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Abstract

Theoperation of switching a finite graph was introduced by Seidel, in the study of strongly regular
graphs. We may conveniently regard a graph as being a 2-colouring of a complete graph; then the
extension to switching of anm-coloured complete graph is easy to define. However, the situation is
very different. Form > 2, all m-coloured graphs lie in the same switching class. However, there are
still interesting things to say, especially in the infinite case.

This paper presents the basic theory of switching with more than two colours. In the finite case,
all graphs on a given set of vertices are equivalent under switching, and we determine the structure
of the switching group and show that its extension by the symmetric group on the vertex set is
primitive.

In the infinite case, there is more thanone switching class; we determine all those for which
the group of switching automorphisms is the symmetric group. We also exhibit some other cases
(including the randomm-coloured complete graph) where the group of switching-automorphisms is
highly transitive.

Finally we consider briefly thecase where not all switchings are allowed. For convenience, we
suppose that there are three colours of which two may be switched. We show that, in the case of
almost all finite random graphs, the analogue of the bijection between switching classes and two-
graphs holds.
© 2003 Elsevier Ltd. All rights reserved.

1. Two colours; finitely many vertices

The operation of switching a graphΓ with respect to a setX of vertices was introduced
by Seidel [8]; it is often calledSeidel switchingor Seidel equivalence. The operation
consists of exchanging adjacency and non-adjacency betweenX and its complement, while
keeping adjacencies within or outsideX unaltered. Seidel used an adjacency matrix with 0
on the diagonal,−1 for adjacency, and+1 for non-adjacency; then switching corresponds
to conjugating this matrix by a diagonal matrix with entries±1. This representation arises
in a geometric context as follows (see [9]).
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Suppose that we have a set of lines through the origin in Euclidean space, such that the
acute angleα between any pair is the same. Choose a unit vector on each line. Then the
Gram matrix of inner products of these vectors has the formI + (cosα)A, whereA is
the adjacency matrix of a graph (of the form just described). Replacing some of the unit
vectors by their negatives corresponds to switching the graph.

For our purposes, it is more convenient to think of a complete graph with edges
coloured red and blue; the switching operationσX with respect to a subsetX of V involves
interchanging colours of edges fromX to its complement, leavingall other edges unaltered.
For brevity, in what follows, the word “graph” will mean “edge-coloured complete graph”
(with the appropriate number of colours).

We now give a verybrief summary of the properties of switching. We consider graphs
on a fixed setV of n vertices.

• The switching operations form a group of order 2n−1, theswitching group, whose
orbits on graphs are calledswitching classes. Each switching class has size 2n−1.

• Two graphs belong to the same switching class if and only if the parity of the number
of red edges in any 3-subset ofV is the same inboth graphs.

• A setT of 3-subsets ofV is realised as the set of triples containing an odd number
of red edges of some graph onV if and only if every 4-set contains an even number
of members ofT . (Sucha setT is called atwo-graph. The term was introduced by
G. Higman (unpublished); see Seidel [9]. Thus two-graphs are essentially the same
as switching classes of graphs.)

The unlabelled switching classes of graphs (or, equivalently, two-graphs) were
enumerated by Mallows and Sloane [7]. The number of two-graphs is the same as
the number of even graphs (that is, graphs with all valencies even) on the same set.
A conceptual proof of this appears in [2].

We define theextended switching groupto be the semidirect productS�Sym(n), where
S is the switching group and Sym(n) the group of all permutations of the vertices. (Forn
odd, the extended switching group is isomorphic to the Weyl group of typeDn.) Thegroup
SAut(Γ ) of switching-automorphismsof a graphΓ is the image of the stabiliser ofΓ in
the extended switching group, under the natural homomorphism to Sym(n). Equivalently,
it is the group ofpermutationsg of V for which there exists a switching operationσ ∈ S
with Γg = Γσ . It is easy to see that graphs in the same switching class have the same
group of switching-automorphisms.

The group of switching-automorphisms ofΓ coincides with the automorphism group
of the two-graph associated withΓ , and may be 2-transitive, as many examples in Seidel
[9] show. However, it cannot be 3-transitive (except for the switching class of the complete
or null graph), since it preserves a ternary relation (the associated two-graph).

