that
the Xing’an-Mongolia orogenic belt has prominently temporal-



Fig. 12. Tomographic images (Lei, 2012) under the Datong volcano (DT, red triangle) along the vertical cross-section from northwest to southeast. HT, the Hetao rift; TH, the
Taihang mountain; EB, eastern block of North China Craton; SR, the Shanxi rift; TL, the Tanlu fault zone; BHS, the Bohai Sea. Re, residual of detached lithosphere; De, detached
lithosphere. Other symbols are the same as shown in Fig. 11.
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spatial heterogeneities in the lithospheric mantle. The primary
causes of these contrasts were summarized by Chen et al.
(2012b). First, the Xing’an-Mongolia orogenic belt consists of dif-
ferent blocks, the Halaha-river volcanic field is in the Xing’an block
that has been stable since the early Paleozoic, while the Abaga vol-
canic field is on the Songnei block that was unstable until the late
Paleozoic. (2) The Abaga volcanism was much stronger than that in
the Halaha-river volcanic areas, possibly indicating that the an-
cient lithospheric mantle has partially been eroded and trans-
formed to the young lithospheric mantle in the Abaga area
(Zhang et al., 2007; Tang et al., 2008). (3) The carbonic fluid inclu-
sions occurring in the peridotite xenoliths in the Abaga volcanic
area (Kononova et al., 2002) suggest transformation of harzburgite
into lherzolite (Ionov et al., 1996), which made the Abaga region
different from other regions in the Xing’an-Mongolia region.

3. Discussion

3.1. Seismic tomography with integrated data

To obtain the deep structure down to the mantle transition
zone, teleseismic arrival time data are usually used in the tomo-
graphic technique (Zhao et al., 1994; Hung et al., 2004; Rawlinson
et al., 2006). However, teleseismic rays are nearly vertical in the
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shallow crust, and therefore teleseismic tomography cannot re-
solve the crustal structure well. To yield a good criss-cross ray cov-
erage in the shallow crust to better image the mantle structure,
local and teleseismic data were integrated during tomographic
inversion under the Tengchong and Hainan volcanoes (Figs. 3B, 6,
7 and 10) (e.g., Lei et al., 2009a, 2009b), whereas the mantle struc-
tures under the Changbaishan and Datong volcanoes were imaged
by correcting the theoretical teleseismic travel times (Figs. 3A, 11,
12) (e.g., Lei and Zhao, 2005; Koulakov et al., 2009; Lei, 2012) with
an existing 3-D velocity crustal model containing an undulating
Moho discontinuity, such as the CRUST2.0 model (Mooney et al.,
1998; Bassin et al., 2000). These two kinds of tomographic tech-
niques can avoid mapping crustal structure into the mantle and
vice versa and they have been popularly adopted to invert the man-
tle structure in various regions of the world, such as under the Ja-
pan Islands, Iceland, Tienshan orogenic belt, and Anatolian plateau
(e.g., Zhao et al., 1994, 1996, 2012a; Hung et al., 2004; Lei and
Zhao, 2007a,b). Recently, some researchers applied a joint inver-
sion of complementary body and surface wave data that can close
the gap between well resolved lithospheric and mantle structures
on global scale and under Iceland, US and China (e.g., Allen et al.,
2002; Antolik et al., 2003; West et al., 2004; Obrebski et al.,
2011, 2012). A future attempt should focus on a joint inversion
of body and surface wave data under the volcanoes in China.

3.2. Seismic tomography with later phases

Tomographic images (Figs. 3, 6, 7 and 10–12) shown in the pres-
ent study were obtained using only the direct P-wave arrival times,
because the direct waves usually have a relative higher accuracy
than later phases. However, later phases often sample the Earth’s
mantle structure not ordinarily sampled by the direct P waves in
most portions of the crust and mantle. Therefore, adding later
phases is considered to be an effective way to improve the tomo-
graphic image, particularly for the regions where few seismic sta-
tions and events exist. In global tomographic studies a number of
later seismic phases have been used to enhance the ray coverage
in the southern hemisphere and oceanic regions (e.g., Vasco and
Johnson, 1998; Boschi and Dziewonski, 2000; Karason and van
der Hilst, 2001; Zhao, 2001, 2004, 2007; Lei and Zhao, 2006a). Zhao
(2001, 2004, 2007) used arrival times of P, pP, PP, PcP and Pdiff
phases to invert for global tomographic images to decipher the
deep structure of the mantle plumes. In addition to these later seis-
mic phases, Lei and Zhao (2006a, 2006b) added more later phases
that penetrate through the outer core, such as PKPab, PKPbc, PKiKP,
PKKPab, PKKPbc, to obtain a new tomographic image. Their results
have imaged the Hawaiian plume as a continuous low-V anomaly
from the surface to the core-mantle boundary (Lei and Zhao,
2006a, 2006b), which significantly improved previous tomographic
images of Obayashi and Fukao (1997), Zhao (2001, 2004), Fukao
et al. (2003) and Montelli et al. (2004) and strongly suggested that
the Hawaiian plume indeed originates from the lowermost mantle.

