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Dendritic cells are a relative rare population of specialized antigen presenting cells that are distributed
through most lymphoid and non-lymphoid tissues and play a critical role in linking the innate and adaptive
arms of the immune system. The liver contains a heterogeneous population of dendritic cells that may con-
tribute to liver inflammation and fibrosis through a number of mechanisms. This review summarizes current
knowledge on the development and characterization of liver dendritic cells and their potential impact on
liver fibrosis. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human
disease.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Dendritic cells (DCs) comprise a relative rare and heterogeneous
population of specialized hematopoietic cells that play an important
role in linking the innate and adaptive arms of the immune system.
DCs were first identified as potent antigen presenting cells in mouse
spleen and it is now established that they are distributed through
most lymphoid and non-lymphoid tissues. Despite the fact that they
typically represent only a small proportion within the leukocyte pop-
ulation, they are the primary professional antigen presenting cells
and play an important role in monitoring the tissue microenviron-
ment. After capturing antigens, tissue-resident DCs mature and mi-
grate via the afferent lymphatics to the draining lymph nodes where
they can present these antigens to T cells. The effectiveness of DCs
at presenting antigens and priming T cell responses is one of their
defining attributes. Their migratory capacity is also an important fea-
ture that distinguishes them from tissue-resident macrophages. DCs
are also important producers of multiple cytokines through which
compatibility class II; IFN, in-
common myeloid progenitor;
enitor; Flt3, FMS-like tyrosine
gulatory factor 8; zbtb4/zDC,
itor of DNA binding 2; Batf3,
K, natural killer; MMP, matrix
nocyte chemotactic protein 1;
or necrosis factor alpha
s: Translation of basic research

ox 1123, New York, NY 10029,

Aloman).

l rights reserved.
they can influence a broad range of other cell types. DCs in the liver
are uniquely positioned to monitor the portal circulation, and the
ways in which they regulate responses to blood-borne pathogens, he-
patic immune tolerance, liver homeostasis and fibrosis continue to be
areas of active research. Given their scarcity, heterogeneity and the
absence of clear defining surface markers, the investigation of hepatic
DCs has thus far been challenging.

2. Subsets of liver dendritic cells

Tissue-resident DCs are present in most tissues; however, there is
considerable functional and phenotypic heterogeneity amongst DC
populations [1], which also varies based on tissue localization. The
functional roles of DCs are often influenced by their specific tissue
microenvironments, and certain tissues contain specialized DC
populations, such as Langerhans cells in the skin. The DC populations
in the liver express similar surface markers to those found in other
tissues such as the lung, kidney and pancreas, and much of our un-
derstanding of liver DCs is based on studies of analogous DC
populations that have been more extensively studied in other lym-
phoid and non-lymphoid tissues [2,3]. However, the liver seems to
play a unique role in the DC traffic: at least in rat, DCs undergo a
blood-lymph node translocation via the hepatic sinusoids, which
may act as a biological concentrator of circulating DCs into the re-
gional hepatic nodes [4].

DCs are sparsely distributed through the liver, and immunohisto-
chemical studies of patient liver biopsies indicate that they are primar-
ily found in the portal regions and occasionally in the parenchyma [5].
Unlike hematopoietic lineages such as B cells or T cells, a single cell sur-
face marker that can be used to unequivocally identify DCs has yet to
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be determined, and distinguishing DCs from other cell types, such as
monocytes andmacrophages continues to be a challenge in some circum-
stances. The fact that some of the surface markers that are highly
expressed by specific DC subsets in mice are poorly expressed on
humanDCs and vice versa presents an additional challenge. Nevertheless,
considerable progress has been made in recent years in defining sets of
cell surface markers that can be used to identify distinct DC subsets.

In multiparametric flow cytometric analyses, DCs in both mice and
humans can be identified as CD45+ cells that constitutively express
high levels of major histocompatibility complex II (MHCII) while lack-
ing markers for other hematopoietic lineages. This is admittedly a
broad definition, and the use of additional markers, such as the high
expression of CD11c, can be also useful in identifying DCs. However,
effectively excluding other hematopoietic cell types when conducting
DC analyses is very important given that many of the surface markers
that frequently are used to define DC subsets can also be expressed by
other cell types, such as B cells and macrophages. This is particularly
true in the setting of inflammation.

