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a b s t r a c t

In this paper we study the Target Set Selection problem proposed by Kempe, Kleinberg,
and Tardos; a problem which gives a nice clean combinatorial formulation for many
applications arising in economy, sociology, and medicine. Its input is a graph with vertex
thresholds, the social network, and the goal is to find a subset of vertices, the target set,
that ‘‘activates’’ a pre-specified number of vertices in the graph. Activation of a vertex is
defined via a so-called activation process as follows: Initially, all vertices in the target set
become active. Then at each step i of the process, each vertex gets activated if the number
of its active neighbors at iteration i − 1 exceeds its threshold. The activation process is
‘‘monotone’’ in the sense that once a vertex is activated, it remains active for the entire
process.

Our contribution is as follows: First, we present an algorithm for Target Set Selection
running in nO(w) time, for graphs with n vertices and treewidth bounded by w. This
algorithm can be adopted to much more general settings, including the case of directed
graphs, weighted edges, and weighted vertices. On the other hand, we also show that it is
highly unlikely to find an no(

√
w) time algorithm for Target Set Selection, as this would

imply a sub-exponential algorithm for all problems in SNP. Together with our upper bound
result, this shows that the treewidth parameter determines the complexity of Target Set
Selection to a large extent, and should be taken into consideration when tackling this
problem in any scenario. In the last part of the paperwe also dealwith the ‘‘non-monotone’’
variant of Target Set Selection, and show that this problem becomes #P-hard on graphs
with edge weights.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following scenario: You are amarketing executive of a huge clothing company given the task of marketing a
new line of summer wear. You have at hand a description of the relationship network formed among a sample of teenagers
from the district. After some heavy thinking you come up with the following idea: You will identify, or target, key social
figures of the network and persuade them into adopting the new summer line, by say, handing out substantial amounts of
free samples. You then hope that by peer-pressure laws, the friends of those targeted individuals would be persuaded into
buying the new products, which in turn will also cause their friends to be persuaded, and so forth, creating a domino-like
effect in the network. But how do you find a good set of individuals to target?
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Research in the area of viral marketing [1–3] studies questions similar to the one raised above. The key objects
under research are social networks which are often modeled by graphs with individuals or organizations as vertices, and
relationships or interactions as edges. Social networks play a leading role in many scientific fields, including most social
sciences [4–6], life sciences [7,8] and medicine [7,5,9]. In viral marketing, one attempts to take advantage of social network
properties, in order to enhance revenue in various commercial applications. This is based on the premise that targeting
a few key individuals may lead to strong word-of-mouth effects, which in turn, will cause a cascade of influence in the
network. Viral marketing has recently become a widespread technique for promoting novel ideas, marketing new products,
or spreading innovation [10,11]. Today, in the age of the Internet, the huge amount of available data poses new challenges for
this areawhich are both daunting and extremely profitable at the same time. As an example, QZone, FaceBook, andMySpace,
are just three of many social networking websites boasting more than five hundred million users world-wide (November
2009); endlessly engaged in the exchange of news, opinions, gossip, and almost any other thinkable type of information.

One simple way to model the cascade of influence in viral marketing is given by the threshold model [12]. The main idea
is to associate with each vertex v of the network two states, active and inactive, which indicate whether v is persuaded into
adopting the idea or product that is marketed. Moreover, v is also assigned a threshold value t(v), specifying how many
neighboring vertices of v need to get persuaded before v itself is persuaded. A cascade of influence, or activation process,
proceeds in the network as follows: Initially, all vertices are inactive. In phase 0 of the process, we select k initial vertices, the
target set, that instantly become active. Then, at every phase i > 0, a vertex v becomes active if at least t(v) of its neighbors
were active in phase i − 1. Once a vertex becomes active, it remains active for the entire process, and so in this sense the
activation process ismonotone. The process ends in phase iend < n, where n is the number of vertices in the network,whenno
more vertices can get activated. Given the rules of this activation process, and knowledge of the thresholds in our network,
which individuals should we target so as to persuade as many individuals in the network as possible?

