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Abstract

In this paper, we propose a new affine scaling trust-region algorithm in association with nonmonotonic inte-
rior backtracking line search technique for solving nonlinear equality systems subject to bounds on variables. The
trust-region subproblem is defined by minimizing a squared Euclidean norm of linear model adding the augmented
quadratic affine scaling term subject only to an ellipsoidal constraint. By using both trust-region strategy and interior
backtracking line search technique, each iterate switches to backtracking step generated by the general trust-regior
subproblem and satisfies strict interior point feasibility by line search backtracking technique. The global conver-
gence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions
A nonmonotonic criterion should bring about speeding up the convergence progress in some ill-conditioned cases.
The results of numerical experiments are reported to show the effectiveness of the proposed algorithm.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we analyze the solution of nonlinear systems subjective to the bound constraints on
variable

F(x)=0, xeQ={x]|<x<u}, (1.2)
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whereF : # — R" is a given continuously differentiable mapping atidc R” is an open set containing
the n-dimensional box constrai2. The vectorl € (RU {—oo})" andu € (R U {4+o00})" are specified

lower and upper bounds on the variables such thaﬂbr%gf{x |l <x <u} is nonempty. The problem

(1.1) arises naturally in systems of equations modeling real-life problems when not all the solutions of the
model have physical meaning. For example, cross-sectional properties of structural elements, dimensions
of mechanical linkages, concentrations of chemical species, etc., are modeled by nonlinear equations
whereQ is the positive orthant oR” or a closed box constraint. Various sources of nonlinear equations
with the box constrain® drawn from complimentarily, optimization and several related problems have
been described. In the classic methods for solving the unconstrained nonlinear equations (1.1) when the
function F (x) is a continuously differentiable function, the Newton methods or quasi-Newton methods
can be used. Much analysis of many Newton algorithms have been done on smooth nonlinear equations
based on convergent analysis. These methods by using the Jacobian or version of Newton’s methods ofter
solve the unconstrained problem (1.1), which is known to have locally very rapid convergen&egBhee
However, the Newton methods used for smooth systems (1.1) did not ensure global convergence, that is,
the convergence is only local. Therefore, the methods are available only when the initial start point is
good enough. In the use of these methods, difficulties arise when the step lies outside the region where
the linear modeF (x) + F’'(x)s is a good approximatiof (x + s) whereF’(x) is the Jacobian of (x).

One effective remedy when this occurs is to restrict the stepa region where the linear model can be
trusted. Globally, convergent methods for the unconstrained sydt€ms= 0 may be unsuited for the
purpose of solving the bound-constrained systems (1.1), since a ¥édatisfy F'(x) = 0, but does not

belong toQ. Generally, two basis approaches, namely the line search and trust-region, have been used
in order to ensure global convergence towards local minima. At each iterations, most modern global fit
within determining an initial trial step and testing the trial step to determine whether it gives adequate
progress toward a solution. Recently, Eisenstat and WalKet introduced arbitrary norms as the merit
function, and Brown and Sa§#] used the Euclidean norm, i.& norm as the merit function to combine

the line search to solving the unconstrained nonlinear systems (1.1) and proved the global convergence
of the proposed algorithms. For most versions for solving smooth equation, these approaches only rather
restrictive guarantees of global convergence have only been based on the line search procedure such a
Armijo rule, damped Newton methods. Trial steps are determined in a variety ways to enforce a monotone
decrease of the merit function at each step.

Classical trust-region Newton method for solving the nonlinear systems (1.1) and the affine scaling
double trust-region approach for solving the bounded constrained optimization problems gi8gn in
Recently, Bellavia et al. iffl] further extended the ideas and presented an affine scaling trust-region
approach for solving the bound-constrained smooth nonlinear systems (1.1). The trust-region method is
a well-accepted technique in nonlinear optimization to assure global convergence. However, the search
direction generated in trust-region subproblem must satisfy strict interior feasibility which results in com-
putational difficulties. It is possible that the trust-region subproblem with the strict feasibility constraints
needs to be resolved many times before obtaining an acceptable step, and hence the total computationa
effort for completing one iteration might be expensive and difficulties. The idea of combining the trust-
region and line search backtracking technique suggested by Nocedal ar[d Ypawotivates to switch to
the line search technique by employing a trial step which may be unacceptable in the trust-region method,
since the trial step should provide a direction of sufficient descent. Another nonmonotone technique
is developed to combine with, respectively, line search technique and trust-region strategy for solving
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unconstrained optimization if#,9]. In this paper, we introduce affine scaling interior point projective

to generate the affine scaling trust-region Newton methods which switches to strict interior feasibility

by line search backtracking technique. The trust-region subproblem is defined by minimizing a squared
Euclidean norm of linear model adding the augmented quadratic affine scaling term subject only to an
ellipsoidal constraint. The nonmonotone idea also motivates the study of trust-region Newton methods
in association with nonmonotone interior backtracking line search technique for approximating zeros of
the smooth equations (1.1).