Under steady state conditions, liver DCs in both mice and humans
can be divided into two major functional classes: classical DCs (cDCs)
and plasmacytoid DCs (pDCs). cDCs express high levels of MHCII and
function as highly-efficient professional antigen presenting cells. In
contrast, pDCs express relatively lower levels of MHCII and have a
relatively limited capacity to capture and present tissue antigens
and instead function as major producers of type I interferons (IFNs)
in response to nucleic acids in the setting of viral infection [6]
(Table 1). Reinforcing these functional differences, pDCs share certain
molecular and morphological features with B lymphocytes, including
typical secretory lymphocyte morphology rather than the eponymous
dendritic morphology of cDCs. In naïve C57BL/B6mice, pDCs comprise
the majority of liver DCs and can be identified as a CD11c+ population
that expresses CD317 (PDCA1) and Siglec H [7] (Fig. 1A). Human pDCs
do not express CD11c but can be identified as HLA-DRhi cells that also
Table 1
Functional heterogeneity of dendritic cell subsets. While studies have yet to comprehensiv
subsets in other tissues suggest distinct functional characteristics. Based on data compiled

Species DC type DC subset K

Mouse pDC

• Lineage−

• CD11cint

• MHCIIint

• PDCA-1+

• Siglec H+

•

•

•

•

•

•

cDC

• Lineage−

• PDCA-1−

• CD11chigh

• CD11chigh

• MHCIIhigh

CD103+ DC (Batf3 dependent DC) •

•

•

•

CD103- DC (Batf3 independent DC) •

•

•

•

•

Human pDC

• Lineage−

• MHCIIhigh

• CD123+

• BDCA-2+

•

•

•

•

cDC

• Lineage−

• CD123−

• BDCA-2−

• MHCIIhigh

CD141+ cDC •

•

•

•

CD1c+ cDC •

•

•

express high levels of the type II C-type lectin CD303 (BDCA2) and the
IL-3 receptor CD123 [8]. The frequency of these cells in human liver
explants and resections is typically much lower than the frequency
of pDCs found in the livers of naïve mice (Fig. 1B), and is similar to
the frequency observed amongst circulating PBMCs.

The cDC population in the liver can be further divided into two
major functionally and phenotypically distinct subsets. In mice, the
hepatic CD11chiMHCIIhi cDC population contains a more prevalent
CD103−CD11bhi population and a rarer CD103+CD11blow population
(Fig. 1A), which appear to correspond to the CD8−CD11bhi and
CD8+CD205+ lymphoid tissue DC subsets, respectively. CD11b ex-
pression on the CD103− DC population tends to be heterogeneous,
and the CD103−CD11blow subset may represent a less mature popu-
lation. Corresponding counterparts to the CD11bhi and CD103+ DC
populations can be identified in human livers by the markers CD1c
(BDCA1) and CD141 (BDCA3), respectively (Fig. 1B and C). The
CD1c+ population is somewhat heterogeneous for CD14 expression,
suggesting that the CD1clowCD14hi DC population may be analogous
to the CD11blowCD103− subset in mice. However, while some studies
have defined CD14+ and CD16+ cells in the liver as DCs [3,9], it can
be challenging to unequivocally distinguish these cells from mono-
cyte and macrophage populations that may also express high levels
of these markers, particularly in the setting of inflammation.

Studies of these DC subsets in other tissues indicate that the CD11b+

subset produces higher levels of most cytokines and chemokines and
efficiently processes and presents MHCII-restricted antigens to CD4+ T
cells, whereas the CD103+ subset is more efficient at cross-presenting
MHCI-restricted antigens to CD8+ T cells [10–12] (Table 1). Studies in
humans have similarly shown that CD141+ DCs are more efficient at
cross-presenting antigens than CD1c+ DCs [3,13]. However, studies of
CD141+ DCs in the skin suggest that this subset may also serve a
tolerogenic function by producing high levels of IL-10 and inducing
regulatory T cells [14]. This is notable because studies of the total cDC
ely elucidate the functional differences of hepatic DC subsets, studies of analogous DC
from [1,10,11,13,14,17–19].

ey functional characteristics

MHC Class II presentation ±
MHC Class I cross-presentation ± (but can be induced by TLR stimulation)
Highly responsive to TLR7/9 ligands
Secrete high levels of IFNα during viral infections; negative regulators: Bst2 and Siglec H
Induction of IL-10 secreting Tregs (in vitro)
Induction of oral tolerance (in vivo) and tolerance in vascularized transplants

