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Abstract

In this paper, we propose a new affine scaling trust-region algorithm in association with nonmonotonic inte-
rior backtracking line search technique for solving nonlinear equality systems subject to bounds on variables. The
trust-region subproblem is defined by minimizing a squared Euclidean norm of linear model adding the augmented
quadratic affine scaling term subject only to an ellipsoidal constraint. By using both trust-region strategy and interior
backtracking line search technique, each iterate switches to backtracking step generated by the general trust-region
subproblem and satisfies strict interior point feasibility by line search backtracking technique. The global conver-
gence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions.
A nonmonotonic criterion should bring about speeding up the convergence progress in some ill-conditioned cases.
The results of numerical experiments are reported to show the effectiveness of the proposed algorithm.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we analyze the solution of nonlinear systems subjective to the bound constraints on
variable

F(x)= 0, x ∈ �= {x | �x�u}, (1.1)
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whereF : X→ Rn is a given continuously differentiable mapping andX ⊆ Rn is an open set containing

then-dimensional box constraint�. The vectorl ∈ (R ∪ {−∞})n andu ∈ (R ∪ {+∞})n are specified
lower and upper bounds on the variables such that int(�)

def={x | l < x <u} is nonempty. The problem
(1.1) arises naturally in systems of equationsmodeling real-life problemswhen not all the solutions of the
model have physical meaning. For example, cross-sectional properties of structural elements, dimensions
of mechanical linkages, concentrations of chemical species, etc., are modeled by nonlinear equations
where� is the positive orthant ofRn or a closed box constraint. Various sources of nonlinear equations
with the box constraint� drawn from complimentarily, optimization and several related problems have
been described. In the classic methods for solving the unconstrained nonlinear equations (1.1) when the
functionF(x) is a continuously differentiable function, the Newton methods or quasi-Newton methods
can be used. Much analysis of many Newton algorithms have been done on smooth nonlinear equations
based on convergent analysis. Thesemethods by using the Jacobian or version of Newton’smethods often
solve the unconstrained problem (1.1), which is known to have locally very rapid convergence (see[5,6]).
However, the Newton methods used for smooth systems (1.1) did not ensure global convergence, that is,
the convergence is only local. Therefore, the methods are available only when the initial start point is
good enough. In the use of these methods, difficulties arise when the step lies outside the region where
the linear modelF(x)+ F ′(x)s is a good approximationF(x + s) whereF ′(x) is the Jacobian ofF(x).
One effective remedy when this occurs is to restrict the steps to a region where the linear model can be
trusted. Globally, convergent methods for the unconstrained systemsF(x) = 0 may be unsuited for the
purpose of solving the bound-constrained systems (1.1), since a vectorx∗ satisfyF(x)= 0, but does not
belong to�. Generally, two basis approaches, namely the line search and trust-region, have been used
in order to ensure global convergence towards local minima. At each iterations, most modern global fit
within determining an initial trial step and testing the trial step to determine whether it gives adequate
progress toward a solution. Recently, Eisenstat andWalker in[7] introduced arbitrary norms as the merit
function, and Brown and Saad[2] used the Euclidean norm, i.e.,l2 norm as the merit function to combine
the line search to solving the unconstrained nonlinear systems (1.1) and proved the global convergence
of the proposed algorithms. For most versions for solving smooth equation, these approaches only rather
restrictive guarantees of global convergence have only been based on the line search procedure such as
Armijo rule, dampedNewtonmethods. Trial steps are determined in a variety ways to enforce amonotone
decrease of the merit function at each step.
Classical trust-region Newton method for solving the nonlinear systems (1.1) and the affine scaling

double trust-region approach for solving the bounded constrained optimization problems given in[3].
Recently, Bellavia et al. in[1] further extended the ideas and presented an affine scaling trust-region
approach for solving the bound-constrained smooth nonlinear systems (1.1). The trust-region method is
a well-accepted technique in nonlinear optimization to assure global convergence. However, the search
direction generated in trust-region subproblemmust satisfy strict interior feasibility which results in com-
putational difficulties. It is possible that the trust-region subproblem with the strict feasibility constraints
needs to be resolved many times before obtaining an acceptable step, and hence the total computational
effort for completing one iteration might be expensive and difficulties. The idea of combining the trust-
region and line search backtracking technique suggested by Nocedal andYuan[11] motivates to switch to
the line search technique by employing a trial step whichmay be unacceptable in the trust-regionmethod,
since the trial step should provide a direction of sufficient descent. Another nonmonotone technique
is developed to combine with, respectively, line search technique and trust-region strategy for solving
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unconstrained optimization in[4,9]. In this paper, we introduce affine scaling interior point projective
to generate the affine scaling trust-region Newton methods which switches to strict interior feasibility
by line search backtracking technique. The trust-region subproblem is defined by minimizing a squared
Euclidean norm of linear model adding the augmented quadratic affine scaling term subject only to an
ellipsoidal constraint. The nonmonotone idea also motivates the study of trust-region Newton methods
in association with nonmonotone interior backtracking line search technique for approximating zeros of
the smooth equations (1.1).
In this research, nonmonotone global convergence of the affine scaling trust-region Newton method

in association with two criterions of nonmonotone backtracking line search and strict interior feasibility
accepting step for solving the smooth equations (1.1) is presented and analyzed. In order to describe and
design the algorithms for solving the bound-constrained smooth equations (1.1), we first introduce the
squared Euclidean norm of linear model of the unconstrained systems (1.1) and the augmented quadratic
affine scaling term, and state the nonmonotone affine scaling trust-region algorithm with backtracking
interior point technique for the nonlinear equations in Section 2. In Section 3, we prove the global
convergence of the proposed algorithm. We discuss some further convergence properties such as strong
global convergence and characterize the order of local convergence of the Newtonmethods in terms of the
rates of the relative residuals in Section 4. Finally, the results of numerical experiments of the proposed
algorithm are reported in Section 5.