2. More than two colours; finitely many vertices

Suppose thatΓ is a complete graph onV , with |V | = n, whose edges are coloured with
m colours, wherem ≥ 2. If c, d are colours andX a set of vertices, we define the switching
operationσc,d,X to interchange coloursc andd on edges betweenX and its complement,
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and leave all other colours on such edges and all colours on edges within or outsideX
unaltered. Theswitching group Sm,n is the groupgenerated by all such switchings; it is
a permutation groupon the setGm,n of all such coloured complete graphs. SinceSm,n

is normalised by the symmetric group Sym(V), these groups generate their semidirect
productS∗

m,n = Sm,n � Sym(n), the extended switching group. The group SAut(Γ ) of
switching-automorphisms is defined in the same way as for two colours.

The main difference between the cases of two or more colours is that there is only one
switching class form ≥ 3:

Theorem 2.1. The switching group Sm,n is transitive onGm,n if m ≥ 3.

Proof. Let c, d, e be three colours andx, y two vertices. Then the commutator ofσc,d,x

and σd,e,y induces the 3-cycle(c, d, e) on the colours on{x, y}, while fixing all other
colours there and all colours on other edges. Thus, we can permute transitively the colours
on any edge while fixing those on all other edges. Repeating for each edge, we can map
any edge-coloured graph to any other.�

Corollary 2.2. If m ≥ 3, then the group of switching-automorphisms of any graph inGm,n

is the symmetric groupSym(n). �

We can describe the structure ofSm,n completely. Here Alt(m) denotes the alternating
group of degreem.

Theorem 2.3.

Sm,n ∼= Alt(m)n(n−1)/2
� Cn−1

2 .

Proof. In the preceding proof, the 3-cycles generate the alternating group on the colours
on each edge. SoSm,n contains the direct product of copies of the alternating group. This
is also true form = 2, since Alt(2) is the trivial group. This productN is clearly a normal
subgroup ofSm,n.

There is a homomorphism fromSm,n to S2,n, where each generatorσc,d,X of Sm,n maps
to the generatorσX of S2,n. (The imageof an arbitrary elementg ∈ Sm,n is σX, where the
edges on which the parity of the permutation of the colours is odd are those fromX to its
complement.) The kernel of this homomorphism isN, while the image isS2,n, which is
elementary Abelian of order 2n−1 by Seidel’s result. The extension clearly splits.�

For the extended switching group,Theorem 2.1can be strengthened as follows.

Theorem 2.4. The extended switching group S∗m,n is primitive onGm,n if m ≥ 3.

Proof. This group contains Alt(m) � Sym(n), where Sym(n) hasits action on 2-element
subsets of{1, . . . , n}, and the wreath product has its product action.

If m ≥ 4, the bottom group is primitive and not regular, and the top group is transitive;
sothe primitivity follows from the analysis preceding theO’Nan–Scott theorem in Dixon
and Mortimer [3, Lemma 2.7]. So suppose thatm = 3.

Now our group has a regular normal subgroup which is elementary Abelian of order
3(n

2). This group can be represented as the set of functions from the set of 2-subsets to
the integers mod 3. A block of imprimitivity containing the zero element is a subgroup
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which is invariant under both switching (changing sign on all edges through a vertex) and
permutation of vertices.

Suppose thatH is a subgroup which is so invariant, and contains a non-zero functionf .
We can suppose thatf is non-zero on some edge containingx. Switching at x and
subtracting, we obtain a non-zero functionf ′ which vanishes on alledges not containingx.
If f ({x, y}) �= 0, then switching aty and subtracting, we obtain a functionf ′′ which is
non-zero only on the edge{x, y}. Now the images off ′′ under permutations generate the
whole group. �

3. Two colours; infinitely many vertices

Switching for infinite graphs is defined exactly as for finite graphs. The switching group
is elementary Abelian, and is isomorphic to the group of subsets ofV (with the operation of
symmetric difference) modulo{∅, V}. The maindifference is that switchings with respect
to singletons do not generate the group. It is similarly true that the group of switching-
automorphisms of an infinite graph may be 2-transitive but cannot be 3-transitive except in
the case of the complete ornull graph.

4. More than two colours; infinitely many vertices

Unlike in the finite case, the switching group does not act transitively on the set of
edge-coloured complete graphs on an infinite set.

We define aswitched c-cliqueon V to be an edge coloured complete graph onV , such
that there is a partitionV = V1 ∪ · · · ∪ Vk with the properties

(a) any edge within a partVi has colourc;
(b) the colour of an edge with vertices inVi andVj depends only oni and j .

Proposition 4.1. Let Γ be an m-coloured complete graph with m≥ 3. ThenΓ is a
switched c-cliqueif and only if it can be obtained from the graph with all edges of colour
c by switching.