In this research, nonmonotone global convergence of the affine scaling trust-region Newton method
in association with two criterions of nonmonotone backtracking line search and strict interior feasibility
accepting step for solving the smooth equations (1.1) is presented and analyzed. In order to describe anc
design the algorithms for solving the bound-constrained smooth equations (1.1), we first introduce the
squared Euclidean norm of linear model of the unconstrained systems (1.1) and the augmented quadratic
affine scaling term, and state the nonmonotone affine scaling trust-region algorithm with backtracking
interior point technique for the nonlinear equations in Section 2. In Section 3, we prove the global
convergence of the proposed algorithm. We discuss some further convergence properties such as strong
global convergence and characterize the order of local convergence of the Newton methods in terms of the
rates of the relative residuals in Section 4. Finally, the results of numerical experiments of the proposed
algorithm are reported in Section 5.

2. Algorithm

In this section, we describe and design the affine scaling trust-region strategy in association with
nonmonotonic interior point backtracking technique for solving the bound-constrained nonlinear mini-
mization transformed by the bound-constrained systems (1.1) and present an interior point backtracking
technigue which enforces the variable generating strictly feasible interior point approximations to solution
of the bound-constrained nonlinear minimization.

A classical algorithm for solving the unconstrained problem (1.1) is the Newton method. In the context
of unconstrained nonlinear systems (1.1y,ifis a very good approximation of a solution, the Newton
process is that find the stepwhich satisfies

F/éSkz—Fk. (21)

However, Newton method can be incorporated into a globally convergent trust-region scheme. Bellavia
et al. in[1] presented the affine scaling trust-region approach scheme. The basic idea is based on the
trust-region subproblem at theh iteration

. def
min i (d) = 3 Fid + Fel® = I Fell® + F] Fid + 3d" (FT F))d,
st IDwdl <A, (2.2)

where 4, is the trust-region radius ang. (d) is trusted to be an adequate representation of the merit
function

FEOELF@)2 2.3)
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The scaling matriXD; = D (x;) arise naturally from examining the first-order necessary conditions for the
bound-constrained nonlinear minimization transformed by the bound-constrained problem (1.1), where
D(x) is the diagonal scaling matrix such that

def . 1 1
D(x) = diag{|vi(x)| 2, ..., [va(x)] 2} (2.4)
and theith component of vectar(x) defined componentwise as follows:

xi—u; if g <0, andu; < + oo,

i —1; if g;,>0, andl; > — oo,
pn & T ’ (2.5)
-1 if g; <0, andu; = +o0,

1 if g;>0, andl; = —o0

hereg(x) def F'(x)TF(x) andg; is theith component of vectag(x). We remark that, even thoudh(x)
may be undefined on the boundary@fD (x)~* can be extended continuously to it. We will denote this
extension as a convention By(x)~* for all x € Q.

The following nondegenerate property is essential for convergence of the affine scaling double trust-
region approach for solving the bounded constrained optimization problems transformed by the bound-
constrained systems (1.1).

Definition 2.1 (see Coleman and I[8]). A pointx € Q is nondegenerate if, for each index
gix)=0=1[; <xj <u;. (2.6)
A transformed problem (1.1) is nondegenerate if (2.6) holds for everyQ.

Moreover, regarding the solutieh of the subproblem (2.2), frofii] we know that the stepsize along
dy to the boundary need to be bounded away from zero in the global convergence and eventually satisfy
to tend to 1 in the local quadratical convergence. The relevance of the used scaling matrix depends on the
fact that the scaled trust-region trial siépis angled away from the approaching bound. Consequently,
the bounds will not prevent a relatively large stepsize atgnigom being taken. In order to maintain the
strict interior feasibility, a step-back tracking along the solutipof the following augmented quadratic
affine scaling subproblensy) in this algorithm, rather than the solution of the subproblem (2.2), could
be required to satisfy the strict interior feasibility by nonmonotomic interior point backtracking line
research technique. Following the suggestiof3]Jnwe can make some modifications on the trust-region
subproblem (2.2) for solving the nonlinear problem (1.1). The basic idea in the proposed algorithm can
be summarized as follows: assume that int(Q), we define the diagonal matrix suggested3h

Cy dZEfdic’:\(\]{g/{}.’v, (2-7)
whereJ"(x) € R"*" is the Jacobian matrix df(x)| whenevenv(x)| is differentiable and digg;} def
diag{(gr)1, - - -, (gr),}, here(gr); is theith component og,. Each diagonal component of the diagonal
matrix J* equals zero ot=1. The augmented affine scaling trust-region subproblem atthigeration
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is defined as follows

. def
min ¥, (d) = LI F{d + Fe|? + 1d7 DyCyDyd

(Sk) = 3| Fell? + F] Fld + 3d" (F]TF))dy + 3d" DyCrDid
S.t. [[Did|| < 4k,
where4,, is the trust-region radius.

Now, we describe an affine scaling trust-region algorithm with nonmonotonic strict interior feasible
backtracking line search technique for solving the bound-constrained systems (1.1).

Nonmonotonic affine scaling interior trust-region (ASITR) algorithm

Initialization step

Choose parameteys € (0, %), o€ (0,1),0<n;<nr<1,0<y; <y, <1l<yz ¢>0 and positive
integerM as nonmonotonic parameter. Let0) = 0. Select an initial trust-region radiug > 0 and a
maximal trust-region radiugmax=> 4o, give a starting strict feasibility interior poing € int(Q) C R".
Setk = 0, go to the main step.