2. Algorithm

In this section, we describe and design the affine scaling trust-region strategy in association with
nonmonotonic interior point backtracking technique for solving the bound-constrained nonlinear mini-
mization transformed by the bound-constrained systems (1.1) and present an interior point backtracking
techniquewhich enforces the variable generating strictly feasible interior point approximations to solution
of the bound-constrained nonlinear minimization.
A classical algorithm for solving the unconstrained problem (1.1) is the Newtonmethod. In the context

of unconstrained nonlinear systems (1.1) ifxk is a very good approximation of a solution, the Newton
process is that find the stepsk which satisfies

F ′ksk =−Fk. (2.1)

However, Newton method can be incorporated into a globally convergent trust-region scheme. Bellavia
et al. in [1] presented the affine scaling trust-region approach scheme. The basic idea is based on the
trust-region subproblem at thekth iteration

min qk(d)
def= 1

2‖F ′kd + Fk‖2= 1
2‖Fk‖2+ F Tk F ′kd + 1

2d
T(F ′Tk F ′k)d,

s.t. ‖Dkd‖��k, (2.2)

where�k is the trust-region radius andqk(d) is trusted to be an adequate representation of the merit
function

f (x)
def= 1

2‖F(x)‖2. (2.3)
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The scalingmatrixDk=D(xk) arise naturally from examining the first-order necessary conditions for the
bound-constrained nonlinear minimization transformed by the bound-constrained problem (1.1), where
D(x) is the diagonal scaling matrix such that

D(x)
def= diag{|v1(x)|−

1
2 , . . . , |vn(x)|−

1
2 } (2.4)

and theith component of vectorv(x) defined componentwise as follows:

vi(x)
def=


xi − ui if gi <0, andui <+∞,
xi − li if gi�0, and li >−∞,
−1 if gi <0, andui =+∞,
1 if gi�0, and li =−∞

(2.5)

hereg(x)
def= F ′(x)TF(x) andgi is theith component of vectorg(x). We remark that, even thoughD(x)

may be undefined on the boundary of�,D(x)−1 can be extended continuously to it. We will denote this
extension as a convention byD(x)−1 for all x ∈ �.
The following nondegenerate property is essential for convergence of the affine scaling double trust-

region approach for solving the bounded constrained optimization problems transformed by the bound-
constrained systems (1.1).

Definition 2.1 (see Coleman and Li[3] ). A point x ∈ � is nondegenerate if, for each indexi,

gi(x)= 0�⇒ li < xi <ui. (2.6)

A transformed problem (1.1) is nondegenerate if (2.6) holds for everyx ∈ �.

Moreover, regarding the solutiondk of the subproblem (2.2), from[1] we know that the stepsize along
dk to the boundary need to be bounded away from zero in the global convergence and eventually satisfy
to tend to 1 in the local quadratical convergence. The relevance of the used scaling matrix depends on the
fact that the scaled trust-region trial stepdk is angled away from the approaching bound. Consequently,
the bounds will not prevent a relatively large stepsize alongdk from being taken. In order to maintain the
strict interior feasibility, a step-back tracking along the solutiondk of the following augmented quadratic
affine scaling subproblem (Sk) in this algorithm, rather than the solution of the subproblem (2.2), could
be required to satisfy the strict interior feasibility by nonmonotomic interior point backtracking line
research technique. Following the suggestion in[3], we can make some modifications on the trust-region
subproblem (2.2) for solving the nonlinear problem (1.1). The basic idea in the proposed algorithm can
be summarized as follows: assume thatxk ∈ int(�), we define the diagonal matrix suggested in[3]

Ck
def= diag{gk}J �

k , (2.7)

whereJ �(x) ∈ Rn×n is the Jacobian matrix of|�(x)| whenever|�(x)| is differentiable and diag{gk} def=
diag{(gk)1, . . . , (gk)n}, here(gk)i is theith component ofgk. Each diagonal component of the diagonal
matrix J � equals zero or±1. The augmented affine scaling trust-region subproblem at thekth iteration
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is defined as follows

(Sk)

min �k(d)
def= 1

2‖F ′kd + Fk‖2+ 1
2d
TDkCkDkd

= 1
2‖Fk‖2+ F Tk F ′kd + 1

2d
T(F ′Tk F ′k)dk + 1

2d
TDkCkDkd

s.t. ‖Dkd‖��k,

where�k is the trust-region radius.
Now, we describe an affine scaling trust-region algorithm with nonmonotonic strict interior feasible

backtracking line search technique for solving the bound-constrained systems (1.1).

Nonmonotonic affine scaling interior trust-region (ASITR) algorithm

Initialization step
Choose parameters� ∈ (0, 12), � ∈ (0,1),0< �1< �2<1,0< �1< �2<1< �3, 	>0 and positive

integerM as nonmonotonic parameter. Letm(0) = 0. Select an initial trust-region radius�0>0 and a
maximal trust-region radius�max��0, give a starting strict feasibility interior pointx0 ∈ int(�) ⊆ Rn.
Setk = 0, go to the main step.
Main step

1. Evaluatefk = f (xk) def= 1
2‖F(xk)‖2, Ck, gk = ∇f (xk)

def= (F ′k)TFk andDk given in (2.4).
2. If ‖D−1k gk‖ = ‖D−1k (F ′k)TFk‖�	, stop with the approximate solutionxk.
3. Solve a stepdk, based on the augmented trust-region subproblem

(Sk)
min �k(d)

def= 1
2‖F ′kd + Fk‖2+ 1

2d
TDkCkDkd

s.t. ‖Dkd‖��k.