MHC Class II presentation +
High capacity of MHC Class I cross-presentation to cytotoxic T cells
Express TLR3 and TLR11-12
Phagocytose apoptotic cells

High capacity for MHC Class II presentation of exogenous antigen
MHC Class I cross-presentation +
Express most TLRs and in addition RIG-1 and MDA5
Secretes pro-inflammatory cytokines (TNFα and IL-6) after TLR ligation
A subsets with high production of TNFα and iNOS (TIPS DC, monocyte-derived DC)

MHC Class II presentation ±
MHC Class I cross-presentation +
Highly responsive to TLR7/8/9 ligands
Secrete high levels of IFNα during viral infections; negative regulators: BDCA-2 and
ILT-7

MHC Class II presentation +
MHC Class I cross-presentation ++
Highly responsive to TLR3 ligands
Produce high levels of CXCL10, IL12p70, IFNβ IFNλ after TLR stimulation

MHC Class II presentation +
MHC Class I cross-presentation +
Produce high levels IL-8 at baseline and IL-1β after TLR3 stimulation



Fig. 1. Hepatic DC subsets in mice and humans. A liver sample from a naïve C57BL/6 mouse (A) and a liver resection sample from a colon cancer patient (B) were digested with
0.1 mg/mL collagenase IV and dissociated into single-cell suspensions. Liver mononuclear cells were isolated using a discontinuous 30%/70% percoll gradient, stained with
fluorescently-labeled antibodies and analyzed by flow cytometry. In both mouse and human livers, DCs are contained with the population of cells expressing high levels of
MHCII and lacking markers for other lineages. In mice, pDCs (green) can be identified based on high expression of PDCA-1. cDCs are contained within the CD11chi population
and can be further subdivided into CD103+CD11blow (blue), CD11bhiCD103low (dark purple) and CD11blowCD103low (violet) populations. In human livers, pDCs (green) can be
identified based on high expression of CD123. The cDC population contains a CD141+ population (blue) that is believed to be analogous to the murine CD103+ population and
a CD1chi population (dark purple) that is thought to be analogous to the murine CD11bhi population. The CD14hiCD1clow population (violet) comprises another distinct population
that may represent DCs but may also contain macrophages and monocytes. These populations are summarized in (C).
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population in human livers indicate that, in comparison to DCs from the
blood, spleen and skin, liverDCs producehigher levels of IL-10,which ac-
counts for a reduced allogeneic stimulatory capacity [9,15]. Determining
the relative cytokine profiles and T cell stimulatory capacities of the
CD1c+ and CD141+ DC subsets in the liver remains an area of ongoing
research.

Recent studies also suggest that the CD141+ DC subset may play a
specialized role during hepatic viral infections. The frequency of
CD141+ DCs is higher in the liver than in the peripheral blood and has
been found to further increase in the setting of hepatitis C virus infection
[16]. Studies of CD141+ DCs in the blood indicate that this subset ex-
presses high levels of TLR3 and responds to TLR3 ligands by producing
high levels of CXCL10, TNFα and type III IFN [3,13,17]. Furthermore, re-
cent studies suggest that while pDCs are the primary producers of type I
IFN in response to HCV infection, CD141+ DCs are the primary producers
of type III IFN [18,19]. However, it should be noted that these findings
have been established using blood-derived DCs, and whether CD141
DCs in the liver exhibit similar responses remains to be demonstrated.

3. Liver DC development and homeostasis

The heterogeneity and complexity of DCs has historically
presented a challenge in accurately determining their ontogeny.
While it is clear that tissue-resident DCs derive from hematopoietic
stem cells in the bone marrow, the details of their developmental
and differentiative pathways and the identities of their immediate
precursors have only recently been elucidated and remain areas of
active research. Early adoptive transfer experiments in mice demon-
strated that DCs can develop from both the common lymphoid pro-
genitor (CLP) and the common myeloid progenitor (CMP) in the bone



1001A.H. Rahman, C. Aloman / Biochimica et Biophysica Acta 1832 (2013) 998–1004
marrow, though the relative abundance of CMPs suggests that they are
more likely to account for the majority of DCs in the periphery [20,21].