Proof. Suppose thatΓ is a switchedc-clique. Form the finite graph∆ on{1, . . . , k}, where
the colour of the edge{i , j } is the same as the colour of edges fromVi to Vj in Γ . By
Theorem 2.1, ∆ can be switched into ac-clique. The switchings lift in an obvious way to
Γ , and alsoswitch it into ac-clique.

Conversely, let Γ be obtained from ac-clique by the productσ1 · · · σt of a sequence of
switchings. Then there is a partition ofV into parts given by intersections of the switching
sets ofσ1, . . . , σt and their complements, which clearly satisfies (a) and (b).�

Since a switchedc-clique contains no infinitec′-clique for any colourc′ �= c, we see
that a switchedc-clique cannot also be a switchedc′-clique forc′ �= c; hence the cliques
of different colours lie in different switching classes.

Switching does not change the group of switching automorphisms; so SAut(Γ ) =
Sym(V) holds if Γ is a switchedc-clique. The converse is also true. This depends on a
preliminary lemma. Amoietyof an infinite set is an infinite subset whose complement is
also infinite.
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Lemma 4.2. An infinite multicoloured graph is a switched c-clique if and only if the vertex
set can be partitioned into three moieties such that the induced subgraph on the union of
any two is a switched c-clique.

Proof. The reverse implication is clear. So suppose thatV is the disjoint union ofW1, W2,
W3, and for eachi �= j , there is anequivalence relation≡i j onWi ∪Wj whose equivalence
classes have properties (a) and (b) of the definition of a switchedc-clique. Extend≡i j to
an equivalence relation onV in which the remaining setWk is a single class. Let≡ be the
meet of these three equivalence relations.

We claim that≡ has properties (a) and (b). Certainly it has only finitely many classes.
Take twopointsx, y in the same class. Then they belong to the same setWi , sayW1 without
loss of generality. Sincex ≡12 y, theedge{x, y} has colourc. Now let z be any point in
a different equivalence class. Suppose, without loss of generality, thatz ∈ W1 ∪ W2. Then
the properties of≡12 ensure that{x, z} and{y, z} have the same colour.�

Theorem 4.3. Let Γ be an m-coloured complete graph with m≥ 3. ThenSAut(Γ ) =
Sym(V) if and only ifΓ is a switched c-clique.

Proof. Suppose that SAut(Γ ) = Sym(V). By the infinite form of Ramsey’s theorem,
there is a moietyW of V which is a c-clique for some colourc. Since Sym(V) is
transitive on moieties, and SAut(Γ ) induces a switching automorphism from every set
to its image, it follows that every moiety is a switchedc-clique. NowLemma 4.2gives the
result. �

There are, however, other countable graphs whose switching automorphism groups are
highly transitive. One type is given by the next theorem; we will see another in the next
section. (In fact, we have no exampleΓ for which SAut(Γ ) is not highly transitive.)

Theorem 4.4. Let Γ be an m-coloured complete graph. Suppose that there is a finite
partition V = V1 ∪ · · · ∪ Vk such that the colour of an edge with vertices in Vi and
Vj depends only on i and j . ThenFSym(V) is contained inSAut(Γ ).

Proof. It is enough to show that an arbitrary transposition(x, y) belongs to SAut(Γ ).
Refine the partition so that{x} and{y} are parts. Now switch so that all edges with ends
in different parts are red. It is clear that the transposition(x, y) is an automorphism of the
switched graph, and so it is a switching automorphism of the original graph.�

Perhaps the converse is true too.
A permutationg of V is almost an automorphismof Γ if the setof edgese for whiche

andeg have different colours is finite. The set of all almost-automorphisms ofΓ is a group,
thealmost-automorphism group, denoted by AAut(Γ ).

Proposition 4.5. For any infinite m-coloured complete graph with m≥ 3, we have
AAut(Γ ) ≤ SAut(Γ ).

Proof. As in the finite case, we can change the colours of any finite number of edges
arbitrarily, while fixing all other colours, by switching.�
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5. Switching the random graph

The most important application of switching in the infinite case with two colours
concerns the countablerandom graph R(otherwise known as theErdős–Ŕenyi graph
or theRado graph), see [4]. This is the unique countable graph with the property that a
random countable graph (whose edges are chosen independently with probability 1/2) is
isomorphic toR with probability 1.

The graph R is homogeneous, and indeed is the unique countable universal
homogeneous graph, by Fra¨ıssé’s theorem [5].