4. Choose
k = 1,�,�2, . . . , until the following inequality is satisfied:
f (xk + 
kdk)�f (xl(k))+ 
k�g

T
k dk (2.8)

with xk + 
kdk ∈ �, (2.9)

wheref (xl(k))=max0�j �m(k){f (xk−j )}.
5. Set

hk
def=

{

kdk if xk + 
kdk ∈ int(�),
�k
kdk otherwise,

where�k ∈ (�l ,1], for some 0< �l <1 and�k − 1=O(‖dk‖) and then set
xk+1= xk + hk. (2.10)

Calculate

Pred(hk)= �k(0)− �k(hk), (2.11)
Âred(hk)= f (xl(k))− f (xk + hk), (2.12)

�̂k =
Âred(hk)

Pred(hk)
. (2.13)
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6. Updating trust-region size�k+1 from �k

�k+1
def=

{ [�1�k, �2�k] if �̂k��1,
(�2�k,�k] if �1< �̂k < �2,
(�k,min{�3�k,�max}] if �̂k��2.

(2.14)

7. Take the nonmonotone control parameterm(k+ 1)=min{m(k)+ 1,M}. Then setk← k+ 1 and go
to step 1.

Remark 1. In the subproblem(Sk), �k(d) is a local squared Euclidean norm of linear model of the
vector functionF aroundxk adding the augmented quadratic affine scaling term. A candidate iterative
directiondk is generated by minimizing�k(d) within the ellipsoidal ball centered atxk with radius�k.
A key property of the line search transformation in trust-region subproblem(Sk) is that the candidate
iterative stephkmust be a strict interior feasibility. Note that in each iteration the algorithmsolves only one
general trust-region subproblem. If the solutiondk fails to meet the acceptance criterions (2.8)–(2.9) (take

k=1), thenwe turn to line search, i.e., retreat fromxk+hk until the criterion is satisfied. Comparing usual
monotone technique with nonmonotonic technique, whenM>1, the accepted stephk only guarantees
thatf (xk+hk) is smaller thanf (xl(k)). It is easy to see that the usual monotone algorithm can be viewed
as a special case of the proposed algorithm whenM = 0.
Remark 2. The scalar
k given in (2.9) of step 4, denotes the step size along the directiondk to the
boundary on the variablesl�xk + 
kdk�u, that is,


k
def= min

{
max

{
li − xk,i
dk,i

,
ui − xk,i
dk,i

}
, i = 1,2, . . . , n

}
, (2.15)

whereli , ui, xk,i anddk,i are theith components ofl, u, xk anddk, respectively.

3. Global convergence analysis

Throughout this section, we assume thatF : X ⊂ Rn→ Rn is continuously differentiable and bounded
frombelow.Givenx0 ∈ int(�) ⊂ Rn, the algorithmgenerates a sequence{xk} ⊂ � ⊆ Rn. In our analysis,
we denote the level set off by

L(x0)= {x ∈ Rn|f (x)�f (x0), l�x�u}.
The following assumption is commonly used in convergence analysis of most methods for the box
constrained systems.

Assumption 1. Sequence{xk} generated by the algorithm is contained in a compact setL(x0) onRn.

Assumption 2. There exist some positive constantsg andD such that‖F ′T(x)F (x)‖�g, ‖D(x)−1‖
�D, for all x ∈L(x0).

Based on solving the augmented trust-region subproblem(Sk), similar to use the proof of Lemma 3.4
in [12] (also see[10]) which is due to Sorensen’s paper. The following lemma establishes the necessary
and sufficient conditions concerning the pair�k, dk whendk solves the subproblem(Sk).
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Lemma 3.1. dk is a solution to the subproblem(Sk) if and only if dk is a solution to the following
equations of the forms

[D−1k (F ′Tk F ′k)D−1k + Ck + �kI ]Dkdk =−D−1k (F ′k)TFk, (3.1)
�k(‖Dkdk‖ − �k)= 0, �k�0 (3.2)

and[D−1k (F ′Tk F ′k)D−1k + Ck + �kI ] is positive semidefinite.
It is well known from solving the trust-region algorithms in order to assure the global convergence of

the proposed algorithm, it is a sufficient condition to show that atkth iteration the predicted reduction
defined by Pred(dk) = �k(0) − �k(dk) which is obtained by the stepdk from trust-region subproblem
(Sk), satisfies a sufficient descent condition. The following lemma is due to Lemma 3.1 in[13].

Lemma 3.2. Let the stepdk be the solution of the trust-region subproblem(Sk),assume that Assumptions
1–2 hold, then there exists� ∈ (0, 12] such that the stepdk satisfies the following sufficient descent
condition.

Pred(dk)��‖D−1k (F ′k)TFk‖min
{

�k,
‖D−1k (F ′k)TFk‖

‖D−1k (F ′k)TF ′kD−1k + Ck‖

}
(3.3)

for all F ′k, Fk, Ck,Dk and�k.

The following lemma show the relation between the gradientgk = (F ′k)TFk of the objective function
and the stepdk generated by the proposed algorithm.We can see from the lemma that the direction of the
trial step is a sufficiently descent direction.

Lemma 3.3. At the iteration, let dk be generated in trust-region subproblem(Sk), then

∇f (xk)Tdk� − �‖D−1k (F ′k)TFk‖min
{

�k,
‖D−1k (F ′k)TFk‖

‖D−1k (F ′k)TF ′kD−1k + Ck‖

}
, (3.4)

where the constant� given in(3.3).

