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SUMMARY
In Burkitt lymphoma (BL), a germinal center B-cell-derived tumor, the pro-apoptotic properties of c-MYC
must be counterbalanced. Predicting that survival signals would be delivered by phosphoinositide-3-kinase
(PI3K), a major survival determinant in mature B cells, we indeed found that combining constitutive c-MYC
expression and PI3K activity in germinal center B cells of the mouse led to BL-like tumors, which fully pheno-
copy human BLwith regard to histology, surface and other markers, and gene expression profile. The tumors
also accumulate tertiary mutational events, some of which are recurrent in the human disease. These results
and our finding of recurrent PI3K pathway activation in human BL indicate that deregulated c-MYC and PI3K
activity cooperate in BL pathogenesis.
INTRODUCTION

While c-MYC (MYC) deregulation is a hallmark of BL (Jaffe and

Pittaluga, 2011), an aggressive germinal center (GC)-derived

B cell lymphoma characterized by immunoglobulin (IG)-MYC

translocations, cooperating transforming events in BL are still

poorly understood, despite the existence of MYC-induced

murine lymphoma models (Adams and Cory, 1985; Kovalchuk

et al., 2000; Park et al., 2005). MYC expression promotes malig-

nancies by inhibiting cell differentiation and inducing prolifera-

tion, but also makes the cells prone to apoptosis. Since unlike

other lymphoma entities BL typically do not exhibit constitutive

activity of the pro-survival factor NF-kB (Dave et al., 2006;

Klapproth et al., 2009), we considered a possible involvement

of the PI3K pathway when we had identified PI3K signaling as

the B cell receptor (BCR)-mediated survival signal in mature

B cells (Srinivasan et al., 2009): MYC deregulation in BL is due

to translocation of theMYC gene into one of the immunoglobulin
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the available evidence to try to better model BL pathogenesis.

RESULTS

Impact of MYC Overexpression and Constitutive PI3K
Activation on the GC Reaction
To determine the impact of MYC expression and PI3K pathway

activation on GC B cells and lymphomagenesis, we generated
rgeting expression of an oncogene known to be involved in
ed pathogenic signaling pathway into the presumed cell of
terparts and accumulate additional genetic alterations, with
. Our data establish a framework of Burkitt lymphoma path-
ent for the malignant transformation of c-MYC-expressing
ial therapeutic target.

Cancer Cell 22, 167–179, August 14, 2012 ª2012 Elsevier Inc. 167

mailto:klaus.rajewsky@mdc-berlin.de
http://dx.doi.org/10.1016/j.ccr.2012.06.012


A B

FAS

CD38

GFP

hCD2

YFP

P110*

MYC

MYC +
P110*

CD19 pos CD38 low, FAS high reporter (double)pos 

IgA

IgG1

reporter (double)pos 

FAS

CD38

GFP

hCD2

IgD GL7 PNA

YFP
P11

0*
M

YC

M
YC +

 P
11

0*
0

20

40

60

%
 G

C
 B

 c
el

ls
 w

ith
in

 B
 c

el
ls

YFP
P11

0*

M
YC 

M
YC +

 P
11

0*
0

20

40

60

%
 r

ep
or

te
r 

po
si

tiv
e 

ce
lls

 
   

  w
ith

in
 G

C
 B

ce
lls

YFP
P11

0*
M

YC

M
YC +

 P
11

0*
70

80

90

100

YFP
P11

0*
M

YC

M
YC +

 P
11

0*
0

10

20

30

%
 G

C
 B

 c
el

ls
 w

ith
in

 B
 c

el
ls

%
 r

ep
or

te
r 

po
si�

ve
 c

el
ls

 
   

  w
ith

in
 G

C 
B 

ce
lls

C D

YFP

P110*

MYC

MYC +
P110*

CD19 pos CD38 low, FAS high

Figure 1. MYC and P110* Co-Expression Results in Increased GC B Cell Formation

(A) Representative FACS analysis of PP isolated from Cg1-cre, R26StopFLeYFP (YFP); Cg1-cre, R26StopFLP110*(P110*); Cg1-cre, R26StopFLMYC (MYC) and

Cg1-cre, R26StopFLMYC, R26StopFLP110* (MYC+P110*) animals. The sequential gating strategy is shown on top of each column.

(B) Representative FACS analysis in Rag2cgKO animals reconstituted with BM of the various genotypes and immunized with SRBC 10 days before analysis. The

gating was performed according to (A). The histograms show expression of classical GC B cell markers in reporter (double) positive cells (red) and non-GCB cells