Main step

1. Evaluatef; = f(xx) OI:‘“%”F(xk)nz, Cr, gx =V f(xz) d:ef(F,é)TFk and Dy, given in (2.4).
If | D; Fgill = 11D H(F)) T Fiell <e, stop with the approximate solution.
Solve a stegy, based on the augmented trust-region subproblem

wn

. def
(S0 M V(@) = 3IFd + Fil)? + 5d" DCiDid

s.t. || Dpd| < 4.

4. Choosey =1, w, o2, ..., until the following inequality is satisfied:
f (e + ouedi) < f (i) + o Peg di (2.8)
with x; + o dy € Q, (2.9)

where f (x;)) = MaXo< j <m) Lf (k—j)}-
5. Set

i def | oydy if xp + oxdy € int(Q),
k=) 0,qd; otherwise

wheref;, € (0;, 1], for some 0< 0; <1 andf; — 1 = O(||d,||) and then set

Xg+1 = Xk + hg. (2.10)
Calculate

P/fgdhk) =Y (0) — Y (hy), (2.11)

Ared(h/k)\: FGawy) = f (e + hi), (2.12)

5, Arediy) (2.1

"~ Predhy)
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6. Updating trust-region sizay 1 from 4y

o [y1dk, 724k] ?f Pr<n1,
A1 = 724k, Ak] if 11 < p <n2, (2.14)
(i, min{yzdi, Amaxt] if pg=no.
7. Take the nonmonotone control parameiék + 1) = min{m (k) + 1, M}. Then sek < k + 1 and go
to step 1.

Remark 1. In the subproblentSy), v, (d) is a local squared Euclidean norm of linear model of the
vector functionF aroundx; adding the augmented quadratic affine scaling term. A candidate iterative
directiondy is generated by minimizing, (d) within the ellipsoidal ball centered aj with radius4;.

A key property of the line search transformation in trust-region subprolofzmis that the candidate
iterative steph; must be a strict interior feasibility. Note that in each iteration the algorithm solves only one
general trust-region subproblem. If the solutifyrfails to meet the acceptance criterions (2.8)—(2.9) (take
or=1),thenwe turnto line search, i.e., retreat frara- ;. until the criterion is satisfied. Comparing usual
monotone technique with nonmonotonic technique, whes 1, the accepted stép only guarantees
that f (xx 4 hy) is smaller thary (x;)). Itis easy to see that the usual monotone algorithm can be viewed
as a special case of the proposed algorithm wifes 0.

Remark 2. The scalar; given in (2.9) of step 4, denotes the step size along the diredjida the
boundary on the variablés< x; + oxdy <u, that is,

def . li — xpi ui — Xk
akzmln{max{’ L ’},

dri =~ dii
wherel;, u;, xi ; anddy ; are theith components aof, u, x; anddy, respectively.

i:1,2,...,n}, (2.15)

3. Global convergence analysis

Throughout this section, we assume that2 ¢ R* — R” is continuously differentiable and bounded
from below. Givernxg € int(Q) C R”, the algorithm generates a sequefpgé € Q € R”. In our analysis,
we denote the level set bby

ZL(x0) = {x € R"| f(x)< f(x0), [ <x<u}.
The following assumption is commonly used in convergence analysis of most methods for the box
constrained systems.

Assumption 1. Sequencéx;} generated by the algorithm is contained in a compactZ&et) on R”.

Assumption 2. There exist some positive constapisandy, such that| F/7T (x) F(x)]| <lgo D)2
<yp, forall x € Z(xo).

Based on solving the augmented trust-region subproli&m similar to use the proof of Lemma 3.4
in [12] (also sed10]) which is due to Sorensen’s paper. The following lemma establishes the necessary
and sufficient conditions concerning the paird;, whend;, solves the subproblelisy).
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Lemma 3.1. d; is a solution to the subproblerts;) if and only if d; is a solution to the following
equations of the forms

(D HFTFOD + Ci+ I Dydy = =Dy () Fr, (3.1)
2 (| Ddy || — 4) =0, 1 >0 (3.2)

and[D,:l(F,gTF,g)D,jl + Cy + /1] is positive semidefinite.

It is well known from solving the trust-region algorithms in order to assure the global convergence of
the proposed algorithm, it is a sufficient condition to show thatfatteration the predicted reduction
defined by Pre@) = ;(0) — y(dx) which is obtained by the stefy from trust-region subproblem
(Sk), satisfies a sufficient descent condition. The following lemma is due to Lemma[3.3]in

Lemma 3.2. Let the stepl; be the solution of the trust-region subproblésp), assume that Assumptions
1-2 hold, then there exists € (0O, %] such that the steg, satisfies the following sufficient descent
condition

ID7HFDT Fell

Preddy) >|| Dy Y (F) T Fell min § A, —— -
ID;NFDTFD + Gl

(3.3)

forall F/, Fi, Cy, Dy and 4y.