DC development is known to depend on FMS-like tyrosine kinase 3
(Flt3) ligand, andmice lacking Flt3 ligand expression show a dramatic
reduction in the frequency and absolute number of DC populations in
lymphoid and non-lymphoid tissues including the liver (Fig. 2). Flt3
(also known as fetal liver kinase-2, Flk2) expression has therefore
been used to identify lineage-restricted precursors in the DC develop-
mental pathway (Fig. 3). The CMP population is heterogeneous for
Flt3 expression, and the Flt3+ fraction gives rise to macrophage-DC
progenitors (MDPs), which are more restricted precursors that are
no longer able to differentiate into granulocytes, megakaryocytes or
erythrocytes but can still produce monocytes, macrophages and DCs
[22]. The MDPs give rise to common-DC progenitors (CDPs), which
are able to produce cDCs and pDCs but not monocytes [23]. The CDP
subsequently produces pDCs and pre-DCs, which exit the bone mar-
row and circulate through the blood and home to lymphoid and pe-
ripheral tissues and ultimately differentiating into mature DCs [24].

Adoptive transfer and genetic experiments indicate that the
CD103+ DC population in non-lymphoid tissues derives primarily
from pre-DCs, while the CD103− population is more heterogeneous
and may also derive from circulating monocytes [25–27]. As further
evidence of this developmental heterogeneity, it is worth noting that
there is a more profound reduction in the pDC and CD103+ cDC sub-
sets than in the CD103− subsets in the livers of Flt3l−/− mice
(Fig. 2), supporting the notion that a Flt3-independent precursor con-
tributes more appreciably to the CD103− DC population in the liver.

Recent studies of the transcription factor networks that govern
DC development further reinforce the developmental heterogeneity
amongst DC subsets. pDC development is specifically controlled by
the E protein E2-2 and also requires interferon-regulatory factor
8 (IRF8) but is independent of inhibitor of DNA binding 2 (ID2) [28].
A number of studies have recently identified zDC (Zbtb46, Btbd4) as
a transcriptional repressor that is specifically expressed by cDCs and
distinguishes them from pDCs and monocytes [29–31]. Within the
Fig. 2. Reduction in hepatic DC subsets in the absence of Flt3 ligand. Livers from WT and Flt
(A) and absolute number (B) of the various DC populations was determined. Graphs indica
cDC population, CD103+ non-lymphoid tissue DCs require IRF8, ID2
and basic leucine zipper transcriptional factor ATF-like 3 (BATF3),
whereas CD103− DCs can develop independently of these factors
[27,32].

Circulating monocytes likely contribute to some extent to the
BATF3-independent DC population under steady state conditions.
However, the contribution of monocytes to tissue DC populations
changes dramatically under inflammatory conditions, when CCR2-
and CX3CR1-expressing monocytes are recruited into tissues and dif-
ferentiate into CD11b+ monocyte-derived inflammatory DCs (moDCs)
[33]. These infiltratingmoDCs have been found to be important sources
of TNFα and inducible nitric oxide synthase (iNOS) in the setting of
bacterial and parasitic infection andmay also contribute to pathological
liver inflammation [34,35]. In mice, the circulating pre-DCs that give
rise to the BATF3-dependent DC subset have been identified as a rare
population of circulating CD11c+MHCII−SIRPαlow cells [24,36]; how-
ever, an analogous pre-DC population has yet to be identified in
humans. It should be noted that human blood contains readily identifi-
able populations of CD1c+, CD141+ and CD123+ DCs, which presents
the possibility that these circulating DCsmay contribute to the develop-
ment of cDC and pDC populations in peripheral tissues.

Non-lymphoid tissue DCs continually sample antigens from the
local microenvironment and DC activation in response to stimuli pro-
motes their migration out of non-lymphoid organs through the affer-
ent lymphatics (Fig. 3). The composition and homeostatic dynamics
of liver DC populations can change considerably under inflammatory
conditions, and the recruitment of other inflammatory cells into the
liver further decreases their relative frequency. Consequently, the ab-
solute number and relative proportions of the various DC populations
in human liver resections and explants vary considerably with disease
etiology and the extent of fibrosis (A.R. & C.A. unpublished observa-
tions). Given that both DC recruitment and migration are increased
in the inflammatory state, the absolute number/frequency at a specific
time-point may not entirely reflect the flux of DCs through a non-
lymphoid organ. For a resident cell population (e.g., macrophages),
3l−/− C57BL/6 mice were processed and analyzed as described in Fig. 1. The frequency
te mean+SD of 4 mice per group.

