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Abstract

The operation of switching a finite graph was introduced by Seidel, in the study of strongly regular
graphs. We may conveniently regard a graph as being a 2-colouring of a complete graph; then the
extenson to switching of anm-coloured complete graph is easy to define. However, the situation is
very different. Form > 2, all m-coloured graphs lie in the same switching class. However, there are
still interesting things to say, especially in the infinite case.

This paer presents the basic theory of switching with more than two colours. In the finite case,
all graphs on a given set of vertices are equivalent under switching, and we determine the structure
of the switching group and show that its extension by the symmetric group on the vertex set is
primitive.

In the infinite case, there is mothanone switching class; we determine all those for which
the goup of switching automorphisms is the symmetric group. We also exhibit some other cases
(including the randonm-coloured complete graph) where the group of switching-automorphisms is
highly transitive.

Finally we consider briefly thease where not all switchings are allowed. For convenience, we
suppose that there are three colours of which two may be switched. We show that, in the case of
almost all finite random graphs, the analogue of the bijection between switching classes and two-
graphs holds.
© 2003 Elsevier Ltd. All rights reserved.

1. Two colours; finitely many vertices

The operation of switching a graghwith respect to a seX of vertices was introduced
by Seidel B]; it is often calledSeidel switchingor Seidel equivalenceThe operation
consists of exchanging adjacency and non-adjacency beteaead its complement, while
keeping adjacencies within or outsideunaltered. Seidel used an adjacency matrix with 0
on the diagonal-1 for adjacency, and-1 for non-adjacency; then switching corresponds
to conjugating this matrix by a diagonal matrix with entrie%. This represdation arises
in a geometric context as follows (seB)[
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Suppose that we have a set of lines through the origin in Euclidean space, such that the
acute anglex between any pair is the same. Choose a unit vector on each line. Then the
Gram matrix of inner products of these vectors has the foran (cosa) A, whereA is
the adjacency matrix of a graph (of the fornsjaescribed). Replang some of the unit
vectors by their negatives corresponds to switching the graph.

For our purposes, it is more convenient to think of a complete graph with edges
coloured red and blue; the switching operatignwith respect to a subset of V involves
interchanging colours of edges frotd to its complement, leavinall other edges unaltered.

For brevty, in what follows, the wod “graph” will mean “edge-coloured complete graph”
(with the appropriate number of colours).

We now give a veryrief summary of the properties of switching. We consider graphs

on a fixed seV of n vertices.

e The switching operations form a group of ordér2, the switching group whose
orbits on graphs are callevitching classesEach switching class has siz872.

e Two grgphs belong to the same switching class if and only if the parity of the number
of red edges in any 3-subset\dfis the same itboth graphs.

e A set7 of 3-subsets oV is realised as the set of tigs mntaining an odd number
of red edges of some graph ®hif and only if every 4-set contains an even number
of members off . (Sucha set7 is called atwo-graph The term wasritroduced by
G. Higman (unpublished); see Seid8].[Thus two-graphs are essentially the same
as switching classes of graphs.)

The unlabelled switching classes of graphs (or, equivalently, two-graphs) were
enumerated by Mallows and Sloané).[ The number of two-graphs is the same as
the number of even graphs (that is, graphs with all valencies even) on the same set.
A conceptual proof of this appears ig][

We defire theextended switching groufo be the semidirect produ&tx Sym(n), where
Sis the switching group and Syiim) the group of all permutatins of the vertices. (Far
odd, the extended switching group is isomorphic to the Weyl group ofypeThegroup
SAut(I") of switching-automorphisnmaf a graphi” is the image of the stabiliser df in
the extended switching group, under the natural homomorphism to(Byrquivalently,
it is the group ofpermutationg of V for which there exists a switching operatione S
with I'g = I'o. It is easy to ee that graphs in the same switching class have the same
group of switching-automorphisms.

The group of switching-automorphisms 6fcoincides with the automorphism group
of the two-graph associated with, and may be 2ransitive, as many examples in Seidel
[9] show. However, it cannot be 3-transitive (except for the switching class of the complete
or null graph), since it preserves a temeaglation the associated two-graph).