Now thegroup SAut(R) is 2-transitive, and is a transitive extension of Aut(R).
This group features in a remarkable theorem of Thomas [11]. To state this theorem we

need some terminology. There is a natural topology on the symmetric group of countable
degree, namely the topology of pointwise convergence. With respect to this topology, a
subgroup of Sym(V) is closed if and only if it is the automorphism group of a first-
order structure onV (and this structure may be taken to be purely relational). Areduct
of a structureM on V is a closed subgroup of Sym(V) containing Aut(M). For example,
SAut(R) is a reduct ofR; it is closed because it is the automorphism group of the associated
two-graph. We refer to Hodges [6] for further details.

An anti-automorphismof a graphΓ is an isomorphism fromΓ to the complementary
graphΓ , while a switching anti-automorphismis a permutationg suchthatΓg = Γσ for
some switchingσ .

Now Thomas’ theorem is as follows:

Theorem 5.1. There are just five reducts of the random graph R. These areAut(R); the
group of automorphisms and anti-automorphisms of R; the groupSAut(R); the group
of switching-automorphisms and switching anti-automorphisms of R; and the symmetric
group on the vertex set of R.�

In an analogous way, Fra¨ıssé’s theorem implies that there is a unique countable
homogeneousm-coloured complete graphRm for any (finite or countable)m. If m is finite,
this is also the “randomm-coloured complete graph” (in the sense that with probability 1
the random structure is isomorphic to it). These graphs and their automorphism groups
have been studied by Truss [12].

Now, in contrast to the case of two colours, we have the following result:

Proposition 5.2. For m ≥ 3, thegroupSAut(Rm) is highly transitive; so this group is not
a reduct of Rm.

Proof. The group AAut(Rm) is highly transitive [13], and is contained in SAut(Rm),
by Proposition 4.5. So SAut(Rm) is highly transitive. Now the closure of a highly
transitive group is the symmetric group; but SAut(Rm) is not the symmetric group, by
Theorem 4.3. �

In fact, all the reducts ofRm have been determined by Bennett [1]. We sketch his result
later in this paper.
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6. Restricted switching

A variant on what we have considered is to allow only some possible switchings of
colours. We consider in detail the situation where there are three colours called red, blue
and green, and only blue–green switchings are permitted.

(This kind of switching has a geometrical interpretation. We are given a set of lines in
Euclidean space making anglesπ/2 andα. Choose unit vectors along the lines; their Gram
matrix has the form I + (cosα)A, whereA is a matrix with entries 0 and±1. If colours
red, blue, green correspond to entries 0,+1, −1 respectively, then changing the sign of a
set of vectors corresponds to blue–green switching.)

Blue–green switching clearly leaves all red edges unchanged. It also preserves an
analogue of a two-graph, namely, the parityof the number of green edges in any blue–
green triangle. Is the converse true? Let us say that two 3-coloured complete graphs onV
areP-equivalentif they have the same red edges and each blue–green triangle has the same
parity of the number of green edges; andS-equivalentif one can be obtained from the other
by blue–green switching.

P-equivalence does not imply S-equivalence in general. Suppose thatΓ consists of a
bluen-cycle(with n ≥ 4), all other edges red. By switching, we can make any even number
of edges in the cycle green; but any replacement of blue by green gives a P-equivalent
graph. However, the following is true.

Theorem 6.1. (a) Any 3-coloured complete graph which is P-equivalent to the
countable random3-coloured complete graph R3 is S-equivalent to R3.

(b) Let Γ be a random finite3-coloured complete graph with n vertices. Then the
probability of the event that every3-coloured complete graph P-equivalent toΓ is
S-equivalent toΓ tends to1 as n→ ∞.

Proof. (a) Suppose thatΓ1 is the random 3-coloured complete graphR3, andΓ2 is a graph
which is P-equivalent toΓ1. We begin with some notation. We letci (xy) denote the colour
of the edge{x, y} in Γi , and Ri (v), Bi (v), Gi (v) the sets of vertices joined tov by red,
blue, or green edges respectively inΓi , for i = 1, 2. We let BGi (v) = Bi (v) ∪ Gi (v).
In the proof we shall modify the graphΓ2 so that various colours or sets become the same;
once we know that, for example,c1(xy) = c2(xy), we drop the subscript. Note that we can
immediately writeR(v) andBG(v), by thedefinition of P-equivalence.