Proof. Sincedk is generated in trust-region subproblem(Sk), Lemma 3.2 ensures that (3.3) holds. Since
(F ′k)

TF ′k andDkCkDk are semidefinite, we have

(gk)
Tdk = [(F ′k)TFk]Tdk
=�k(dk)− �k(0)− 1

2[dTk (F ′k)TF ′kdk + dTk DkCkDkdk]
��k(dk)− �k(0)=−Pred(dk) (3.5)

so, (3.4) holds. �

Lemma 3.4. Let f be differentiable and assume that its gradient is such that

‖∇f (x)− ∇f (y)‖2��‖x − y‖2 ∀x, y ∈ Rn, (3.6)



350 D. Zhu / Journal of Computational and Applied Mathematics 184 (2005) 343–361

where� is the Lipschitz constant. Let� ∈ (0,1) anddk be proposed by the subproblem(Sk). If ‖D−1k gk‖ �=
0, then ASITR Algorithm will produce an iteratexk+1 = xk + 
kdk in a finite number of backtracking
steps in(2.8).

Proof. Using the mean value theorem, we have the equality

f (xk + 
kdk)= f (xk)+ 
k∇f (xk + �k
kdk)
Tdk,

where 0��k�1. We rewrite the above equation as

f (xk + 
kdk)= f (xk)+ 
k∇f (xk)Tdk + 
k[∇f (xk + �k
kdk)
Tdk − ∇f (xk)Tdk]

= f (xk)+ �
k∇f (xk)Tdk + (1− �)
k∇f (xk)Tdk
+ 
k[∇f (xk + �k
kdk)

Tdk − ∇f (xk)Tdk]
= f (xk)+ �
k∇f (xk)Tdk + 
k[(1− �)∇f (xk)Tdk + 
k‖dk‖�k], (3.7)

where for convenience we have set

�k
def= [∇f (xk + �k
kdk)− ∇f (xk)]Tdk


k‖dk‖ . (3.8)

Note that from the assumptions we have

|�k| =
∣∣∣∣ [∇f (xk + �k
kdk)− ∇f (xk)]Tdk


k‖dk‖
∣∣∣∣ ���k‖dk‖��‖dk‖��‖D−1k ‖�k��D�k,

whereD is given in Assumption 2. By Lemma 3.3 and the condition‖D−1k g(xk)‖ �= 0. After a finite
number of reductions, the last term in brackets in the right-handed side of (3.7) will become negative and
the corresponding
k will be acceptable, that is, we have that in a finite number of backtracking steps,
k
must satisfy

f (xk + 
kdk)�f (xk)+ �
k∇f (xk)Tdk. (3.9)

Sincef (xk)�f (xl(k)), the conclusion of the lemma holds.�

In this section, we are now ready to state one of our main results of the proposed algorithm, but it
requires the following assumptions.

Assumption 3. D−1k (F ′k)
TF ′kD

−1
k andCk are bounded, i.e., there exist some constantsF >0 andC >0

such that

bk
def= ‖D−1k (F ′k)TF ′kD−1k ‖�F and ck

def= ‖Ck‖�C ∀k,
where without loss of generality, assume thatF + C��D.

Assumption 4. The first-order optimality systemassociated to problem (1.1) has no nonisolated solutions
and the nondegenerate property of the system (1.1) holds at any solutions of systems (1.1).
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Theorem 3.5. Assume that Assumptions1–4hold. Let{xk} ⊂ � ⊂ Rn be a sequence generated by the
algorithm. If nondegenerate property of the system(1.1)holds at any limit point, then

lim inf
k→∞ ‖D

−1
k (F

′
k)
TFk‖ = 0. (3.10)

Proof. According to the acceptance rule in step 4, we have

f (xl(k))− f (xk + 
kdk)� − 
k�g
T
k dk =−
k�[D−1k (F ′k)TFk]T(Dkdk). (3.11)

Taking into account thatm(k + 1)�m(k) + 1, and f (xk+1)�f (xl(k)), we have f (xl(k+1))�
max0�j �m(k)+1{f (xk+1−j )}=f (xl(k)). This means that the sequence{f (xl(k))} is nonincreasing for all
k and hence{f (xl(k))} is convergent.
By (2.8) and (3.4), for allk >M, we get

f (xl(k))

� max
0�j �m(l(k)−1){f (xl(k)−j−1)} + 
l(k)−1�∇f Tl(k)−1dl(k)−1

� max
0�j �m(l(k)−1){f (xl(k)−j−1)}

−
l(k)−1��‖D−1l(k)−1(F ′l(k)−1)TFl(k)−1‖min
{

�l(k)−1,
‖D−1l(k)−1(F ′l(k)−1)TFl(k)−1‖

bl(k)−1+cl(k)−1

}
. (3.12)

If the conclusion of the theorem is not true, there exists some	>0 such that

‖D−1k (F ′k)TFk‖�	, k = 1,2, . . . . (3.13)

As {f (xl(k))} is convergent, we obtain that from (3.13)
lim
k→∞ 
l(k)−1�l(k)−1= 0

which implies that either

lim
k→∞ 
l(k)−1= 0 (3.14)

or

lim inf
k→∞ �l(k)−1= 0. (3.15)

By the updating formula of�k, we have�
M+1
1 �l(k)−1��k��M+12 �l(k)−1 which means that from (3.15)

lim inf
k→∞ �k = 0. (3.16)

Assume that
k given in step 4 is the stepsize to the boundary of box constraints alongdk. From (2.15),
we have


k
def= min

{
max

{
li − xk,i
dk,i

,
ui − xk,i
dk,i

}
, i = 1,2, . . . , n

}
.



352 D. Zhu / Journal of Computational and Applied Mathematics 184 (2005) 343–361

(3.16) means that

dk,i → 0 for all i.