The following lemma show the relation between the gradignt (F,Q)TF;{ of the objective function
and the steg; generated by the proposed algorithm. We can see from the lemma that the direction of the
trial step is a sufficiently descent direction.

Lemma 3.3. At the iteration let d;, be generated in trust-region subprobl€), then

1D FDT Fell
IDFAFEYTFD 4Gl |

V() Tdy < — 1l DZHED T Fe min § Ay, (3.9

where the constantgiven in(3.3).

Proof. Sinced; is generated in trust-region subproblésh), Lemma 3.2 ensures that (3.3) holds. Since
(F,:)TF,Q and D, Cy Dy, are semidefinite, we have

(g0)Tdy = [(F)TF ] dy
=Y (di) — ¥ (0) — 2[d{ (F)T Fldy + d]f Dy.C Dydy]
<Y (di) — ¥ (0) = —Preddy) (3.5)

S0, (3.4) holds. O

Lemma 3.4. Let f be differentiable and assume that its gradient is such that

IVF@x) = VW l2<yllx — yll2 Vx,y € R", (3.6)
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wherey is the Lipschitz constant. Lgte (0, 1) andd; be proposed by the subprobléf ). If ||Dk_1gk I #
0, then ASITR Algorithm will produce an iteratg1 = x; + o« dy in a finite number of backtracking
steps in(2.8).

Proof. Using the mean value theorem, we have the equality

f O + oudy) = f(xx) + oV f (x4 Opoedy) ey,

where 0< 60, <1. We rewrite the above equation as

Ok 4 oxdi) = fOx) 4+ oV f () Tdy + o[V f o + Opendi) Tdi — V f () Tdly ]

= f(x) + PV f ) di + (1 — PoaV f (xi) T

+ o[V f (xx + Oxody) Td — V f (xp) Tdi]
= f () + PV f (i) T + ou[(L = BV f (xi) Tk + o |l | ¢, (3.7)
where for convenience we have set
. def [V f (o + Oonedie) — V. f (v) 1" d
Ck = .
o |||

Note that from the assumptions we have

[V £k + Oxoedy) — V f (ei) 1T dy _
|| = o lld <yOclldic | <yIdill <D Ak <yp Ak,

(3.8)

wherey p is given in Assumption 2. By Lemma 3.3 and the conditikmk_lg(xk)n =+ 0. After a finite
number of reductions, the last term in brackets in the right-handed side of (3.7) will become negative and
the corresponding will be acceptable, that is, we have that in a finite number of backtracking sfeps,
must satisfy

F Ok + odie) < f () + BV f () T (3.9)

Since f (xx) < f (xi)), the conclusion of the lemma holdsd

In this section, we are now ready to state one of our main results of the proposed algorithm, but it
requires the following assumptions.

Assumption 3. Dk‘l(F,g)T F; Dk‘l andCy are bounded, i.e., there exist some constgats 0 andy >0
such that

def _ _ def
b = |DYFDTFDI<zp and o = Gkl <ze VK,

where without loss of generality, assume that+ y- <yxp-

Assumption 4. The first-order optimality system associated to problem (1.1) has no nonisolated solutions
and the nondegenerate property of the system (1.1) holds at any solutions of systems (1.1).
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Theorem 3.5. Assume that Assumptiofis4 hold. Let{x;} C @ C R" be a sequence generated by the
algorithm. If nondegenerate property of the sys{ém)holds at any limit pointthen

lim inf 1D FDTFell = 0. (3.10)
— 00

Proof. According to the acceptance rule in step 4, we have
fGaay) = f Ok + i) > — Bl di = —en BID; H(F) T Fil (Dedi). (3.11)

Taking into account thatn(k + 1)<m(k) + 1, and f(xx4+1) < f(xx)), We have f(xk+1)) <
MaXo< j <mk)+1{f (1)} = f (xiw))- This means that the sequerig&x; )} is nonincreasing for all
k and hencé f (x;))} is convergent.

By (2.8) and (3.4), for alk > M, we get

S X))

< max X1k — -} + w18V Firo 1 di—
Ogjgm(l(k)—l){f( 10— -1} + oy -1BV fig—1dit0-1

< max X[ (k) — i—
o<j<m(1(k)—1){f( 1) —j—1))

-1 T
”Dl(k)—l(Fl,(k)—l) Fl(k)fl”

~ o141 Dy s 1 (Fl ) T Figo—1ll min 3 Ay -1, (3.12)
(k) 1) -1\ (k) -1 (k) (k) bro—1+C100—1
If the conclusion of the theorem is not true, there exists som6 such that
ID;YED T Fllze, k=1,2,.... (3.13)
As { f (x1))} is convergent, we obtain that from (3.13)
lim oygy—14i6)-1=0
k— 00
which implies that either
lim A k)—1 = 0 (3.14)
k— 00
or
lim inf A1ky—1=0. (3.15)
k— 00

By the updating formula ofi, we havey) ™ 4,4 -1 < A4x <5 " 4,4 -1 which means that from (3.15)

lim inf A4 = 0. (3.16)

k— 00

Assume thaty, given in step 4 is the stepsize to the boundary of box constraints dlogom (2.15),
we have

def . li — Xk, wi — Xk,
% = min { max , ,

i:l,2,...,n}.
dr,i dr,i
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(3.16) means that
dri — 0 for alli.