2. Morethan two colours; finitely many vertices

Suppose thaf” is a conplete graph oV, with |V| = n, whose edges are coloured with
m colours, wheren > 2. If ¢, d are colours an& a set of verites, we define the switching
operatioroc 4,x to interchage colours andd on edges betweeX and its complement,
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and leave all other colours on such edges and all colours on edges within or oitside
unaltered. Theswitching group &.n is the groupgenerated by all such switchings; it is
a permutéion groupon the setGm n of all such coloured complete graphs. Sirggn
is normalised by the symmetric group Sgv), these groups generate their semidirect
productSy,,, = Smn x Sym(n), the exterded switching groupThe group SAut!") of
switching-automorphisms is defined in the same way as for two colours.

The main difference between the cases of two or more colours is that there is only one
switching class fom > 3:

Theorem 2.1. The switching group & n is transitive onGm n if m > 3.

Proof. Letc, d, e be three colours and, y two vertices. Then the commutator &f 4 x

andog ey induces the 3-cycléc, d, e) on the colours or{x, y}, while fixing all other
colours there and all colours on other edges. Thus, we can permute transitively the colours
on any edge while fixing those on all other edges. Repeating for each edge, we can map
any edge-coloured graph to any othefl

Corollary 2.2. If m > 3, then he group of switching-automorphisms of any grapBinn
is the symmetric grouym(n). O

We can describe the structure 8f, n completely. Here Altm) denotes thelternating
group of degreen.

Theorem 2.3.
Snn = Alt(m)""=D72 5 )L

Proof. In the preceding proof, the 3-cycles gesite the alternating group on the colours
on each edge. S8n n contains the direct product of copies of the alternating group. This
is also true fom = 2, since Al{2) is the trivial group. This producN is clearly a normal
subgroup ofSy n.

There is a homomorphism frofn n to S n, where each generatog g, x of Sn.n maps
to the generatarx of S n. (The imageof an arbitrary elemerg € Sy is ox, where the
edges on which the parity of the permutation of the colours is odd are thoseXfitonits
complement.) The kernel of this homomorphisnNiswhile the image is$ ,, which is
elementary Abelian of order"2! by Seidel’s result. The extension clearly splits]

For the extended switching groupheorem 2.kan be strengthened as follows.
Theorem 2.4. The extended stehing group §, , is primitive onGmn if m > 3.

Proof. This group contains A{tn) : Sym(n), where Synin) hasits action on 2-element
subsets of1, ..., n}, and the wreath product has its product action.

If m > 4, the bottom group is primitive and not regular, and the top group is transitive;
sothe primitivity follows from the analysis preceding t@BNan—Scott theorem in Dixon
and Mortimer B, Lemma 2.7]. So suppose that= 3.

Now our group has a regular normal subgroup which is elementary Abelian of order
3(). This gioup can be represented as the set of functions from the set of 2-subsets to
the integers mod 3. A block of imprimitivity containing the zero element is a subgroup
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which is invariant under both switching (changing sign on all edges through a vertex) and
permutation of vertices.

Suppose thaH is a subgroup which is so invariant, and contains a non-zero fundtion
We can suppose thaf is non-zero on some edge containirg Switching at x and
subtracting, we obtain a non-zero functiéhwhich vanishes on aédges not containing
If f({x,y}) # 0, then switching ay and subtracting, we obtain a functidii which is
non-zero only on the edde, y}. Now the images of ” under permutations generate the
whole group. O

3. Two colours; infinitely many vertices

Switching for infinite graphs is defined exactly as for finite graphs. The switching group
is elementary Abelian, and is ismrphic to the group of subsetséf(with the operation of
symmetric difference) modul@/, V}. The maindifference is that switchings with respect
to singletons do not generate the group. It is similarly true that the group of switching-
automorphisms of an infinite graph may be 2-transitive but cannot be 3-transitive exceptin
the case of the conhgte ornull graph.

4. Morethan two colours; infinitely many vertices

Unlike in the finite case, the switchingarp does not act transitively on the set of
edge-coloured complete graphs on an infinite set.
We define aswitched ecliqueonV to be an edge coloured complete graphvarsuch
that there is a partitio = V1 U - - - U Vi with the properties
(a) any edge vthin a partV; has colouc;
(b) the colour of an edge with verticesV¥h andV; depends only onandj.