To demonstrate the effect of later seismic phases on the local
tomographic inversion, Zhao et al. (2005) used S, SmS and sSmS ar-
rival time data recorded at two seismic stations (GSC and PFO) that
are 200 km apart and inverted crustal seismic structures around
the Landers source areas. They found that later seismic phases sig-
nificantly improve the crisscrossing ray coverage in the mid-lower
crust. The inverted results illustrated that adding reflected seismic
phases is a very effective way to improve the quality of tomo-
graphic images (Zhao et al., 2005). Although it is hard to accurately
pick up the arrival times of later phases, this technique has been
used in several different regions (e.g., Salah et al., 2005; Xia
et al., 2007; Sun et al., 2008; Lei et al., 2008, 2011). Lei and Zhao
(2006a, 2006b) investigated the effects of various mantle and core
phases on the global mantle structure, and found that PP rays can
provide a better constraints on the structure down to the middle
mantle, in particular for the upper mantle under the oceans. PcP
can enhance the ray sampling of the middle and lower mantle
around the Pacific rim and Europe, while Pdiff can help improve
the spatial resolution in most parts of the lowermost mantle. The
outer core phases, PKP, PKiKP and PKKP, can improve the resolu-
tion in the lowermost mantle under the southern hemisphere
and oceanic region.

In the teleseismic tomographic studies, recent researchers tried
to use some later phases, such as pP, sP, ScP, PcP, PKiKP and PP
phases, in their teleseismic tomographic inversion (Rawlinson
and Kennett, 2008; Rawlinson et al., 2010), and found that later
phases play important roles in imaging the upper mantle structure.
Therefore, it is suggested to add later phases in imaging the deep
structure under the Chinese volcanoes in the future.

3.3. Ray-theory tomography versus finite-frequency tomography

Tomographic images (Figs. 3, 6, 7, 9A, and 10–12) shown in the
present study were inferred using the ray-theory travel-time
tomographic technique of Zhao et al. (1994). In conventional travel
time tomography, the linearized ray theory is commonly utilized to
interpret a travel time shift relative to a value predicted for a radi-
ally symmetric Earth model. Propagation of a seismic wave within
the heterogeneous Earth is regarded as a ray traveling along its
infinitely thin geometrical path. However, in reality, wave front
healing, scattering, and other diffraction phenomenon around
velocity heterogeneities render the travel time of an actual finite-
frequency wave sensitive to 3-D wave speed perturbation off the
ray path (e.g., Dahlen et al., 2000; Hung et al., 2004). The Born-Fre-
chet kernels for seismic travel time can explicitly express the influ-
ence of velocity heterogeneity off the ray path upon a finite-
frequency travel-time shift. A simple model comparison between
results from ray-theory and finite-frequency tomographic tech-
niques suggests that the effect of the Born-Frechet kernels on the
pattern and amplitude of velocity anomalies appears to be mark-
edly smaller than that of damping and smoothing regularizations
and errors in the data, thus the advantage of finite-frequency
tomography over tomographic images could be overstated (van
der Hilst and de Hoop, 2005). Dahlen and Nolet (2005) commented
that their critique of the theoretical methodology is based upon the
incorrect notion that one can account for errors in the synthetic
pulse and/or origin time of an earthquake by a modification of
the Frechet kernels expressing the first-order dependence upon
the velocity perturbations. Nevertheless, the finite-frequency
tomography can yield a reasonable amplitude of velocity anoma-
lies on local, regional and global scales (e.g., Hung et al., 2004;
Montelli et al., 2004; Tong et al., 2011, 2012), and it is still being
used in the investigation of mantle structure under North America
(e.g., Sigloch et al., 2008; Obrebski et al., 2010), Europe (e.g., Ren
et al., 2012), Tibetan plateau (e.g., Ren and Shen, 2008; Hung
et al., 2010), North China (e.g., Zhao et al., 2009b), and some spe-
cific areas like hotspots (Hung et al., 2004; Yang et al., 2006). In or-
der to obtain more accurate amplitude of resolved velocity
anomalies of the crust and upper mantle to better understand
the magmatic activities under the volcanoes, it is suggested to con-
duct finite-frequency tomography around the Chinese volcanoes.

3.4. Anisotropic tomography

Tomographic images (Figs. 3, 6, 7, 9, 10 and 12) were deduced
by assuming that the Earth is isotropic, but anisotropy actually ex-
ists in the real Earth’s interior. Since early 1990s, shear wave split-
ting analysis has been extensively applied to seismological data for
detecting anisotropy in the Earth, leading to seismic anisotropy
being observed at different depths from the crust down to the
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core-mantle boundary (Silver, 1996; Savage, 1999). The systematic
analysis method was applied to local seismic waveform data,
revealing the existence of obvious anisotropy in the middle and
upper crust (e.g., Gao et al., 1998, 2011; Wu et al., 2009). Using
Pms (Moho converted) seismic phase, the anisotropy in the entire
crust was inferred (e.g., Sun et al., 2011; Chen et al., 2012a; Cheng
et al., 2012). Using SKS splitting analyses, the anisotropic results
within the lithosphere and/or asthenosphere can be derived (e.g.,
Wang et al., 2008; Zhao et al., 2007b, 2012b; Huang et al., 2011).
In addition, there is growing observational evidence for significant
anisotropy in the lowermost mantle (e.g., Lay et al., 1998; Wang
and Wen, 2007; Long, 2009; He and Long, 2011). These results sug-
gest extensive anisotropy in the medium of the Earth’s interior at
different depths (Crampin, 1981).