Assume thaty given in (2.9) of step 4 is the step size to the boundary of box constraints &oRgom
(2.15), we have that there exists a subset .7 such that

lim o =0
k—o0,ken”

and hence, without loss of generality, assuwne=/; for somei. Recall (3.1) and left muItipIying)k‘1
at the side of (3.1),

[diaglgr}J; + Al ldx = — D 2[F{T Fi + (F{" F{)dk). (3.17)

Since{(F,éTF,é)dk} converges to zeeriag{gk}J,;’ + A1 1] is a positive semidefinite diagonal matrix, and
X, IS nondegenerate Witb*_lg* =0, for anyi with (v,); =0, without loss of generality, assumg; =/;

for somei, from x,.; = [; <u;, we have thatdy);, and(gx); have the same sign férsufficiently large.
Hence, ifoy is defined by somév,) ; = 0 and hencég.); # 0, thenoy = :EZSJJ for k sufficiently large.
Using (3.1), again,

1(81) | + Ak - 1(8x) ;1 + 2%

o = Z . (318)
I(gK)j + (FTFDA) 1~ Nlgk + (FT FDdklloo
Taking norm in Eg. (3.1), we can obtain
Ak = 2l Ddi| = 1D gicll — (D (FT D) DM A+ 11Cr Il | Diede | (3.19)
Dividing (3.18) by 4, and notg| Dydy || < 4,
1D gl ~ -
zk>——£;———quk%Ffpr%1u+ncun. (3.20)

Itis clear that from (3.20) ankﬂDk*lg(xk)H # 0, limp_ o A =+00, asd; — 0.(3.18) means that we
conclude that

lim o = +oo0, (3.21)
k—00

wherey;, given in the step size to the boundary of box constraints adpnigurthermore, by the condition
on the strictly feasible stepsizg € (0o, 1], for some O< 0p < 1 andf, — 1= O(lldi|1?), liMg— o0 Ok =1,
comes from lim_ o di = 0.

We now prove that if

A< 16(1— p)
71D
theno; = 1 must satisfy the accepted condition (2.8) in step 4, that is,

f O+ di) < fuwy) + Bl dr.

(3.22)



D. Zhu / Journal of Computational and Applied Mathematics 184 (2005) 343-361 353

If the above formula is not true, we have
[+ di) > fag) + Bgide > f (xe) + Bl di. (3.23)

Becausef (x) is Lipschitz continuously differentiable with constantve have that from (3.23)

0< @ —Pgldy +IVfxx) — VI + Edi)l dy
<L — Pl + vrp |l Dedr||?
<L — Pgldi +yupaZ,

whereé;, € [0, 1], which means that
0< - Pgldi +y1pa2.

By (3.11) and (3.22), we can get

—z¢(1— )y min {Ak,
AF T XC

} +97p4% >0,

Since we assumgr + xc <yxp, and hencef; < % < 7Fj'ryC , we have

[—te(1 — B) + yxpdkldx > 0.

This means that, by; > 0, 7e(1 — ) < yxp 4k, Which contradicts (3.22).
From above, we see that if (3.21) holds, then the step size will be determined by (2.8). So, f&r large
o =1, andl; = 1, comes from lim_, ~ dx =0, i.e., hx = dr and hence4+1 = x; + di.. We know that

| f(xk +di) — fio — [ (0) — Y (di)]
= 2IF () + F'(x)dl|? + d DkCrDrdy — || F (x + di) %]
SIF () + F ) delllw G, dO + Sllw e, dlI® + Sexll Dedy 1
<INF @l + 31w, do)lTTw G, do) Il + Sexll Dedi 1, (3.24)

wherew (xg, diy) = fol[F’(xk + &dy) — F'(xx)]dr dé. From the Lipschitz continuality of” with the
Lipschitz constant -, we obtain||w (xx, dx) | <y lldil|?. (3.24) implies that

|f G+ die) — fie — W (0) — (@< (I Fiell + 3y ) ldill? + 2y 42,

Since Lemma 3.2 holds, from =d; we readily obtain that for large Preddy) > tedy, and||d || < xp Ak
if setting

Je— SO+ hi)

Pk = " Preg (hy) (3.25)

then{p;, — 1} converges to zero, atx — 0. p; > p; =17, implies that{4;} is not decreased for sufficiently
largek and hence bounded away from zero. Tkuig} cannot converge to zero, contradicting (3.16).
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From above, we have obtained that (3.15) is not true. So, (3.14) must hold. Similar to the proof of
theorem in9], we have that if (3.14) holds, then

lim o =0.
k— o0

Now, assume that; given in step 4 is the step size to the boundary of box constraints dlorkyom
(2.15)

def . li — Xk wj — Xk .
a = min { max{ - L U i=1,2...,nt.
dr.i dr.i

Similar to prove (3.18), if for sufficiently largke min{|l; — xx;l, lu;i — x|} >0,i =1, ..., m, andoy
is defined by somév,); = 0, by nondegenerate of the problem (1.1) at the limit point ttaghn; # O
[
|(dk);'|'
1(8x) j1 + 7