image of Fig.�2


Fig. 3. Proposed model of liver DC development in mice. DCs develop from a Flt3+ pro-
genitor in the bone marrow. This progenitor gives rise to more restricted MDPs, which,
in turn, give rise to CDPs and monocytes. CDPs give rise to pDCs and pre-DCs, which
circulate through the blood and differentiate into liver DCs. The CD103+ population
is believed to arise almost exclusively from circulating pre-DCs, while the CD103−

population is believed to derive partially from circulating monocytes. In the setting
of inflammation, monocytes additionally contribute to hepatic DCs by differentiating
into a distinct population of inflammatory monocyte-derived DCs. All of these DC sub-
sets undergo homeostatic turnover in the liver and migrate to the draining hepatic
lymph nodes through the afferent lymphatics.
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the steady-state cell number is a reflection of recruitment (from pro-
genitors or already mature cells), local proliferation and destruction
(apoptosis, necrosis), whereas in the case of DCs one must also con-
sider their kinetics of migration into and out of the organ.

4. Liver DC and fibrogenesis

Fibrosis is the liver's natural wound healing response to chronic
injury, regardless of the etiology. A key feature of fibrosis is the
activation of collagen producing cells including hepatic stellate cells,
portal fibroblasts, bone marrow derived fibrocytes and fibroblast-
like cells resulting from epithelial–mesenchymal transition. Addition-
ally, hepatic exposure to injurious agents promotes robust immune
system activation. Despite their low frequencywithin the total hepatic
CD45+ population, DCs may affect fibrosis through multiple potential
mechanisms:

• DCs control the number and activity of many cells known to be crit-
ical in fibrogenesis thereby indirectly controlling fibrosis. For exam-
ple, DCs have been shown to be critical in natural killer (NK) cell
homeostasis and are the most potent cells involved in promoting
CD8+ T cell differentiation, both of which have been implicated in
liver fibrosis.

• DCs can secrete significant levels of metalloproteinases (MMP) in
bothmice and humans, which appear to be critical to theirmigration
out of the liver [37–39]. DCmigration is the primary functional prop-
erty that distinguishes DCs frommacrophages and promotes the ini-
tiation of adaptive cellular immune responses in lymphoid organs.
As discussed earlier, DCs are ontogenetically related to macrophages
and at least a subset of CD11b+ DCs originates frommonocytes. Con-
sequently, many functions classically attributed to the monocyte/
macrophage lineage during tissue remodeling may in fact be DC de-
pendent.Moreover, the studies using gadolinium chloride and lipo-
somal clodronate that explored the role of macrophages/Kupffer
cells on fibrosis in wide variety of models may also affect DC
populations due to their high endocytotic activity and perivascular
localization. In addition, both methods of treatment are non-
specific and associated with bone marrow cell mobilizations [40],
potentially including DC progenitors.

There are only a few studies that have explored the role of DCs in
fibrogenic models of liver injury and some major limitations of these
studies must be taken into account:

• The majority of the studies focused on the effect of DCs on liver in-
flammation as the end point during fibrogenesis rather than their
effect on fibrosis.

• The immunophenotype of DCs was frequent limited to CD11c+ cells
and did not take into account the promiscuity of the CD11c+marker.

• Modulation of DC populations during fibrogenesis/fibrolysis has
been accomplished by using transient approaches such as condi-
tional depletion of CD11c+ cells in transgenic mice expressing the
human diphtheria toxin receptor (CD11c-DTR mice) and syngeneic
transfers of purified DC. New insights into DC biology have led to
the development of transgenic mice with constitutively impaired
DC subsets, and these fibrogenesis/fibrolysis experiments have not
been verified in these new strains of mice.

• Each of these studies only employed a single model of hepatic fibro-
sis (cholestatic or toxin-induced) and did not validate their findings
using a second model.

To the best of our knowledge, there are no published reports that
explore the effects of DCs on fibrogenesis. However, a possible in-
volvement of DCs in fibrosis progression is suggested by two publica-
tions that evaluated the inflammation present in murine models of
chronic liver injury and fibrosis. In the first report, Bleier et al. assessed
the kinetics and function of liver DCs in the bile-duct ligation (BDL)
model of liver fibrosis [41]. The authors are the first to explore the dy-
namics of DC populations after BDL and report a significant expansion
of hepatic DCs with an enhanced capacity for stimulating allogeneic
and syngeneic T cell response. While there was minimal ex vivo pro-
duction of inflammatory cytokines, they found increased production
of IL-6 following lipopolysaccharide exposure. DC recruitment was
mediated by Gr1+ cells and implicates a possible role for monocyte
chemotactic protein 1 (MCP-1), which is known to promote DC re-
cruitment and expansion. DCs were identified after NK exclusion as a
CD11b+CD11c+ population, though their identity was not confirmed