The existence of anisotropy in the Earth could affect the geom-
etry and amplitude of resolved velocity anomalies, and thus Hearn
(1996) took into account anisotropy in the uppermost-mantle
tomography using Pn arrival time data. However, his model was
parameterized into 2-D grid nodes in the horizontal directions. Re-
cently, to obtain a 3-D anisotropic tomographic model, Ishise and
Oda (2005) and Wang and Zhao (2008) developed a technique to
relate travel time residuals to both lateral heterogeneities and
anisotropy in the region of interest. Furthermore, the pattern of
velocity anomalies is much clearer when the anisotropy is taken
into account in the tomographic inversion. In mainland China,
Huang et al. (2011) applied the shear-wave splitting techniques
to core phases (SKS, SKKS, SKiKS and PKS) and direct S waves from
regional and distant earthquakes recorded at 138 permanent seis-
mic stations in mainland China, and found the existence of anisot-
ropy at the stations around the Changbaishan and Tengchong
volcanic fields, but it is much weaker than that in the surround
areas. These results may indicate that only some, rather than all,
parts of seismic rays used in the anisotropic analyses pass through
the conduits of the hot material upwelling in the upper mantle un-
der the region. A similar spatial distribution of the azimuthal
anisotropy has been demonstrated using the data of Rayleigh
waves (Yi et al., 2010). Thus, future work should also focus on
anisotropic tomographic inversion in the volcanic region to better
understand the deep structure and dynamics of the volcanoes in
China.

3.5. Future work

Our present synthesis focused on seismic structures of the
upper mantle around the Changbaishan, Tengchong, Hainan, and
Datong volcanoes in evaluating their deep origins. However, the
deep structures of the upper mantle around the Wudalianchi and
Ashikule (Kunlun) volcanoes and Xing’an-Mongolia volcanic group
have not been studied yet, mainly because of sparse seismic sta-
tions there. Since the initiation of the North China Craton destruc-
tion project by the National Natural Science Foundation of China,
some broadband portable seismic networks have been deployed
in northeast China. For example, a densely spaced portable seismic
array was installed around the Wudalianchi volcano during June
2009 and June 2011 by the Institute of Geophysics, China Earth-
quake Administration, but these stations were aligned in two par-
allel NW oriented lines that are about 150–200 apart, and only the
north line passes through the volcano (e.g., Zhang et al., 2013). The
linear array is generally thought to be hard to give a good criss-
cross coverage of seismic rays in the mantle. One more example
is the NECESSArray seismic network that was deployed in north-
eastern China by the Sino-US-Japan cooperation from September
2009 to August 2011 (e.g., Guo et al., 2011). This network is a
block-shaped array and can give a criss-cross ray coverage in the
mantle, but the Wudalianchi volcano is immediately outside this
network. Therefore, so far we have had no local tomographic
images under the Wudalianchi volcano. In the Ashikule (Kunlun)
volcanic field the Chinese provincial seismic stations are very
sparse and there are no portable seismic arrays. Future attempts
should therefore add more seismic stations around the Wudalian-
chin and Ashikule (Kunlun) volcanoes and Xing’an-Mongolia volca-
nic group and apply recently developed techniques as mentioned
in Section 3 to obtain more reasonable seismic images to better
understand the origins of the Chinese volcanoes.
4. Summary

A synthesis of the recent results on the deep structures under
the volcanoes in China leads to the following conclusions. The
Changbaishan volcano is a back-arc volcano which is closely re-
lated to the dynamic processes of the hot material upwelling in
the big mantle wedge (BMW) due to the stagnancy and dehydra-
tion of the Pacific slab in the mantle transition zone. The Teng-
chong volcano is somewhat similar to that of the Changbaishan
volcano and is associated with the subduction of the Indian plate
or Burma microplate, and its main distinction from the Changbai-
shan volcano is the continental subduction. The Hainan volcano
could be a hotspot-type, which is different from the Changbaishan
and Tengchong intraplate volcanoes. The Hainan plume may have
its origin in the lower mantle, and the tilt of the Hainan plume
could be related to the lower mantle flow. Similar to the Hainan
volcano, the Datong volcano could also be a lower mantle plume,
though it is somewhat related to the dehydration of the stagnant
Pacific slab in the mantle transition zone. These results would be
of great significance to understand the dynamics of East Asia and
to mitigate the volcanic hazards in the future. Future work should
improve the density and morphology of seismic arrays around the
volcanoes and utilize the recently developed seismic tomographic
techniques to obtain more reasonable images under these
volcanoes.
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