(blue).
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mice expressing MYC and a constitutively active form of PI3K,

here referred to as P110* (Srinivasan et al., 2009), specifically

in B cells undergoing the GC reaction (Cg1-cre,R26StopFL

MYC,R26StopFLP110*; Figure S1 available online). Ten days

after sheep red blood cell (SRBC) immunization, Peyer’s patches

(PP) and spleens of transgenic mice were analyzed for reporter

positive cells and their expression of GC B cell markers (Figures

1A and 1B). Transgenic expression of MYC and P110* was

compatible with the formation of GCs. An increased proportion

of GC B cells (CD38low, FAShigh) in the PP and the spleen of

MYC and P110* co-expressing animals was detectable, accom-

panied by an increased proportion of reporter double-positive

cells in comparison to the controls (Figures 1C and 1D). In addi-

tion to CD38 and FAS expression, MYC and P110* co-express-

ing GC B cells expressed less surface IgD than non-GC cells, at

levels comparable to the controls (Figure 1B). The GC markers

GL7 and PNA were also detectable on these cells although at

lower levels than on GC B cells derived fromCg1-cre,R26StopFL

eYFP animals (Figure 1B). Class switch recombination (CSR)was

impaired in MYC and P110* co-expressing cells (Figure 1A),

presumably because of PI3K activation (Omori et al., 2006).

MYC and P110* Cooperate in Tumorigenesis
In order to obtain meaningful numbers of experimental animals in

a timely fashion, bonemarrow (BM) of individual triple transgenic

animals (Cg1-cre,R26StopFLMYC,R26StopFLP110*) and the cor-

responding controls was transferred to Rag2cgKO animals (Fig-

ure 2A). These animals lack a lymphatic system due to deficiency

of the recombinase Rag2 and the cytokine receptor common

subunit gamma (DiSanto et al., 1995; Shinkai et al., 1992). After

BM transfer, the recipient mice generate lymphocytes that are

genotypically identical to the donor BM cells. Blood analyses

performed before and after a single boost of GC formation by

SRBC demonstrated a steady increase of the percentage of

lymphocytes co-expressing MYC and P110* over time, more

so than in the case of lymphocytes expressing either transgene

alone (Figure 2B). This correlated with lymphoma development

and a reduced life span of the animals reconstituted with triple

transgenic BM (median survival 227 days) (Figure 2C). In recon-

stituted animals expressing either MYC or P110* alone, tumor

development was not detected within the period of observation.

Macroscopically the animals reconstituted with triple trans-

genic BM displayed large tumors originating from the PP of the

small intestine (12/21 tumors) or other lymphoid organs (spleen,

lymph nodes) and infiltrating the liver and other nonlymphoid

organs (e.g., kidney, lung) at an advanced stage (Figure 2D;

Table S1). Histologic analysis revealed a characteristic BL mor-

phology defined by the monotonous infiltration with medium-

sized cells carrying uniform nuclei, prominent basophilic

nucleoli, and frequent mitotic figures (Figure 2E). Like in human

BL, the tumors displayed the typical ‘‘starry sky’’ pattern due

to invading tissue macrophages that clear apoptotic tumor cells.

In accordance with the diagnostic criteria of human BL, Ki67
(C) Mean percentage (±SEM) of GC B cells (CD38low, FAShigh) and reporter (double

per genotype were analyzed.

(D) Mean percentage (±SEM) of GC B cells (CD38low, FAShigh) and reporter (doubl

reconstituted animals per genotype were analyzed.

See also Figure S1.
staining demonstrated a proliferative index of nearly 100% in

the tumors (Figure 2F).

The analysis of immunoglobulin heavy chain (IgH) gene rear-

rangements by Southern blot in the tumors and affected organs

showed that the tumors were monoclonal (Figure 2G). The

finding of distinct, unique VDJ rearrangements in B cell tumors

of different recipient animals transferred with BM from a single

donor argues against a transfer of tumor cells from the donor

(Figure 2G). In three tumors derived from different recipient

animals reconstituted with the same donor BM sequencing of

the rearranged IgH variable (V) region genes confirmed unique

VDJ rearrangements in the tumors (data not shown).

MYC and P110* Co-Expressing Tumors Originate from
GC B Cells
In accordance with our intention to generate a GC-derived

MYC and PI3K induced tumor model, the tumor cells expressed

both transgenes (GFPpos, hCD2pos) as well as mature GC B cell

markers (B220pos, CD19pos, AA4.1low, CD38low, FAShigh,

CD138neg, CD23neg, CD43neg, CD5neg; Figure 3A; Figure S2A).

Similar to human BL, the tumors arose from non-switched GC

B cells expressing surface IgM (Figure 3A). In addition, immuno-

histochemical analyses revealed expression of the GC B cell

markers BCL6 and GL7 in the mouse tumors (Figures 3B and

3C) while PNA binding was not detectable in the tumors (Fig-

ure S2B). The latter might reflect its impaired binding on GC B

cells upon P110* expression (see Figure 1B). The lack of IRF4/

MUM1 expression, denoting B cell maturation toward plasma

cells during late GC B cell differentiation, might indicate that

the tumors arise fromB cells at an early phase of the GC reaction

(Figure 3D).

The finding of extensive ongoing somatic hypermutation

(SHM) in the rearranged IgH-V region genes of the tumor

cells (mean mutation frequency 508x10�4) confirmed the GC

cell origin of the tumors (Figures 4A and 4B; Figure S3A). In

agreement with this observation the tumors expressed cytidine

deaminase AID at comparable transcript levels as GC and

in vitro stimulated B cells (Figure 4C).