Assume that
k given in (2.9) of step 4 is the step size to the boundary of box constraints alongdk. From
(2.15), we have that there exists a subset� ⊂K such that

lim
k→∞,k∈K 
k = 0

and hence, without loss of generality, assumex∗,i = li for somei. Recall (3.1) and left multiplyingD−1k
at the side of (3.1),

[diag{gk}J �
k + �kI ]dk =−D−2k [F ′Tk Fk + (F ′Tk F ′k)dk]. (3.17)

Since{(F ′Tk F ′k)dk} converges to zero,[diag{gk}J �
k + �kI ] is a positive semidefinite diagonal matrix, and

x∗ is nondegenerate withD−1∗ g∗ =0, for anyi with (v∗)i =0, without loss of generality, assumex∗,i = li
for somei, from x∗,i = li < ui , we have that(dk)i and(gk)i have the same sign fork sufficiently large.
Hence, if
k is defined by some(v∗)j = 0 and hence(g∗)j �= 0, then
k = |(vk)j ||(dk)j | for k sufficiently large.
Using (3.1), again,


k = |(gk)j | + �k

|(gk)j + ((F ′Tk F ′k)dk)j |
�

|(gk)j | + �k

‖gk + (F ′Tk F ′k)dk‖∞
. (3.18)

Taking norm in Eq. (3.1), we can obtain

�k�k = �k‖Dkdk‖�‖D−1k gk‖ − (‖D−1k (F ′Tk F ′k)D−1k ‖ + ‖Ck‖)‖Dkdk‖. (3.19)

Dividing (3.18) by�k and note‖Dkdk‖��k,

�k�
‖D−1k gk‖

�k
− (‖D−1k (F ′Tk F ′k)D−1k ‖ + ‖Ck‖). (3.20)

It is clear that from (3.20) and‖D−1k g(xk)‖ �= 0, limk→∞ �k =+∞, as�k → 0. (3.18) means that we
conclude that

lim
k→∞ 
k =+∞, (3.21)

where
k given in the step size to the boundary of box constraints alongdk. Furthermore, by the condition
on the strictly feasible stepsize�k ∈ (�0,1], for some 0< �0<1 and�k−1=O(‖dk‖2), limk→∞ �k=1,
comes from limk→∞ dk = 0.
We now prove that if

�k�
�	(1− �)

�D
(3.22)

then
k = 1 must satisfy the accepted condition (2.8) in step 4, that is,
f (xk + dk)�f (xl(k))+ �gTk dk.
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If the above formula is not true, we have

f (xk + dk)>f (xl(k))+ �gTk dk�f (xk)+ �gTk dk. (3.23)

Becausef (x) is Lipschitz continuously differentiable with constant�, we have that from (3.23)

0<(1− �)gTk dk + [∇f (xk)− ∇f (xk + �kdk)]Tdk
�(1− �)gTk dk + �D‖Dkdk‖2
�(1− �)gTk dk + �D�2k,

where�k ∈ [0,1], which means that
0<(1− �)gTk dk + �D�2k.

By (3.11) and (3.22), we can get

−�	(1− �)min

{
�k,

	

F + C

}
+ �D�2k >0.

Since we assumeF + C��D, and hence�k�
�	(1−�)

�D
� 	

F+C
, we have

[−�	(1− �)+ �D�k]�k >0.
This means that, by�k >0, �	(1− �)< �D�k, which contradicts (3.22).
From above, we see that if (3.21) holds, then the step size will be determined by (2.8). So, for largek,


k = 1, and�k = 1, comes from limk→∞ dk = 0, i.e.,hk = dk and hencexk+1= xk + dk. We know that
|f (xk + dk)− fk − [�k(0)− �k(dk)]|
= 1

2|‖F(xk)+ F ′(xk)dk‖2+ dTk DkCkDkdk − ‖F(xk + dk)‖2|
�‖F(xk)+ F ′(xk)dk‖‖w(xk, dk)‖ + 1

2‖w(xk, dk)‖2+ 1
2ck‖Dkdk‖2

�[‖F(xk)‖ + 1
2‖w(xk, dk)‖]‖w(xk, dk)‖ + 1

2ck‖Dkdk‖2, (3.24)

wherew(xk, dk) =
∫ 1
0 [F ′(xk + �dk) − F ′(xk)]dk d�. From the Lipschitz continuality ofF ′ with the

Lipschitz constant�F , we obtain‖w(xk, dk)‖��F ‖dk‖2. (3.24) implies that
|f (xk + dk)− fk − [�k(0)− �k(dk)]|�(‖Fk‖ + 1

2�F )‖dk‖2+ 1
2C�2k.

Since Lemma 3.2 holds, fromhk=dk we readily obtain that for largek, Pred(dk)��	�k, and‖dk‖�D�k
if setting

�k =
fk − f (xk + hk)
Predk(hk)

(3.25)

then{�k−1} converges to zero, as�k → 0. �̂k��k� �̂k implies that{�k} is not decreased for sufficiently
largek and hence bounded away from zero. Thus{�k} cannot converge to zero, contradicting (3.16).
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From above, we have obtained that (3.15) is not true. So, (3.14) must hold. Similar to the proof of
theorem in[9], we have that if (3.14) holds, then

lim
k→∞ 
k = 0.

Now, assume that
k given in step 4 is the step size to the boundary of box constraints alongdk. From
(2.15)


k
def= min

{
max

{
li − xk,i
dk,i

,
ui − xk,i
dk,i

}
, i = 1,2, . . . , n

}
.

Similar to prove (3.18), if for sufficiently largek, min{|li − xk,i |, |ui − xk,i |}>0, i = 1, . . . , m, and
k
is defined by some(�∗)j = 0, by nondegenerate of the problem (1.1) at the limit point then(g∗)j �= 0
which implies
k = |(�k)j ||(dk)j | . Similar to prove (3.18), we also have that


k�
|(gk)j | + �k

‖gk + (F ′Tk F ′k)dk‖∞
.

It is clearly to see that from|(gk)j |> 1
2|(g∗)j |>0 for sufficiently largek and somej,


k �0 (3.26)

when
k given in the step size to the boundary of box constraints alongdk.
Furthermore, the acceptance rule (2.8) means that, for largek

f
(
xk + 
k

�
dk

)
− fk�f

(
xk + 
k

�
dk

)
− f (xl(k))��


k
�
gTk dk.