image of Fig.�3
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bymorphological and functional (DCmigration) criteria. Furthermore,
a significant proportion of the CD11b+CD11c+ cells in this study
expressed low levels of MHCII, suggesting a significant contamination
with other CD11c+ cells (e.g., monocytes). In spite of these caveats,
their data strongly support the concept of monocyte-derived DC re-
cruitment in the BDL model of liver fibrosis.

Using a leptin/thiocetamidemodel of liver fibrosis [42], Connolly et
al. also report significant recruitment of CD11c+ cells into the liver
with an enhanced capacity for antigen presentation and increased ex
vivo and cytokine production with and without toll-like receptor
(TLR) stimulation [43]. Their results also suggest a major role for DCs
in influencing the hepatic cytokine microenvironment: diphtheria
toxin (DT) induced-depletion of CD11c+ cells in this model resulted
in a significant decrease in tumor necrosis factor alpha (TNFα) pro-
duction by leukocytes isolated from injured livers. Furthermore,
coculture experiments indicated that these DCs enhance proliferation
responses and cytokine production by hepatic stellate cells, suggesting
a mechanism by which they may contribute to fibrosis progression. It
should be noted however, that this study identified hepatic DCs by
CD11c expression alonewithout excluding other cells that may express
this marker in the setting of inflammation (NK cells and CD11c+mono-
cytes), and the frequency of DCs within the liver was as high as 25% of
the total hepatic leukocyte population, which is surprising given the
typically scarcity of DCs in non-lymphoid tissues. The relatively low
MHCII expression on the “CD11c+ DC” suggests that this population
may contain a significant number of other CD11c+ cells (e.g., mono-
cytes). Furthermore, some of the findings in this model may not be
applicable to other models of liver fibrosis, given that leptin is well
established to have direct effects on DC development, maturation and
survival [44–46].

Our group has focused on the potential role of DCs during hepatic fi-
brosis regression [47]. Usingmulti-colorflow cytometrywehavemetic-
ulously identified the hepatic DC population by excluding lineage
positive cells and have confirmed the identity of our DCs with morpho-
logical analysis after cytospin. Moreover, we have shown that the pop-
ulation up-regulates the lymph node homing receptor CCR7 and
co-stimulatory molecules after TLR stimulation. Depleting DCs using a
CD11c-DTR transgenicmousemodel resulted in delayed fibrosis regres-
sion, though the use of only a singlemodel formurineDC depletionmay
somewhat limit the interpretation of our data. The presence of
neutrophilia after DC depletion in CD11c-DTR mice has recently been
reported in murine infectious models [48–50]. In our studies we did
not explore whether functional antagonistic properties of neutrophils
(the deleterious effects of reactive oxygen species on the one hand
and the capacity to secrete metalloproteinases that facilitate fibrosis
resolution on the other) were affected by DC depletion and responsible
for our observations. Consistent with our findings with DC depletion,
parallel experiments inducing DC expansion by Flt3 ligand or adop-
tive cell transfer resulted in an acceleration of early fibrosis regres-
sion in an MMP-9-dependent mechanism and was, surprisingly, NK
cell-independent. Ideally, these findings still need to be confirmed
in a MMP-9 deficient DC mouse model. These findings suggest that
DC expansion may be an effective therapeutic strategy to promote fi-
brosis regression in patients after the etiologic fibrotic agents has
been removed (e.g., the clearance of hepatitis C virus).

It should also be noted that the role of DCs in fibrosis modulation
is not limited only to liver. DCs have been identified as critical regula-
tors in bleomycin-induced skin fibrosis, renal fibrosis induced by ure-
teral obstruction and bleomycin-induced lung fibrosis [51].

In conclusion, DCs play a potential role in liver fibrosis through the
regulation of other immune cells (e.g., NK, CD8+ T cells, hepatic stel-
late cells) and by secreting metalloproteinases. The few published re-
ports point to the importance of the DC population in fibrogenic liver
injury models but the use of improved genetic models and the stan-
dardization of DC identification using multi-color flow cytometry
and morphological characteristics are required.
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