The GC cell origin of the B cell tumors was also evident

from gene expression profiling (GEP) data of purified MYC and

P110* co-expressing tumor cells which we compared with pub-

lishedGEP data sets of various B cell subpopulations andmouse

lymphomamodels. Our tumors expressed a prominent GCB cell

signature (Figures 4D and S3B), which was less pronounced in

murine lymphomas resulting from transgenic expression of the

GC B cell-specific transcriptional repressor BCL6 either alone

or in combination with MYC (Green et al., 2011).

The Mouse Tumors Resemble Human BL
GC markers are typically associated with human BL, but are

shared by a major subgroup of diffuse large cell B cell lym-

phomas (Alizadeh et al., 2000). We therefore performed a

supervised comparison of global gene expression patterns
) positive cells within PP of mice analyzed according to (A). At least six animals

e) positive cells within spleens of mice analyzed according to (B). At least 4 BM
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Figure 2. MYC and PI3K Pathway Activation Cooperate in Tumorigenesis

(A) Experimental protocol. Sublethally irradiated (day �1) Rag2cgKO mice were reconstituted with donor BM (from Cg1-cre, R26StopFLeYFP; Cg1-cre,

R26StopFLP110*; Cg1-cre, R26StopFLMYC; or Cg1-cre, R26StopFLMYC, R26StopFLP110* animals) on day 0. Per genotype three individual BM donors were

used. Transgene expressionwas enforced by a single SRBC immunization at day 140. Blood analyseswere performed at days 50, 100, and 200 after BM transfer.

(B) Blood analysis of Rag2cgKO animals reconstituted with BM of the indicated genotypes. FACS analyses were performed at days 50, 100, and 200 after BM

transfer. Mean percentage (±SEM) of reporter (double) positive lymphocytes is shown.

(C) Tumor-free survival of reconstituted Rag2cgKO animals. The total number of BM recipients is shown in parentheses. The ticks indicate non-tumor-related

deaths.

(D) 12/21 tumors originated from the PP in the small intestine of MYC and P110* co-expressing animals (left). In 17/21 animals tumors disseminated to the liver

(right).

(E) Representative HE staining in tumor no. 7. The asterisks mark mitotic figures within dividing cells. The arrowheads point to histiocytes clearing apoptotic cells.

In total seven tumors were analyzed.

(F) Representative immunohistochemical staining for Ki67 in tumor no. 7. Interspersed nonmalignant (arrowhead) and dead cells (asterisk) are Ki67 negative. In

total seven tumors were analyzed.

(G) Southern blot analysis for IgH gene rearrangements in PP derived tumors and potentially infiltrated organs using a JH4 probe. Monoclonal B cell expansion

was seen in the PP, but not in the spleens of diseased animals (with exception of animal no. 11 showing expansion of an additional B cell clone in the spleen).

See also Table S1.
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established from MYC and P110* co-expressing tumors and

BCL6 driven lymphomas, a mouse model recapitulating the

pathogenesis of human DLBCL (Cattoretti et al., 2005), and iden-

tified a total of 2407 genes that were differentially expressed

between these tumor entities (Figure 5A). We then looked among

those genes for two sets of BL signature genes that had been

identified in the human as differentially expressed between BL

and DLBCL (Dave et al., 2006; Hummel et al., 2006). Comparing
170 Cancer Cell 22, 167–179, August 14, 2012 ª2012 Elsevier Inc.
the expression of these BL signature genes between the two

mouse lymphoma models, a clear positive association was

detected between the MYC and P110* co-expressing mouse

tumors and human BL (Figure 5B).

To further distinguish our BL-like tumors from DLBCL we

determined BL-typical proteins by immunohistochemistry,

western blot, and immunofluorescence (Figures 5C–5E). Typi-

cally, human BL show elevated MYC levels due to translocations
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Figure 3. Lymphomas Arising upon MYC and PI3K Activation Express GC B-Cell-Specific Markers

(A) Representative FACS analysis of GC B cell markers (B220, CD38, FAS, sIgD) and sIgM expression on tumor cells (defined as GFPpos and hCD2pos cells). The

sequential gating strategy is indicated by arrows. Upper histogram: B220 expression on tumor cells (red) and normal splenic B cells (blue) in comparison to non-B

cells (black). Lower histogram: Kappa light chain expression on tumor cells (red) and normal GC B cells (blue) in comparison to non-B cells (black) and normal

follicular B cells (green).

(B–D) Representative immunohistochemical stainings for BCL6 (B), GL7 (C) and IRF4/MUM1 (D) in tumor no. 7 and control spleen (derived from a Cg1-cre,

R26StopFLeYFP animal 10 days after SRBC immunization). Per staining seven tumors were analyzed.

See also Figure S2.
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and mutations of the MYC gene. Similarly, MYC transgene

expression in our tumormodel resulted in abundant MYC protein

as it is seen in primary BL samples and BL cell lines (Figures 5C

and 5D). Besides MYC expression, histologic features and the

high proliferation rate (Ki67 >95%), human BL cells as well as

the mouse tumor cells are positive for BCL6 (Figure 3B) and

lack BCL2 expression (Figure 5E).