Proposition 4.1. Let I" be an m-coloured complete graph with m 3. Then! is a
switched c-cliquéf and only if it can be obtained from the graph with all edges of colour
¢ by svitching.

Proof. Suppose thal is a switchea-clique. Form the finite grapA on{1, . .., k}, where
the cobur of the edgdi, j} is the same as the kur of edges fronV; to Vj in I'. By
Theorem 2.1 A can be switched into e-clique. The switchings lift in an obvious way to
I', and alseswitch it into ac-clique.

Converséy, let I' be obtained from a-clique by the product; - - - oy of a sequence of
switchings. Then there is a partition @finto parts given by intersections of the switching
sets ofoq, . .., ot and their complements, which clearly satisfies (a) and (b).

Since a svichedc-clique contains no infinite’-clique for any colourc’ # c, we see
that a switched-clique cannot also be a switchedclique forc’ # c; herce the cliques
of different colours lie in different switching classes.

Switching does not change the group of switching automorphisms; so(SAut
Sym(V) holds if I" is a switchedc-clique. The converse is also true. This depends on a
preiminary lemma. Amoietyof an infinite set is an infinite subset whose complement is
also infinite.
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Lemma4.2. An infinite multicoloured graph is a switched c-clique if and only if the vertex
sd can be partitioned into three moieties $uthat the induced subgraph on the union of
any two is a switched c-clique.

Proof. The reverse implication is clear. So suppose tha the disjoint union oV, Wo,
Ws, and for each # j, there is arequivalence relatios:; onW, UW; whose equivalence
classes have properties (a) and (b) of the definition of a switch#idue. Extend=;; to
an equivalence relation ovi in which the remaining séd\ is a single class. Let be the
meet of these three equivalence relations.

We claim that= has properties (a) and (b). Certlyiit has only finitely many classes.
Take twopointsx, y in the same class. Then they belong to the sam@/setayW; without
loss of generality. Since =15 y, theedge{x, y} has colourc. Now letz be any point in
a dfferent equivalence class. Supggsvithout loss of generality, thate Wy U W». Then
the properties o&1, ensure thatx, z} and{y, z} have the same colour.(J

Theorem 4.3. Let I be an m-coloured complete graph with m 3. ThenSAut(I") =
Sym(V) if and only if " is a switched c-clique.

Proof. Suppose that SAWl") = Sym(V). By the infirte form of Ramsey’s theorem,
there is a moietyWW of V which is ac-clique for some colouc. Since SyniV) is
transitive on moieties, and SAUt) induces a switching automorphism from every set
to its image, it follows that every moiety is a switchedlique. NowLemma 4.2jives the
resut. [

There are, however, other countable graphs whose switching automorphism groups are
highly transitive. One type is given by the next theorem; we will see another in the next
section. (In fact, we have no examplefor which SAutI") is not highly transitive.)

Theorem 4.4. Let I" be an m-coloured complete graph. Suppose that there is a finite
partition V. = V1 U --. U Vk such hat the colour of an edge with vertices in 8nd
Vj depends only oni and j. ThéiBym(V) is contained inSAut(I").

Proof. It is enough to show that an arbitrary transpositiany) belongs to SAut’").
Refine the partition so thdk} and{y} are parts. Now switch so that all edges with ends
in different parts are red. It is clear that the transpositiary) is an automorphism of the
switched grah, and so it is a switching automorphism of the original graph.

Perhaps the comvse is true too.

A permuationg of V is almost an automorphisef [ if the setof edge< for whiche
andeY have different colours is finite. The set of all almost-automorphisnisisfa group,
thealmost-automorphism groudenoted by AAut ).

Proposition 4.5. For any infinite m-coloured complete graph with m 3, we have
AAut(I") < SAut(l).

Proof. As in the finite case, we can changestboburs of any finite number of edges
arbitrarily, while fixing all other colours, by switching.[d
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5. Switching the random graph

The most important application of switching in the infinite case with two colours
concerns the countablandom graph R(otherwise known as th&rdés—Renyi graph
or theRado graph, see fi]. This is the unique countable graph with the property that a
random countable graph (whose edges &@sen independently with probability 2) is
isomorphic to R with probability 1.

The graph R is homogeneous, and indeed is the unique countable universal
homogeneous graph, by Fs&’s theorem ).