Since

f
(
xk + 
k

�
dk

)
− fk = 
k

�
gTk dk + o

(
k
�
‖dk‖

)
,

we have

(1− �)

k
�
gTk dk + o

(
k
�
‖dk‖

)
�0. (3.27)

Dividing (3.27) by
k
� ‖dk‖ and notinggTk dk�0, we have

lim
k→+∞

gTk dk

‖dk‖ = 0. (3.28)

From (3.4) and (3.27), we have that (3.28) means

0= lim
k→+∞

gTk dk

‖dk‖ � lim
k→+∞ −�	

1

‖dk‖ min
{
�k,

	

bk + ck
}

� − �	min

{
lim

k→+∞
�k
‖dk‖ , lim

k→+∞
	

(F + C)‖dk‖
}

�0, (3.29)

which contradicts�k‖dk‖�
�k‖D‖‖Dkdk‖�

1
D
>0 and hence the conclusion of the theorem is true.�
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4. Properties of the local convergence

Theorem 3.5 indicts that at least one limit point of{xk} is a stationary point. In this section, we shall
first extend this theorem to a stronger result and the local convergent rate.

Theorem 4.1. Assume that the Assumptions1–4hold. Let {xk} be a sequence generated by the proposed
algorithm. If nondegenerate property of the system(1.1)holds at any limit point, then

lim
k→+∞ ‖D

−1
k (F

′
k)
TFk‖ = 0. (4.1)

Proof. Assume that there are an	1 ∈ (0,1) and a subsequence{D−1mi (F ′mi )TFmi } of {D−1k (F ′k)TFk} such
that for allmi, i = 1,2, . . .

‖D−1mi (F ′mi )TFmi‖�	1. (4.2)

Theorem 3.5 guarantees the existence of another subsequence{D−1li (F ′li )TFli } such that
‖D−1k (F ′k)TFk‖�	2 for mi�k < li (4.3)

and

‖D−1li (F ′li )TFli‖�	2 (4.4)

for an	2 ∈ (0, 	1).
Similar to the proof of Theorem 3.5, we have that the sequence{f (xl(k))} is nonincreasing for

mi�k < li , and hence{f (xl(k))} is convergent. (4.3) and (3.12) mean that

f (xl(k))�f (xl(l(k)−1))− ��
l(k)−1	2min
{
�l(k)−1,

	2
bl(k)−1+ cl(k)−1

}
. (4.5)

That{f (xl(k))} is convergent means
lim
k→∞ 
l(k)−1�l(k)−1= 0.

Similar to the proof of theorem in[9], we have

lim
k→∞ f (xl(k))= lim

k→∞ f (xk). (4.6)

According to the acceptance rule in step 5, we have

f (xl(k))− f (xk + 
kdk)� − 
k�g
T
k dk� − ��
k	2 min

{
�k,

	2
bk + ck

}
.

Similarly, we also get

lim
k→∞ 
k�k = 0. (4.7)

Therefore, similar to prove (3.21) and (3.26), we can also get that there exists a subsetK ⊂ {k}

k �k∈K 0,
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where
k give in the step size to the boundary of box constraints alongdk, that is, the step size{
k} cannot
converge to zero.
By accepting the rule of the step
kdk, for large enoughi such thatmi�k < li

f
(
xk + 
k

�
dk

)
− f (xk)�f

(
xk + 
k

�

)
− f (xl(k))> �


k
�
∇f (xk)Tdk. (4.8)

Using the mean value theorem we have the following equality:

f
(
xk + 
k

�
dk

)
− f (xk)= 
k

�
∇f

(
xk + �k


k
�
dk

)T
dk

= 
k
�

[
∇f

(
xk + �k


k
�
dk

)
− ∇f (xk)

]T
dk + 
k

�
∇f (xk)Tdk (4.9)

with �k ∈ (0,1). Sincef (x) is Lipschitz continuously differentiable with constant�, we have∣∣∣∣[∇f (
xk + �k


k
�
dk

)
− ∇f (xk)

]T
dk

∣∣∣∣ ���k

k
�
‖dk‖2��


k
�
‖dk‖2. (4.10)

(4.8)–(4.10) mean that

−(1− �)

k
�
∇f (xk)Tdk��

(
k
�

)2‖dk‖2. (4.11)

Dividing 
k
� ‖dk‖ in the two side of (4.11) and noting(1− �)>0,∇f (xk)Tdk�0, and (3.9), we obtain

that


k‖dk‖2� − �(1− �)∇f (xk)Tdk
��(1− �)�‖D−1k (F ′k)TFk‖min

{
�k,

‖D−1k (F ′k)TFk‖
‖D−1k (F ′k)TF ′kD−1k + Ck‖

}
(4.12)

which (4.3) and (4.7) imply

lim
k→∞, li �k�mi

�k = 0 (4.13)

and hence

lim
k→∞, li �k�mi

‖dk‖ = 0.

Becausef (x) is Lipschitz continuously differentiable, we have

f (xk + dk)= f (xk)+ �∇f (xk)Tdk + (1− �)∇f (xk)Tdk + [∇f (xk + �kdk)− ∇f (xk)]Tdk
�f (xl(k))+ �∇f (xk)Tdk + {(1− �)∇f (xk)Tdk + �‖dk‖2},

where�k ∈ [0,1] and� given in (3.6). By Lemma 3.3 and (4.3), when (4.13) holds, that is, when‖dk‖ is
small enough, the term bracket in the right-hand side of the above inequality will become negative, and
hence the corresponding�k → 1, as‖dk‖ → 0, 
k → 1 will be accepted, that is,

f (xk + dk)�f (xl(k))+ �∇f (xk)Tdk, xk + dk ∈ �. (4.14)
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Similar to Theorem 3.4, we also have

|f (xk + dk)− f (xk)− [�k(0)− �k(dk)]|�(‖Fk‖ + 1
2�F )‖dk‖2+ 1

2ck�
2
k.