%k = /T g/ )
llgx + (Fk Fk)dk”oo

which impliesoy, =

Similar to prove (3.18), we also have that

Itis clearly to see that from(g) ;| > %|(g*)j| > 0 for sufficiently largek and somg,
o -0 (3.26)

wheno; given in the step size to the boundary of box constraints adlpng
Furthermore, the acceptance rule (2.8) means that, for karge

o o o
f (Xk + —kdk> - fizf <Xk + —kdk) - f(muo)?ﬂ—kg;jdk-
(0)] (0)] w
Since
L N %
£ (o i) = fi= =gl +o (ZNdull)
we have
o o
Q= pZEgldi+o0(Zldl) >0 (3:27)
(0] w
Dividing (3.27) by ||dk || and notingg] dx <0, we have

grdi B
k—+oo ||dk|| '
From (3.4) and (3.27), we have that (3.28) means

(3.28)

,
d . 1 .

0= lim %% jim mln{Ak, ¢ }

k—>+oo |dill ~ k—>+o0  |ldkll by + ck

. . A .
< — 1 mm{ lim =5 lim ;} <0, (3.29)
k=00 ||dk|l k—=+o0 (xp + 70)ldkll

ZIS >-L ~ 0 and hence the conclusion of the theorem is truél

> Ak
which contradictszy = 1 bt = 75



D. Zhu / Journal of Computational and Applied Mathematics 184 (2005) 343-361 355
4. Properties of the local convergence

Theorem 3.5 indicts that at least one limit point{®f} is a stationary point. In this section, we shall
first extend this theorem to a stronger result and the local convergent rate.

Theorem 4.1. Assume that the Assumptidhsdhold. Let {x;} be a sequence generated by the proposed
algorithm. If nondegenerate property of the systém) holds at any limit pointthen

Jim D) TFel =0, (4.1)
Proof. Assume that there are ane (0, 1) and a subsequen¢®,,X(F;, )" ., } of {D; (F))T Fi} such
thatforallm;, i=1,2, ...

1Dy ()T Fo || > 1. (4.2)
Theorem 3.5 guarantees the existence of another subsec{@?ﬁeﬂ;)TFli} such that

IDHEDT Fill>e2 for mi<k <l; (4.3)
and

1D (F)TF [ <e2 (4.4)

forane € (0, e1).
Similar to the proof of Theorem 3.5, we have that the sequdrfae;x))} is nonincreasing for
m; <k <l;, and hence f (x;x))} is convergent. (4.3) and (3.12) mean that

. &2
F ) < f (xiamy—1) — Proug)—162 min {Al(k)—l, } . (4.5)
bigy—1 + crpy-1

That{ f (x;x))} is convergent means
lim  oy@)—14i16—1 = 0.
k—o00
Similar to the proof of theorem if®], we have
lim f(xl(k)) = lim f(Xk). (46)
k— o0 k— o0

According to the acceptance rule in step 5, we have

. &2
Fawy) — [k +odi) > — akﬁg;dk> — Pragez MIN {Ak, } .
bi + cx

Similarly, we also get
lim o4, =0. 4.7)
k—o0
Therefore, similar to prove (3.21) and (3.26), we can also get that there exists a.gulisét}

ok #kex 0,
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whereoy, give in the step size to the boundary of box constraints adipntat is, the step size; } cannot
converge to zero.
By accepting the rule of the stegdj, for large enough such thain; <k </;
Ok ok Ok
f (xk + Edk) —f=f (Xk + 5) — faw) > ﬁ;vf(xk)Tdk- (4.8)
Using the mean value theorem we have the following equality:
ok ok ok o \T
f <Xk + —dk) = fxp) = —Vf<Xk + 6k—dk) dy
w w w
ok ok T ok
= E[Vf (Xk + fk;dk) - Vf(xk)] di + gvf(xk)Tdk (4.9)

with &, € (0, 1). Sincef (x) is Lipschitz continuously differentiable with constanive have

.
[V (v + &) = V£ 0] | <pee el <r = i (4.10)
w w w
(4.8)—(4.10) mean that
2
~A= P2V Tde<(2) il (4.11)
w w

Dividing *|di|| in the two side of (4.11) and notind. — f) >0, V f (xx) Tdr <0, and (3.9), we obtain
that

wulldi 2= — oL — PV £ (xp) T di

> o(L— fyell D X(F)T Fell min {Ak, D (4.12)
1D, ~(Fp) " Fy Dy~ + Ci|
which (4.3) and (4.7) imply
k_)oo’lilirr;kgmi A =0 (4.13)
and hence
lim k|| = O.

k—00, [; <k <m;
Becausef (x) is Lipschitz continuously differentiable, we have
FOx+d) = o) + BV f i) Tdk + (L= BV (xi) Tdi + [V f (xx + Exdi) — YV f ()] Tdy
<F @) + BV ) Td + (L — BV f () Tk + plldie]|?),

where¢, € [0, 1] andy given in (3.6). By Lemma 3.3 and (4.3), when (4.13) holds, that is, Wagfis
small enough, the term bracket in the right-hand side of the above inequality will become negative, and
hence the corresponditg — 1, as||dx|| — 0, — 1 will be accepted, that is,