The MYC and P110* induced tumors did not only express BL

characteristic markers and exhibit a GEP signature resembling

that of human BL, but also displayed genomic aberrations

reminiscent of aberrations previously reported in human BL
(Mitelman et al., 2012). Overall SNP array analysis revealed

a simple karyotype of the mouse tumors: beside the B cell

specific rearrangements of the Ig loci the tumors displayed 1.8

aberrations per case (Figure 6A). The most frequent (4/6 tumors)

DNA copy number alteration was a gain of chromosome 6,

which comprises genomic regions gained in human BL such

as 7q21.1qter and 12p13 (Figure 6B) (Boerma et al., 2009;

Scholtysik et al., 2012). Exome sequencing of five murine MYC

and P110* co-expressing lymphomas and the respective

germline DNA revealed additional candidate oncogenic events

(Table S2). In total, we observed on average 103 missense
Cancer Cell 22, 167–179, August 14, 2012 ª2012 Elsevier Inc. 171
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Figure 4. MYC and P110* Co-Expressing Tumors Show Ongoing SHM and Express GC B-Cell-Specific Genes

(A) Mutation frequency in rearranged IgH-V region genes of non-GC B cells, GC B cells, and MYC+P110* co-expressing tumors (n = 3).

(B) SHM analysis in tumor no. 7. The rearranged IgH-V region genes of individual tumor cells were aligned to the JH2 reference sequence (n = 23). Mutations are

labeled in red. The box marks a mutation shared by all sequences of this particular tumor.

(C) Aicda expression in stimulated B cells, GC B cells and MYC+P110* co-expressing tumors (n = 8) was analyzed by qRT-PCR. The ratio Aicda/Actb in non-

stimulated cells was arbitrary defined as 1 and the values of the other samples were normalized to it. The mean expression from triplicate measurements (±SEM)

was used for the calculations.

(D) Hierarchical cluster analysis based on relative transcript levels of 233 genes comprised in aGCBcell signature (Green et al., 2011) in normal B cell populations,

MYC and P110* co-expressing tumor samples (n = 6) as well as other mouse lymphomas (ImHABcl6 (n = 4) and ImHABcl6/lMyc (n = 3); mean-centered log2 gene

expression ratios are depicted by color scale). The meta-analysis was based on GEP data from Green et al. (GEO26408) and own experiments (GEO35219).

Additional information is provided in the Supplemental Experimental Procedures.

See also Figure S3.
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and/or nonsense mutations per murine BL tumor (Fig-

ure 6C). Although AID expression was clearly detectable in the

tumor cells at the mRNA level, the mutations rarely coincided

with classical AID hotspots (WRCY or the inverse RGYW;

Figure S4).

Some of these additional mutations have recently also been

identified in a parallel analysis of a large collection of human
172 Cancer Cell 22, 167–179, August 14, 2012 ª2012 Elsevier Inc.
BL in the laboratory of L. Staudt (Schmitz et al., 2012). An

example is the heterozygous mutation of cyclin D3 (Ccnd3) at

codon 283 (A1129G) encoding a threonine residue which regu-

lates cyclin D3 stability through phosphorylation (Figure 6D;

Casanovas et al., 2004). An essential role of cyclin D3 in the

control of GC B cell proliferation was recently reported (Cato

et al., 2011; Peled et al., 2010).
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Figure 5. MYC and P110* Co-Expressing Tumors Resemble Human BL

(A) Heat map showing relative transcript levels of the top 100 up- and downregulated genes distinguishing MYC and P110* co-expressing tumors (n = 6) from

ImHABcl6 induced lymphomas (n = 4) as determined by SAM analysis (FDR < 0.05).

(B) p-values for the positive association of two human BL signatures (Dave et al., 2006; Hummel et al., 2006) with the MYC + P110* tumor signature as defined by

SAM analysis.

(C) Representative immunohistochemical staining for MYC in tumor no. 7, primary human BL no. 363 and control spleen (derived from aCg1-cre, R26StopFLeYFP

animal 10 days after SRBC immunization). In total seven mouse tumors and nine primary human BL were analyzed.

(D) Western blot analysis for MYC expression in five primary mouse tumors (tumor nos. 6, 7, 11, 19, and 84), one cell line derived frommouse tumor no. 19 (tumor

no. 19 [cell line]), four human BL cell lines (BL60, Namalwa, Raji, Ramos), and splenic B cells. Beta-actin served as loading control. *Empty lane.