From (3.7) and (4.3), for large enoughi,mi�k < li ,

Predk(dk)��‖D−1k (F ′k)TFk‖min
{

�k,
‖D−1k (F ′k)TFk‖

bk + ck

}
��	min

{
�k,

	

F + C

}
.

As dk = hk, for largei,mi�k < li , we obtain that

�k = 1+
fk − f (xk + dk)+ �k(dk)

Predk(dk)
�1− (‖Fk‖ +

1
2�2)‖dk‖2+ 1

2C�2k
�1	2min{�k, 	2

F+C
} ��2. (4.15)

This means that for largei,mi�k < li , when�k is sufficiently small,

fk − f (xk + dk)��2 Predk(hk)��2�	2min

{
�k,

	2
F + C

}
. (4.16)

It follows that for sufficiently largei, when�k� 	2
F+C

,

fk − f (xk + dk)���k, (4.17)

where�
def= �2�	2. From‖xk+1− xk‖�‖D−1k ‖‖Dkdk‖�D�k, we then deduce from this bound that fori

sufficiently large,

‖xmi − xli‖�
li−1∑
k=mi

D�k�
D
�

li−1∑
k=mi
[fk − f (xk + dk)] = D

�
(fmi − fli ). (4.18)

Therefore, (4.6) implies thatfmi − fli tends to zero asi tends to infinity. Finally, from (4.3) (4.4)
and triangle inequality, we get that from‖F ′TmiFmi − F ′Tli Fli‖��F ‖xmi − xli‖ and (2.5) implies that
|(�mi )j − (�li )j |� |(xmi )j − (xli )j | for sufficiently large. Consequently,‖(D−1mi − D−1li )(F ′Tli Fli )‖ → 0
asi tends to infinity and therefore, assuming‖xmi − xli‖�	2,

	1�‖D−1mi (F ′mi )TFmi‖
�‖D−1mi ‖‖F ′miFmi − F ′li Fli‖ + ‖(D−1mi −D−1li )(F ′Tli Fli )‖ + ‖D−1li (F ′li )TFli‖
�(D	2+ F 	2+ 	2)= (D + F + 1)	2

which contradicts	2 ∈ (0, 	1), for arbitrarily small. �

We now discuss the convergence rate for the proposed algorithm. For this purpose, it is show that for
large enoughk, the step size
k ≡ 1, limk→∞ �k = 1, and there existŝ�>0 such that�k��̂.

Theorem 4.2. Assume that Assumptions1–5hold. If nondegenerate property of the system(1.1)holds at
every limit pointx∗ of {xk}, andF(x∗) = 0 andF ′(x∗) is nonsingular. For sufficiently large k, then the
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step
k ≡ 1, limk→∞ �k = 1 and the trust-region constraints is inactive, that is, there existŝ�>0 such
that�k��K ′, ∀k�K ′ whereK ′ is a large enough index.

Proof. For sufficiently largek, from (3.1), then we have that there exists�k�0 such that

∇f (xk)Tdk = [D−1k (F ′k)TF ′k]TDkdk
= − (Dkdk)T[D−1k (F ′k)TF ′kD−1k + Ck + �kI ](Dkdk)
� − 1

2‖F ′(x∗)‖2‖dk‖2, (4.19)

where the last inequality is deduced by�k�0, Ck being positive semidefinite and the continuous ofF ′(x).
According to the acceptance rule in step 4, we have

f (xl(k))− f (xk + 
kdk)� − 
k�g
T
k dk� 1

2
k�‖F ′(x∗)‖2‖dk‖2. (4.20)

Similar to prove (4.13), we also have

lim
k→∞ 
k‖dk‖ = 0. (4.21)

Let the step size scalar
k be given in (2.15) along the directiondk to the boundary (2.9) of the box
constraints. Since nondegenerate property of the systems (1.1) holds at every limit pointx∗ of {xk}, similar
to proof (3.18) in Theorem 3.4, we can also obtain that
k = |(gk)j |+�k

|(gk)j+((F ′Tk F ′k)dk)j |
. Hence, limk→+∞ 
k �= 0

whendk is given in (2.9) alongdk to the boundary of the box constraints. By (4.14) and (4.19), we also
obtain that at thekth iteration for largek,

f (xl(k))− f (xk + dk)� − �gTk dk� 1
4�‖F ′(x∗)‖2‖dk‖2. (4.22)

Similar to the proof of Theorem 4.1, we can also prove that (4.6) holds, that is, limk→∞ f (xl(k)) =
limk→∞ f (xk) and hencedk → 0 by (4.22). Therefore, again using (3.18), we have that

lim
k→+∞ min{1, 
k} = 1, asdk → 0

where
k given in (2.9) alongdk to the boundary of the box constraints. This means that the step size

k=1, for large enoughk if 
k is determined by (2.8) and (2.9). Therefore, by the condition on the strictly
feasible step size�k − 1=O(‖dk‖), we get limk→+∞ �k = 1, which means that the step size
k ≡ 1, i.e.,
hk = dk for large enoughk.
By the above inequality, we know that

xk+1= xk + dk.
By (3.24), we have

|f (xk + dk)− f (xk)− [�k(0)− �k(dk)]|
�

[
‖F(xk)‖ + ‖�(xk, dk)‖

2

]
‖�(xk, dk)‖ + ‖DkCkDk‖

2
‖dk‖2.