FOx+d) < fuw) + BV f ) de,  xx+di € Q. (4.14)
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Similar to Theorem 3.4, we also have
|f G+ di) — f () — [ (0) — Y (@O < (L Fell + 37 ld|? + e A2,
From (3.7) and (4.3), for large enoughn; <k <1;,

ID A EDT Fell
b + cx

Pred (dx) 2T||D/:1(F1£)TFI<|| min {Ak, } .
IF T+ Xc

} >temin {Ak,

As d, = hy, for largei, m; <k < 1;, we obtain that

fie = G+ do) +9id) _ UFkl + 572) 1kl + 520 43

or=1+ > . >1p. (4.15)
¢ Pred (dx) e Min{dy, -} ?
This means that for largem; <k < ;, when4, is sufficiently small,
. &2
Je — [ (xk + dic) = nz Predt (he) > npte2 min {Ak, } (4.16)
1F T Xc
. . e

It follows that for sufficiently large, when4; < i

Je — [k +di) =04, (4.17)

wheres dzefnzr.sz. From|xgi1 — x|l < ||Dk‘1|| | Drdi || < % p 4k, We then deduce from this bound that for
sufficiently large,

-1 -1
e, =2, 1< Y 2o <23 Ui — f G+ dT = 22 (for, — fi). (4.18)
k=m; o k=m; d

Therefore, (4.6) implies thaf,,, — f;, tends to zero as tends to infinity. Finally, from (4.3) (4.4)
and triangle inequality, we get that fronF,;Tile. — Fl’iTFli | <yrllxm; — x] and (2.5) implies that

|Omy)j — 1) ;1 <1 (xmy) j — (x,) ;1 for sufficiently large. Consequently(D,* — Dllfl)(F/l_TF,i)H -0
asi tends to infinity and therefore, assumiing,, — x;, || <e,

er <|1 D (Fy )T Fo |
<IDL M Eyy By — FLF I+ 1Dyt = DEYET FD + 1D EF)D TR
<(xpe2 + xpe2 +e2) = (xp + xp + De2

which contradicts, € (0, ¢1), for arbitrarily small. O

We now discuss the convergence rate for the proposed algorithm. For this purpose, it is show that for
large enouglk, the step size; = 1, limy_. o 0 = 1, and there exist8 > 0 such thatd; > 4.

Theorem 4.2. Assume that Assumptiotis5hold. If nondegenerate property of the sys{ém)holds at
every limit pointc* of {x;}, and F(x*) = 0 and F’(x*) is nonsingular. For sufficiently large, khen the
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stepu = 1, limy_ o 6x = 1 and the trust-region constraints is inactjwkat is there existsi > 0 such
that 4y >4/, Yk> K’ whereK' is a large enough index.

Proof. For sufficiently largek, from (3.1), then we have that there exi$ts: 0 such that
V f () i = [DHF) T Dedi
= — (Dedi) ' [DNFDTF D + Crc + 2T |(Didy)
> — 31 F )Pl )%, (4.19)

where the last inequality is deducediy= 0, Cy being positive semidefinite and the continuou# afx).
According to the acceptance rule in step 4, we have

F @) — f Ok + oud) > — o fgg die > 3o BIF ) 12| (4.20)
Similar to prove (4.13), we also have

lim o |ldi|| = O. (4.21)

k— 00

Let the step size scalay, be given in (2.15) along the directiafy to the boundary (2.9) of the box
constraints. Since nondegenerate property of the systems (1.1) holds at every limit pdint, }, similar

. . 1(81) j 147k ;
roof (3.18) in Theorem 3.4, w nal in / . Hence, li
to proof (3.18) eorem 3.4, we can also obtain that @0+ (FTEDa] ence, lim— yooox #0

whend, is given in (2.9) alongi; to the boundary of the box constraints. By (4.14) and (4.19), we also
obtain that at théth iteration for largek,

FOaw) — f G +d) = — Bgidi =3I F ()12 Nde)|>. (4.22)

Similar to the proof of Theorem 4.1, we can also prove that (4.6) holds, that s, knf (x;x)) =
limy;_ o f(xx) and hencel;, — 0 by (4.22). Therefore, again using (3.18), we have that

im min{l, o} =1 asd, — 0
k—+o00

whereo; given in (2.9) alonglx to the boundary of the box constraints. This means that the step size
a =1, for large enougkif o is determined by (2.8) and (2.9). Therefore, by the condition on the strictly
feasible step sizé, — 1= O(||di]|), we get lim— 1+ 0 = 1, which means that the step size= 1, i.e.,
hy = dy for large enouglk.

By the above inequality, we know that

Xk41 = Xk + di.
By (3.24), we have
| f Ok + die) — f (i) — [ (0) — Y (di) ]

loCxr, dio) | | Dk Cie Dic||
< [||F(Xk)|| + T] loCek, di) |l + —

From the Lipschitz continuity of’, we get there existr andy; such that

FAR

1
llo(xx, di)ll < /0 1F G + Edi) — F' G| - il dE<y pl1di |1
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and from theF (x*) = 0 andF’(x*) is nonsingular, we also gét' (x)|| <y, lldk|. Further,
cx = ICkll = Ildiag{gi } L | < | F Fill <y v lldill.