(E) Representative immunofluorescence analysis for BCL2 (red), B220 (blue), and IgD (green) in two tumors (tumor no. 78 and tumor no. 20) and control spleen

(derived from a C57BL/6 animal 10 days after SRBC immunization).
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To determine the incidence of Ccnd3 mutations in a larger

tumor cohort we sequenced the 30 end of the gene in 10 addi-

tional MYC and P110* co-expressing mouse tumors and identi-
fied two additional Ccnd3 mutations: a non-synonymous muta-

tion at codon 239 (T997G) and a frameshift caused by a single

base pair insertion (1087insC).
Cancer Cell 22, 167–179, August 14, 2012 ª2012 Elsevier Inc. 173
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Figure 6. Lymphomas Originating from MYC and P110* Co-Expressing GC B Cells Display Genetic Aberrations Commonly Found in

Human BL

(A) Summary of genomic aberrations detected by SNP microarray analysis in 6 MYC and P110* co-expressing tumors.

(B) Schematic view of mouse chromosome 6 and its syntenic regions in human (based on Ensembl genome browser 65). Syntenic regions that have been

described as gained in human BL (Boerma et al., 2009; Scholtysik et al., 2012) are marked in red.

(C) Number and classification of somatically acquired mutations based on exome sequencing in MYC and P110* co-expressing tumors (n = 5).

(D) Sanger sequencing of theCcnd3mutation (A1129G) in mouse tumor no. 19 and the corresponding germline DNA (upper andmiddle panel). In human BL no. 4

the CCND3 mutation (C1013T) affects the same codon as detected in the mouse tumor (lower panel).

(E) Summary of CCND3 mutations detected by Sanger Sequencing in 29 primary BL samples. Positions that are also affected in the mouse tumors are marked

in red.

See also Figure S4 and Table S2.
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We also confirmed that cyclin D3 is recurrently mutated in

human BL. Sequencing a 346-bp amplicon comprising part of

CCND3 exon 5 in 29 primary BL samples, we found mutations

in seven of the cases (Figure 6E). Strikingly, the mutation at
174 Cancer Cell 22, 167–179, August 14, 2012 ª2012 Elsevier Inc.
codon 283 (C1013T) and the frameshift mutations at positions

970 and 971 (970insC, 971 delC) affected the very same

conserved codons mutated in the mouse tumors (Figures 6D

and 6E).



−3 −2 −1 0 1 2 3

3−
2−

1−
0

1
2

3

PI3K Index

xednI 
C

Y
M

mBL
intermediate
non−mBL

A

B

C
MYC

BL
 #

42
0

pAKT pS6

BL
 #

88
9

HE
R

am
os

R
am

os

N
am

al
w

a

N
am

al
w

a

R
aj

i

R
aj

i

B
L6

0

B
JA

B

B
JA

B

B
L6

0

LY294002+ + + + + --

pS6 kinase (p85) 

 pS6 kinase (p70)
*

pAKT
(Ser473)

AKT

S6 kinase

- - -

Figure 7. PI3K Pathway Activation in Human BL

(A) Scatter plot of the PI3K pathway activity (Gustafson et al., 2010) index against theMYC activation index (Bild et al., 2006) in human BL (GEO accession number

GSE35219) (Hummel et al., 2006). Samples classified as molecular BL (mBL), intermediate, and non-mBL in the original study are shown as red, gray, and blue

dots, respectively.

(B) Western blot analysis for Phospho-AKT (Ser473), AKT, phospho-S6 kinase (Thr389), and S6 kinase expression in five human BL cell lines (BJAB, BL60,

Namalwa, Raji, Ramos). Cells were either treated with LY-294002 (+) or DMSO (�) 1 hr before protein extraction. *unspecific band.

(C) Representative immunohistochemical staining for MYC, phospho-AKT (Ser473), phospho-S6 (Ser235/236) in two primary human BL (human BL nos. 420 and

889). In total nine human BL were analyzed.
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PI3K Pathway Activation in Human BL
The present mouse model predicts PI3K pathway activation in

human BL. To directly address this issue, we performed a bioin-

formatic analysis of GEP data of primary BL in comparison to

other human lymphoma entities (Hummel et al., 2006), which re-

vealed accompanying MYC activation (p < 2.2�16) and PI3K

pathway activation (p = 2.3�8) in human BL (Figure 7A). In addi-

tion, western blot analysis indicated activation of the PI3K

pathway as determined by phosphorylation of AKT at serine

473 and p70S6 kinase at threonine 389 in 5 human BL cell lines

(Figure 7B). Phosphorylation of both kinaseswas reversible upon

treatment with the PI3K inhibitor LY-294002 (Figure 7B). Finally,

immunohistochemistry of nine primary humanBL revealed phos-
phorylation of AKT and S6 in six of nine analyzed patients (Fig-

ure 7C), suggesting PI3K pathway inhibition as a therapeutic

option in human BL.