From the Lipschitz continuity ofF ′, we get there exist�F and�L such that

‖�(xk, dk)‖�
∫ 1

0
‖F ′(xk + �dk)− F ′(xk)‖ · ‖dk‖d���F ‖dk‖2
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and from theF(x∗)= 0 andF ′(x∗) is nonsingular, we also get‖F(xk)‖��L‖dk‖. Further,
ck = ‖Ck‖ = ‖diag{gk}J �

k ‖�‖F ′kFk‖��F �L‖dk‖.
By the nondegenerate of the problem (1.1) at the limit pointx∗ theng∗ =0 implies|(�k)j |� 1

2|(�∗)j |>0,
∀j , for large enoughk. Therefore,Dk is bounded, i.e., there exists a constant>0 such that‖D2k‖�.
By Assumptions 1–4 and the continuous ofF ′(x), for large enoughk, there exists�k�0

Pred(dk)= 1
2‖Fk‖2− 1

2‖Fk + F ′kdk‖2− 1
2d
T
k DkCkDkdk

= 1
2(Dkdk)

T[D−1k (F ′k)TF ′kD−1k + Ck + �kI ](D−1k dk)
� 1
4‖F ′(x∗)‖2‖dk‖2, (4.23)

we can obtain that

�k = 1+
Ared(hk)− Pred(hk)

Pred(hk)

�1− [‖F(xk)‖ +
1
2‖�(xk, hk)‖]‖�(xk, hk)+ 1

2‖Ck‖‖D2k‖‖hk‖2‖
|Pred(hk)|

�1− (�L +
1
2�F �L+ 1

2�F ‖hk‖)‖hk‖3
|Pred(hk)|

�1− 4(�L +
1
2�F �L+ 1

2�F ‖hk‖)‖hk‖
‖F ′(x∗)‖2 . (4.24)

Hence, (4.23) and (4.24) mean that�k → 1 as‖hk‖ → 0. Hence there existŝ�>0 such that when
‖Dkdk‖��̂, �̂k��k��2, and therefore,�k+1��k.Ashk → 0, there exists indexK ′ such that‖Dkdk‖��̂
wheneverk�K ′. Thus�k��K ′,∀k�K ′ which implies that the conclusion of the theorem holds.�

Theorem 4.2 means that the local convergence rate for the proposed algorithm depends on the Hessian
of objective function atx∗ and the local convergence rate of the step. Ifdk becomes the Newton step,
then the sequence{xk} generated by the algorithm convergesx∗ quadratical.

5. Numerical experiments

Numerical experiments on the new affine scaling trust-region algorithm in association with nonmono-
tonic interior backtracking line search technique given in this paper have been performed on an IBM
586 personal computer. In this section we present the numerical results by the ASITR algorithm. The
ASITR algorithm was implemented as a MATLAB code and run under MATLAB version 6.5. In our
implementation the constant�l in step 5 was set equal to 0.5× 10−4. For the sake of comparison to
check effectiveness of the backtracking technique, we select the same stopping criteria parameter as used
in [1]. The computation terminates when one of the following stopping criterions is satisfied which is
either‖D−1k gk‖ = ‖D−1k (F ′k)TFk‖�10−6 or ‖Fk+1 − Fk‖�10−6. The selected parameter values are:
�1= 0.001, �2= 0.75, �1= 0.2, �2= 0.5, �3= 2, �= 0.5,�max= 10, �= 0.2, and initially�0= 5.
We compare with different nonmonotonic parametersM = 0,M = 4 andM = 8, respectively, for the
proposed algorithms. The monotonic algorithms are realized by takingM = 0.
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Table 1
Experimental results of nonmonotonic affine scaling interior trust region algorithm

Problem Name and source Initial point ASITR Alg

x0i NF IT

1 Himmelblau ([8, Pb. 14.1.1]) �= 1 8 7
�= 2 9 8
�= 3 12 11

2 Equilibrium combustion ([8, Pb.14.1.2]) �= 1 7 6
�= 2 6 5
�= 3 10 9

3 Ferraris–Tronconi system ([8, Pb. 14.1.4]) �= 1 8 7
�= 2 10 9
�= 3 13 12

4 Brown’s almost linear system ([8, Pb. 14.1.5]) �= 1 34 28
�= 2 31 25
�= 2.5 25 21

5 Robot design problem ([8, Pb. 14.1.6]) �= 1 14 13
�= 2.5 10 9
�= 3 12 11

6 Series of CSTRs,R = 0.950 ([8, Pb. 14.1.8]) �= 1 17 12
�= 2 12 10
�= 3 11 10

7 Series of CSTRs,R = 0.960 ([8, Pb. 14.1.8]) �= 1 12 9
�= 2 10 8
�= 3 13 12

8 Series of CSTRs,R = 0.965 ([8, Pb. 14.1.8]) �= 1 11 9
�= 2 13 11
�= 3 13 12

9 Series of CSTRs,R = 0.970 ([8, Pb. 14.1.8]) �= 1 9 7
�= 2 11 9
�= 3 15 14

10 Series of CSTRs,R = 0.975 ([8, Pb. 14.1.8]) �= 1 8 6
�= 2 10 9
�= 3 14 13

The experiments are carried out on 10 standard test problemswhich are quoted from[8].Wealso test the
method with the recommended starting points in[8], x0�= l+0.25�(u− l), for the problems have finite
lower and upper bounds. However, since the choice�=3 corresponds to an initial pointx03 that is solution
of Problem 4 and the Jacobian matrices of Problem 5 is singular at the starting guess obtained with�=2.
The computational results for updating the real HessianHk = (F ′k)TF ′k are presented at the following
table, where ASITR denote the nonmonotonic affine scaling interior trust-region algorithm proposed in
this paper with nonmonotonic technique. NF and IT stand for the numbers of function evaluations and
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performed iterations respectively. The number of gradient evaluations is not presented in the following
table because it always equals the numbers of performed iterations IT.
However, the nonmonotonic technique does almost not bring in noticeable improvement in most test

problems, the number of iterations inwhich nonmonotonic decreasing situation occurs, that is, the number
of times‖Fk‖2< ‖Fk+1‖2 is not presented in the following table (Table1).
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