Now thegroup SAuUtR) is 2-transitive, and is a transitive extension of &Rif.

This group features in a remarkable theorem of Thoridk [To state this theorem we
need some terminology. There is a natural topology on the symmetric group of countable
degree, namely the topology of pointwise convergence. With respect to this topology, a
subgroup of SyniV) is closed if and onlyfiit is the automophism group of a first-
order structure orv (and this structure may be taken to be purely relationaljeduct
of a structureM onV is a dosal subgroup of SyniV) containing AutM). For example,
SAuUt(R) is araduct of R; it is dosed because it is the automorphism group of the associated
two-graph. We refer to Hodges§][for further details.

An anti-automorphisnof a graphl” is an isomophism fromI" to the complementary
graphI”, while aswitching anti-automorphisris a permutatiory suchthatI'g = I'o for
some switchingr.

Now Thomas’ theorem is as follows:

Theorem 5.1. There are just five reducts of the random graph R. TheséAait¢R); the

group of automorphisms and anti-automorphisms of R; the gi®Apt(R); the goup

of switching-automorphisms and switching anti-automorphisms of R; and the symmetric
group on the vertex set of R[]

In an analogous way, Fs¥'s theorem implies that there is a unique countable
homogeneous-coloured complete grapRy, for any (finite or countablen. If mis finite,
this is also the “randonm-coloured complete graph” (in the sense that with probability 1
the random structure is isomorphic to it). These graphs and their automorphism groups
have been studied by Trusk).

Now, in contrast to the case of two colours, we have the following result:

Proposition 5.2. For m > 3, thegroup SAut(Ry) is highly transitive; so this group is not
a reduct of R,.

Proof. The group AAutRy) is highly transitive [L3], and is contained in SAURy),
by Proposition 4.5 So SAutRy) is highly transitive. Now the closure of a highly
transitive group is the symmetric group; but SAR4) is not the symmetric group, by
Theorem 4.3 O

In fact, dl the reducts ofRy, have been determined by Benndft [We sketch his result
later in this paper.
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6. Restricted switching

A varianton what we have considered is to allow only some possible switchings of
colours. We consider in detail the situation where there are three colours called red, blue
and green, and only blue—green switchings are permitted.

(This kind of switching has a geometricaténpretation. We are given a set of lines in
Euclidean space making angleg2 andx. Choose unit vectors along the lines; their Gram
matiix has the form| + (cosa)A, whereA is a matrix with entries 0 angt1. If colours
red, blue, green correspond to entriestd, —1 resgectively, then changing the sign of a
sd of vectors corresponds to blue—green switching.)

Blue-green switching clearly leaves all red edges unchanged. It also preserves an
analogue of a two-graph, namely, the paxtiythe number of green edges in any blue—
green triangle. Is the converse true? Let us say that two 3-coloured complete graphs on
areP-equivalentf they have the same red edges and each blue—green triangle has the same
parity of the number of green edges; & quivalenif one can be obtained from the other
by blue—green switching.

P-equivalence does not imply S-equivalence in general. Supposé'thahsists of a
bluen-cycle(with n > 4), all other edges red. By switching, we can make any even number
of edges in the cycle green; but any replacement of blue by green gives a P-equivalent
graph. However, the following is true.

Theorem 6.1. (a) Any 3-coloured complete graph which is P-equivalent to the
countable randon3-coloured complete graphaRs S-ejuivalentto R.

(b) Let I" be a random finite3-coloured complete graph with n vertices. Then the
probability of the event that ever§-coloured complete graph P-equivalent fois
S-equivalenttd” tends tol as n— oo.

Proof. (a) Suppose thdf; is the random 3-coloured complete grapy, andl» is a graph
which is P-equivalent té1. We begin vith some notation. We leg; (xy) denote the colour
of the edge(x, y} in I}, andR; (v), Bj(v), Gj(v) the sets of vertices joined by red,
blue, or green edges respectivelylin fori = 1,2. We letBG; (v) = Bj(v) U G;j(v).

In the proof we shall modify the grapty so that vamus colours or sets become the same;
once we know that, for exampley(xy) = c2(xYy), we drop the gsbscrig. Note that we can
immediately writeR(v) and B G(v), by thedefinition of P-equivalence.