DISCUSSION

The present work describes the construction of a clinically rele-

vantmousemodel of a life-threatening human tumor by targeting

constitutive expression of an oncogene known to be involved in

tumor pathogenesis together with the activation of a suspected

pathogenic signaling pathway specifically into the presumed

cell of origin. The resulting tumors faithfully phenocopy their

human counterparts, including strikingly similar gene expression
Cancer Cell 22, 167–179, August 14, 2012 ª2012 Elsevier Inc. 175
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profiles, expression of BL-typical markers like BCL6 andMYC at

the protein level and tertiary transforming events, as discussed

further below. The similarities between human BL and themouse

tumors also include histologic peculiarities like starry sky

appearance, high proliferative activity with homogeneous Ki67

staining, and the conspicuous absence of the pro-survival

protein BCL2, whose expression is observed in many other

classes of B cell lymphomas. Like in human BL, the tumors

predominantly originated from the PP (which are enriched in

the ileocecal region in humanwhere BL frequently arises), exhibit

ongoing somatic hypermutation, and their monoclonality indi-

cates a multistep pathogenesis with MYC and PI3K activation

as initiating events. Consistent with the latter notion and under-

lining the relevance of the mouse model for the human disease

we find PI3K pathway activation in human BL lines and a major

fraction of primary Burkitt tumors.

While MYC deregulation is an established hallmark of human

BL and was the basis of previous mouse models (Adams and

Cory, 1985; Kovalchuk et al., 2000; Park et al., 2005), PI3K

signaling had not been recognized as a critical element of BL

pathogenesis. Although PI3K signaling can support MYC activity

by blocking its degradation (Kumar et al., 2006) and inducing the

degradation of the MYC antagonist MAD1 (Zhu et al., 2008), and

MYC-mediated miR17-92 induction can increase PI3K signaling

by targeting PTEN (Mu et al., 2009; Olive et al., 2009), combined

MYC and PI3K pathway activation does not necessarily lead to

malignant transformation of the targeted cells (Radziszewska

et al., 2009).

Our initial motivation to study PI3K pathway activation in

concert with MYC deregulation in GC B cells came from our

previous identification of PI3K signaling as the ‘‘tonic’’ survival

signal in B cells downstream of the BCR, for whose expression

normal B cells as well as BL cells are known to be positively

selected (Küppers et al., 1999; Srinivasan et al., 2009). Indeed,

the present results indicate significant PI3K pathway activation

in human BL, contrasting with the absence in these tumors of

survival signals through the NF-kB pathway (Dave et al., 2006).

Consistent with these data, recurrent mutations promoting

PI3K signaling have recently been identified in human BL

(Schmitz et al., 2012). The efficiency of MYC-PI3K cooperation

in promoting the transformation of GC B cells to give rise to

BL-like tumors in the mouse model indicates that these two

factors indeed play a functional role in BL pathogenesis.

The induction of PI3K activation by the P110* transgene re-

presents a limitation of the present mouse model in that the

tumors arising in the mice cannot be expected to be selected

for mutations promoting PI3K signaling. A similar argument can

be made for mutations of tumor suppressor genes like TP53

or CDKN2A (recurrently mutated in human BL) (Bhatia et al.,

1992; Sánchez-Beato et al., 2001), whose inactivation is consid-

ered to be an early event in tumorigenesis (Barrett et al., 1999)

and may thus be upstream of the mutations deliberately intro-

duced into the mouse model. The situation is different, however,

for the tertiary mutations that are required for lymphomagenesis

in the mice in addition to deregulated MYC and PI3K activity.

Strikingly, these mutations include several genetic alterations

that are recurrently seen in human BL. Thus, apart from shared

copy number gains, the gene encoding cyclin D3, a critical cell

cycle regulator in GC B cells, was mutated in both human BL
176 Cancer Cell 22, 167–179, August 14, 2012 ª2012 Elsevier Inc.
and the mouse tumors. In both cases a point mutation affected

a conserved codon critical for cyclin D3 stability, and frameshift

mutations were found in the 30 region of the gene. This further

validates the mutant mice as a preclinical BL model, assigns

functional significance to the mutations shared between the

mouse and human tumors, and opens theway to in vivo analyses

of their clinical relevance.

Taken together, we show that targeting MYC expression

together with PI3K pathway activation into mouse GC B cells

generates a faithful mouse model of human BL. The mouse

tumors accumulate tertiary mutations at least some of which

are recapitulated in the human disease; others may reflect

genetic or epigenetic alterations that have not yet been uncov-

ered in BL. The significance of the tertiary mutations for tumor

progression can be assessed in the mouse model in functional

terms, with clear perspectives for new therapeutic approaches.

Already at this point the PI3K pathway has emerged as a prom-

ising therapeutic target in BL.
EXPERIMENTAL PROCEDURES

Mice, Immunization, and Tumor Cohorts

Cg1-cre; R26StopFLP110*; and R26StopFLeYFP alleles have been described

(Calado et al., 2010; Casola et al., 2006; Srinivasan et al., 2009). The

R26StopFLMYC allele was generated following a strategy previously devel-

oped (Sasaki et al., 2006). Briefly, the ROSA26 allele was targeted with

a construct containing human c-MYC cDNA preceded by a loxP flanked

STOP cassette and marked by a signaling deficient truncated version of

hCD2 under the control of an internal ribosomal entry site (IRES) downstream

of the inserted cDNA. Transgene transcription is controlled by the CAG

promoter. A detailed description of the mice will be given elsewhere (D.P.C.,

unpublished data).