By the nondegenerate of the problem (1.1) at the limit poirtheng, = 0 implies| (v) ;| > %|(V*)]~| >0,
Vj, for large enoughk. Therefore,D; is bounded, i.e., there exists a constast0O such thaf| D,f|| <.
By Assumptions 1-4 and the continuousFifx), for large enougk, there exists; >0
Preddy) = 31| Fll> — 31| Fi + Fydil|* — 3d DxCi Didy

= 3(Dkd)TIDTHEDTELDT + Cr + /(D dy)

> 2IF )12l de))?, (4.23)
we can obtain that

Ared(hy) — Predhy)

=1
=21+ Predhy)
_q FGON + gl koMo, k) + F1Cl DEIIAI
|Pred/u))|

Sq_ Gut genct g lhd i’

|Pred/u))|
Ayp + Syevea+ 3velhelD R

s1- ot grrnnt gl (4.24)

EST

Hence, (4.23) and (4.24) mean that — 1 as|ix|| — 0. Hence there exist8 > 0 such that when
| Drdi || < 4, py = py =12, and thereforeqy 1 > Ax. Ashy — 0, there existsindeK’ such that| Dydy || < 4
wheneverk > K'. Thus4, > Ak, Vk > K’ which implies that the conclusion of the theorem holdsl

Theorem 4.2 means that the local convergence rate for the proposed algorithm depends on the Hessiar
of objective function ak* and the local convergence rate of the stepi;Ibecomes the Newton step,
then the sequende;} generated by the algorithm convergesguadratical.

5. Numerical experiments

Numerical experiments on the new affine scaling trust-region algorithm in association with nonmono-
tonic interior backtracking line search technique given in this paper have been performed on an IBM
586 personal computer. In this section we present the numerical results by the ASITR algorithm. The
ASITR algorithm was implemented as a MATLAB code and run under MATLAB version 6.5. In our
implementation the constaft in step 5 was set equal to®x 10~4. For the sake of comparison to
check effectiveness of the backtracking technique, we select the same stopping criteria parameter as uset
in [1]. The computation terminates when one of the following stopping criterions is satisfied which is
either | D, Ygxll = 1D, H(F) T Fi || <1076 or || Fip1 — Fill <1078, The selected parameter values are:

11 =0.001 7, =0.75, 7, =0.2, y2=0.5, y3=2, ©=0.5, 4nax= 10, f=0.2, and initially 40 = 5.
We compare with different nonmonotonic parametéfrs= 0, M = 4 andM = 8, respectively, for the
proposed algorithms. The monotonic algorithms are realized by takiagO.
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Table 1
Experimental results of nonmonotonic affine scaling interior trust region algorithm
Problem Name and source Initial point ASITR Alg
X0i NF IT
1 Himmelblau [8, Pb. 14.1.1) =1 8 7
w=2 9 8
w=3 12 11
2 Equilibrium combustion[8, Pb.14.1.2) o=1 7 6
=2 6 5
w=3 10 9
3 Ferraris—Tronconi systen8( Pb. 14.1.4)] =1 8 7
=2 10 9
w=3 13 12
4 Brown’s almost linear systenfig, Pb. 14.1.5) =1 34 28
w=2 31 25
w=25 25 21
5 Robot design problenj§, Ph. 14.1.6) =1 14 13
w=25 10 9
w=3 12 11
6 Series of CSTRsk = 0.950 (8, Pb. 14.1.8) =1 17 12
w=2 12 10
=3 11 10
7 Series of CSTRsR = 0.960 (8, Pb. 14.1.8] w=1 12 9
w=2 10 8
w=3 13 12
8 Series of CSTRsR = 0.965 (8, Pb. 14.1.8) =1 11 9
w=2 13 11
=23 13 12
9 Series of CSTRsR = 0.970 (8, Pb. 14.1.8) =1 9 7
w=2 11 9
w=3 15 14
10 Series of CSTR®® = 0.975 (8, Pb. 14.1.8) =1 8 6
w=2 10 9
w=3 14 13

The experiments are carried out on 10 standard test problems which are quotf] fiimalso test the
method with the recommended starting point8in xo, =1 + 0.25@ (1 — 1), for the problems have finite
lower and upper bounds. However, since the cheies corresponds to an initial poimgs that is solution
of Problem 4 and the Jacobian matrices of Problem 5 is singular at the starting guess obtaiaed 2ith
The computational results for updating the real Hesgian= (F,Q)TF,g are presented at the following
table, where ASITR denote the nonmonotonic affine scaling interior trust-region algorithm proposed in
this paper with nonmonotonic technique. NF and IT stand for the numbers of function evaluations and
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performed iterations respectively. The number of gradient evaluations is not presented in the following
table because it always equals the numbers of performed iterations IT.

However, the nonmonotonic technique does almost not bring in noticeable improvement in most test
problems, the number of iterations in which nonmonotonic decreasing situation occurs, that is, the number
of times|| Fy |2 < || Fr+1]|2 is not presented in the following table (Taldle
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