Let A(v) be the symmetric difference & (v) and B2(v). Switching > with respect
to A(v) gives a new graplt’;, such tfat all edges containing have the same colour ify
andI’,. Now replacing’; by I';, we mayassume that this holds fdk.

Now the subgraphs ofw} U BG(v) are identical inf1 and I»>. Let X,y € BG(v).

If c1(xy) is red, the result is clear. Otherwisg(vx) = c2(vx) andci(vy) = c2(vy), and
soci(Xy) = c2(xy) by P-equivalence.

Next we claim that, for any two vertices,y € R(v), the e@lges fromx andy to
BG(v) are either of the same colour in the two graphs, or differ by an interchange of
blue and green. Suppose tlat(xz) = c2(x2) is blue or green for some € BG(v).

Let Z € BG(v) be another point such thai(xZ) is blue or green; we must show that
c1(xZ) = cp(xZ). If c(z2) is blue or green, then this assertion follows from P-equivalence.
But sincely = Rg, theblue—green graph oB G(v) N BG(x) is connected. (The induced
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structure onhis set is isomorphic t&z, so any two ertices inB G(v) N BG(x) are joined
by a blue—green path of length abst 2.) So thelaim follows.

Now R(v) = R (v) U R (v), where for x € R(v), the coburs of edges fronx to
BG(v) are the same i’y and I if x € R (v), anddiffer by a blue—green exchange if
X € R™(v). Let I'; be obtained by switching> with respect toR™ (v). This switching
does not change the colours{in} U BG(v), andhas the result thaR~ (v) is empy in the
switched grah. Replacing™ by I'}, we mayassume that edges betweRv) andB G(v)
have the same colour ifiy and .

Finally, takex, y € R(v) with c1(xy) blue or green. Again, sincE; = R3, thereexids
z € BG(v) suchthatc(xz) andc(yz) are each blue or green. Then P-equivalence ensures
thatci(xy) = c2(xy). SoI't = I'». Since we sitched the originall twice in the course
of the proof, the pwposition is proved.

(b) The above argument only depends on the fact that, given ar§yfeat most four
vertices, there is a vertex joined to every verteSiby blueor green edges. The probability
that this fails in am-vertex graph is at most

0(-G))

which tends to zero as — oo, 0 the property holds in almost all random 3-coloured
finite complete graphs.d

The theorem can be expressed in another way, follon@hgjuppose that we consider
the red graph as given. L& be the 2-dimensional complex whose simplices are the
vertices, edges, and triangles in the blue—green graph. Then P- and S-equivalence classes
of the colouring with no green edges are 1-cocycles and 1-coboundarieZ 6@r so
the aohomology groupH *(C, Z/(2)) measures the extent to which P-equivalence fails to
imply S-equivalence.

Proposition 6.2. For the infinite random graph, and for almost all finite random graphs,
HL(C, Z/(2)) = 0 (whereC is asabove.

Proof. The only comment required is that we need to change the probabilities so that a red
edge has probability/P insiead of 3. O

The most general type of restricted switching works as follows.B. d&te a group of
permutations on the set of colours (a subgroup of 8y A switching operation has
the formog x for g € B and X C V; it applies thepermutationg to the coburs of
edges betweeK and its complement, and leaves other colours unaltered. We refer to this
operation a3 -resticted switchingIn the same way, iA is any subgroup of Sy(m), we
define anA-restricted dualityto be the operation of permuting the colours of all the edges
according to some permutation

Now we can state Bennett's classificatidi ¢f reducts of Ry,. He defines aeduct to
be reducide if there are two colours which are indistinguishable (that is, we are colour-
blind for some pair of colours). The classifima of reducible reducts thus simply becomes
the classification of reducts &¥y,_1, which is done by induction. Bennett shows that the
irreducible reducts are generated (as topological group8-byduced switchings and
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A-reduced dualities, wher@® is an Abelian subgroup of Syfm) and A a subgroup of
its normaliser. The special case Ofieorem 6.X%or Rz corresponds to the case whese
interchanges colours blue and green (fixing red) akhd the trivial subgroup.

Problem. Do other reducts ofRy,, have analogues for finite random graphs similar to
Theorem 6.(b)? Do they have cohomological interpretations?

Remark. Most of the results of this paper are taken from the second author’s Ph.D.
thesis [L(].
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