Rag2cgKO animals were bred in our mouse colony or purchased from

Taconic. 1 3 106 viable total BM cells were intravenously injected into suble-

thally irradiated (600 rad) 9- to 11-week-oldRag2cgKO animals. For each geno-

type BM of three different donor animals was individually transferred to at least

five (or three in the case of Cg1-cre, R26StopFLeYFP BM) recipients. At day

140 after BM transfer, mice were immunized once by i.v. injection of 1 3 109

sheep red blood cells (SRBCs; Cedarlane). Mouse cohorts were monitored

twice a week for tumor development and euthanized if signs of tumor develop-

ment were seen. All animal care and procedures were approved by the Institu-

tional Animal Care and Use Committee (IACUC 03341) of Harvard University

and the Immune Disease Institute as well as the governmental review board

(Landesamt für Gesundheit und Soziales Berlin, LaGeSo G0273/11).

Flow Cytometry and Cell Sorting

Single-cell suspensions were stained with PNA (Vector Laboratories) and

the following monoclonal antibodies from BD Biosciences, Biolegends or

eBioscience: aCD19(ID3), aB220(RA3-6B2), aCD95(Jo2), aCD138(281-2),

aCD38(90), ahCD2(TS1/8), aCD93(AA4.1), aIgM(FAB), aIgD(11-26c.2a),

aIgG1(A85-1), aIgA(mA-6E1), aIgkappa(187.1), aCD23(B3B4), aCD43(S7),

aCD5(53-7.3), aGL7(GL7). Topro3 or PI (Invitrogen) was used to exclude

dead cells. Samples were acquired on a FACSCantoII (BD Biosciences), and

analyzed using FlowJo software (Tree star). Viable (Topro3neg) GFP and

hCD2 co-expressing tumor cells and GC B cells (CD19pos, CD38low, FAShigh,

YFPpos) of Cg1-cre, R26StopFLeYFP animals were sorted on a FACSAriaII

(BD Biosciences) and used for RNA and DNA preparation.

Real-Time RT-PCR

Total RNA from sorted cells was extracted using the AllPrep DNA/RNA Kit

(QIAGEN) and cDNA was synthesized using the Thermoscript RT-PCR system

(Invitrogen). For qRT-PCR, we used Power SYBR Green, followed by analysis

with the StepOnePlus system (Applied Biosystems). Samples were assayed in

triplicate and messenger abundance was normalized to that of Actb.
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Analysis of Tumor Clonality by Southern Blot

EcoRI digested genomic DNA from tumor bearing mice and normal splenic

B cells (C57BL/6 animal) was probed with a JH probe spanning the JH4 exon

and part of the downstream intronic sequence.

Histology and Immunohistochemistry

Tissues were fixed with 10% formalin (Sigma) and paraffin embedded sections

were stained with H&E (Sigma), Ki67 (SP6; Vector Laboratories), PNA (Vector

Laboratories), aGL7 (eBioscience), aMYC (N-terminal, Epitomics), aBCL6

(D65C10; Cell signaling), apAKT (Ser473; D9E; Cell signaling), apS6 (Ser235/

236; D57.2.2E; Cell signaling), and aIRF4 (MUM1; Santa Cruz).

Immunofluorescence

Tissues were frozen in OCT (Sakura Finetek) in liquid nitrogen and staining was

performed as described previously (Srinivasan et al., 2009) using B220-APC,

IgD-FITC, and BCL2-PE (BD Biosciences) antibodies.

In Vitro Cell Culture of Splenic B Cells

Splenic B cells of C57BL/6 mice were purified by CD43 depletion

(Miltenyi). Cells were cultured in the presence of 1 mg/ml of aCD40 (HM40-3,

eBioscience) or 20 mg/ml of LPS (Sigma) and 25 ng/ml of IL-4 (R&D Systems)

for 3 days. RNA was isolated using the RNeasy kit (QIAGEN) and cDNA was

synthesized using the Thermoscript RT-PCR system (Invitrogen).

IgH Somatic Mutation Analysis

Genomic DNA was prepared from sorted tumor cells or GC B cells of Cg1-cre,

R26StopFLeYFP animals. IgH-V gene rearrangements were PCR amplified

using the Expand High fidelity PCR system (Roche) combined with forward

primers VHA, VHE, or VHG (Ehlich et al., 1994) and a reverse primer in the JH4

intron (50-CTCCACCAGACCTCTCTAGACAGC-30). Fragments were cloned,

sequenced, and blasted against the NCBI database (http://www.ncbi.nlm.

nih.gov/igblast/). Germline polymorphisms were excluded by blasting against

the database of sequences generated in our laboratory.

Gene Expression Profiling and Data Analysis

GEP was performed on tumor samples and purified GC B cells and non-GC

B cells from immunized Cg1-cre, R26StopFLeYFP animals using Affymetrix

GeneChip Mouse Genome 430 2.0 Arrays according to the manufacturer’s

recommendations (Affymetrix). The complete microarray data are available

at the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/projects/geo;

accession number GSE35219). Further information is provided in Supple-

mental Experimental Procedures.