Let ∆(v) be the symmetric difference ofB1(v) and B2(v). Switching Γ2 with respect
to ∆(v) gives a new graphΓ ′

2 such that all edges containingv have the same colour inΓ1
andΓ ′

2. Now replacingΓ2 by Γ ′
2, we mayassume that this holds forΓ2.

Now the subgraphs on{v} ∪ BG(v) are identical inΓ1 andΓ2. Let x, y ∈ BG(v).
If c1(xy) is red, the result is clear. Otherwise,c1(vx) = c2(vx) andc1(vy) = c2(vy), and
soc1(xy) = c2(xy) by P-equivalence.

Next we claim that, for any two verticesx, y ∈ R(v), the edges fromx and y to
BG(v) are either of the same colour in the two graphs, or differ by an interchange of
blue and green. Suppose thatc1(xz) = c2(xz) is blue or green for somez ∈ BG(v).
Let z′ ∈ BG(v) be another point such thatc1(xz′) is blue or green; we must show that
c1(xz′) = c2(xz′). If c(zz′) is blue or green, then this assertion follows from P-equivalence.
But sinceΓ1 ∼= R3, theblue–green graph onBG(v) ∩ BG(x) is connected. (The induced
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structure on this set is isomorphic toR3, so any two vertices inBG(v) ∩ BG(x) are joined
by a blue–green path of length at most 2.) So the claim follows.

Now R(v) = R+(v) ∪ R−(v), where, for x ∈ R(v), the colours of edges fromx to
BG(v) are the same inΓ1 andΓ2 if x ∈ R+(v), anddiffer by a blue–green exchange if
x ∈ R−(v). Let Γ ′

2 be obtained by switchingΓ2 with respect toR−(v). This switching
does not change the colours in{v} ∪ BG(v), andhas the result thatR−(v) is empty in the
switched graph. ReplacingΓ2 by Γ ′

2, we mayassume that edges betweenR(v) andBG(v)

have the same colour inΓ1 andΓ2.
Finally, takex, y ∈ R(v) with c1(xy) blue or green. Again, sinceΓ1 ∼= R3, thereexists

z ∈ BG(v) suchthatc(xz) andc(yz) are each blue or green. Then P-equivalence ensures
thatc1(xy) = c2(xy). SoΓ1 = Γ2. Since we switched the originalΓ2 twice in the course
of the proof, the proposition is proved.

(b) The above argument only depends on the fact that, given any setS of at most four
vertices, there is a vertex joined to every vertex inSby blueor green edges. The probability
that this fails in ann-vertex graph is at most

4∑
i=1

(
n

i

)(
1 −

(
2

3

)i
)n−i

,

which tends to zero asn → ∞, so the property holds in almost all random 3-coloured
finite complete graphs.�

The theorem can be expressed in another way, following [2]. Suppose that we consider
the red graph as given. LetC be the 2-dimensional complex whose simplices are the
vertices, edges, and triangles in the blue–green graph. Then P- and S-equivalence classes
of the colouring with no green edges are 1-cocycles and 1-coboundaries overZ/(2); so
the cohomology groupH 1(C, Z/(2)) measures the extent to which P-equivalence fails to
imply S-equivalence.

Proposition 6.2. For the infinite random graph, and for almost all finite random graphs,
H 1(C, Z/(2)) = 0 (whereC is asabove).

Proof. The only comment required is that we need to change the probabilities so that a red
edge has probability 1/2 instead of 1/3. �

The most general type of restricted switching works as follows. LetB be a group of
permutations on the set of colours (a subgroup of Sym(m)). A switching operation has
the form σg,X for g ∈ B and X ⊆ V ; it applies thepermutationg to the colours of
edges betweenX and its complement, and leaves other colours unaltered. We refer to this
operation asB-restricted switching. In the same way, ifA is any subgroup of Sym(m), we
define anA-restricted dualityto be the operation of permuting the colours of all the edges
according to some permutation inA.

Now we can state Bennett’s classification [1] of reducts ofRm. He defines areduct to
be reducible if there are two colours which are indistinguishable (that is, we are colour-
blind for some pair of colours). The classification of reducible reducts thus simply becomes
the classification of reducts ofRm−1, which is done by induction. Bennett shows that the
irreducible reducts are generated (as topological groups) byB-reduced switchings and
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A-reduced dualities, whereB is an Abelian subgroup of Sym(m) and A a subgroup of
its normaliser. The special case ofTheorem 6.1for R3 corresponds to the case whereB
interchanges colours blue and green (fixing red) andA is the trivial subgroup.

Problem. Do other reducts ofRm have analogues for finite random graphs similar to
Theorem 6.1(b)? Do they have cohomological interpretations?

Remark. Most of the results of this paper are taken from the second author’s Ph.D.
thesis [10].
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