Pathway Activation Indices

The method to compute pathway activation indices is an extension of our

previously published strategy (Läuter et al., 2009). Based on gene expression,

we generated 50 clusters of highly correlated genes in the data set of Hummel

et al. (GSE4475) (Hummel et al., 2006). We then mapped these clusters to

interventional data sets from experiments in which either MYC (GSE3151)

(Bild et al., 2006) or PI3K (GSE12815) (Gustafson et al., 2010) were activated.

In all data sets, we summarized the clusters to 50 metagenes. To obtain an

index of the relative activity of a pathway in a tumor sample, we computed

the sum of the values of the 50 metagenes in this sample weighted by the

correlations of the metagenes with the activation of this pathway in the cor-

responding interventional data set. We used preprocessed data as available

at the Gene Expression Omnibus. Further information is provided in Supple-

mental Experimental Procedures.

SNP Microarray Analysis

For genomic profiling we used Affymetrix Mouse Diversity Genotyping Arrays

according to the manufacturer’s recommendations (Affymetrix). After genera-

tion of the raw data (CEL-files) using Command_Console software (Affymetrix)

paired analysis of tumor and respective germline DNA samples was per-

formed. Using R version 2.12.1 (http://www.r-project.org/), data were normal-

ized using the aroma.affymetrix R package (Bengtsson et al., 2008) in com-

bination with the R package DNAcopy (Olshen et al., 2004) for segmentation

and detection of copy number aberrations. The complete SNP array data

are available at the Gene Expression Omnibus (accession number GSE35219).
Exome Sequencing

Nonamplified genomic DNA (1mg) from sortedmurine tumor cells andmatched

germline tissue (mouse tail) were used for exome sequencing using Illumina

technology. Further information is provided in Supplemental Experimental

Procedures.

Human BL Cell Lines

Human BL cell lines were cultured in RPMI medium 1640 with 10% fetal

calf serum, 1% penicillin/streptomycin, 1% L-glutamine, 1% nonessential

amino acids, and 0.1% beta-mercaptoethanol. For detection of PI3K pathway

activation cell lines were treated with either 25 mM LY-294002 (Sigma) or

DMSO for 1 hr.

Patient Samples

Primary BL samples [9 peripheral blood/BM (B cell acute lymphoblastic

leukemia, B-ALL), 27 lymph node (BL), 1 jaw (BL), and 1 parotid gland (BL)

specimens; all cases were translocation t(8;14) positive] were provided by

the Department of Pathology, Brigham and Women’s Hospital (n = 9), and

the Department of Internal Medicine III, University Hospital of Ulm (n = 29)

with patient informed consent and institutional review board approval from

all participating centers. One case represents endemic BL (1/38) whereas

the others belong to the sporadic/HIV-associated subgroup (37/38). Sanger

Sequencing was performed with genomic DNA obtained from frozen lymphoid

tissue blocks (n = 20) andmononuclear cells isolated from the peripheral blood

or BM (n = 9).

Cyclin D3 Mutation Analysis in Primary Human BL and Mouse

Tumors

Genomic DNA of primary human BL samples (n = 29) was prepared using the

QIAGENDNeasy blood and tissue kit (QIAGEN). A 346bp amplicon within exon

5 of human CCND3 was PCR amplified (forward primer: 50-GAAGCTGCACTC

AGGGAGAG; reverse primer: 50-AGCTTGACTAGCCACCGAAA) and se-

quenced (Sanger Sequencing). The 30 end of Ccnd3 was amplified in genomic

DNA of MYC and P110* co-expressing mouse tumors (n = 15) using 50-
CACCTGCTTGCTGTCAGTGCTGTGAG as forward primer and 50- GCATGG

ATTGTTCTAGAGGCAGGGA as reverse primer.

Western Blot Analysis

RIPA extracts were fractionated on 10% sodium dodecyl sulfate poly-

acrylamide gels, electroblotted to polyvinylidene difluoride membranes and

reacted with a-MYC (N-terminal, Epitomics), a-pAKT (Ser473) (D9E), a-AKT

(5G3), a-pS6 kinase (Thr389) (108D2), a-S6 kinase (Cat #9202) (Cell Signal-

ing), and a-beta-actin (Cat #A5316, Sigma) antibodies. Immunoreactivity

was determined using the enhanced chemiluminescence method (Pierce

Chemical).

Statistical Analysis

Data were analyzed using unpaired two-tailed Student’s t test and Fisher’s

exact test, a p value % 0.05 was considered significant. Survival curves

were compared using the Logrank test. Data in text and figures are repre-

sented as mean ± SEM (standard error of the mean).

ACCESSION NUMBERS

The Gene Expression Omnibus accession number for the microarray data is

GSE35219. The exome sequencing data are available at the Sequence Read

Archive (SRA055727).

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures, two tables, Supplemental

Experimental Procedures, and Supplemental References and can be found

with this article online at http://dx.doi.org/10.1016/j.ccr.2012.06.012.
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