The first to study this question from an algorithmic point of view were Kempe et al. in their seminal paper [13]. They
investigated the following maximization problem: Given a social network Gwith vertex-thresholds, find a target set of size
at most k that activates as many vertices in G as possible. This models the situation where there is a pre-specified budget for
targeting. We note that Kempe et al. focused mostly on the case where the thresholds of the graph are random. This work
was extended in [14,15]. Chen [16] studied the following related minimization problem: Given a social network G, find a
target set of smallest possible size that activates at least ℓ vertices ofG. Thismodels the casewherewe have aminimum limit
for the number of persuaded individuals overall. We reduce these two optimization problems to a single search problem,
which is the main focus of this paper. We refer to this search problem throughout as the Target Set Selection problem.

Unsurprisingly perhaps, the decision version of Target Set Selection is NP-complete. More surprising is the fact that
both of its optimization variants turn out to be extremely hard to approximate, even for very restrictive special cases. Kempe
et al. show that the maximization problem they introduced cannot be approximated within any non-trivial factor, unless
P = NP, even when the given social network is bipartite with bounded degree, and all vertices have equal thresholds [13].
Chen [16] shows a polylogarithmic approximation lower bound for the minimization problem described above, and his
bound also holds for bounded degree bipartite graphs, even when the thresholds are taken from the set {1, 2}. Regarding
the parameterized complexity status of the problem, Abrahamson, Downey, and Fellows show that both problems areW[P]-
complete, i.e. fixed-parameter intractable, when parameterized by the size of the solution target set [17].

The high inapproximability and fixed-parameter intractability results for Target Set Selection mentioned above are a
striking blow from the algorithm designer point of view. In light of these results, we must turn our consideration towards
special cases of the problem, or otherwise resort to heuristic approaches. When considering special cases, it is desirable to
obtain a robust algorithm that behaves relatively well also onmore general cases. Furthermore, onemust overcome the fact
that the problem is already known to be hard for many restricted cases; in particular, for notoriously easy classes of graphs
such as bounded degree graphs and bipartite graphs.

In this paper we tackle these difficulties by considering the treewidth parameter of graphs. This parameter plays an
important role in the design of many exact and approximation algorithms for many NP-hard problems. The notion was
introduced by Robertson and Seymour [18] in their celebrated proof of the Graph Minor Theorem. Roughly, it measures the
extent a given graph is similar to a tree in a very deep structural sense. For instance, trees have treewidth 1. We will show
that the treewidth parameter governs the complexity of the Target Set Selection problem in a very strict sense. The first
clue for this was given by Chen [16] who showed that the problem is polynomial-time solvable in trees. We generalize this
result substantially. Letting n and w respectively denote the number of vertices and treewidth of our input graph, we prove
the following theorem:

Theorem 1.1. Target Set Selection can be solved in nO(w) time.

It isworth pointing out that the time complexity in the theoremabove can be rewritten as tO(w)n, where t is themaximum
threshold of any vertex in the network. Thus, the algorithm used in proving this theorem also shows that the problem
is fixed-parameter tractable when parameterizing by both the treewidth and maximum degree of the graph. Also, this
algorithm can be adopted to the more general setting of directed graphs with edge influences and vertex weights.

On the other hand, we will show that we cannot do much better than Theorem 1.1. We prove that, under a well-
established complexity-theoretic assumption, the above algorithm is optimal up to a quadratic factor in the exponent
dependency on w. This shows that the treewidth of the given network indeed determines to a large extent whether one
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can efficiently compute an optimal target set in the network. This, of course, does not rule out the possibility of other
parameters with better bounds, but nevertheless gives an important insight to the true complexity of the problem. The
second main result of this paper is given in the following theorem.

Theorem 1.2. Target Set Selection cannot be solved in no(
√

w) time unless all problems in SNP can be solved in sub-exponential
time.

In the last part of the paper we consider the Target Set Selection problem under a non-monotone activation model
where vertices may get deactivated throughout the process. This problem has applications in several models of cellular au-
tomatons, e.g. Conway’s Game of Life, and has been investigated by several researches in different contexts, see e.g. [19–22].
As it turns out, Non-Monotone Target Set Selection is much more difficult than Target Set Selection. In particular, the
algorithm of Theorem 1.1 above no longer applies, even if the graph is undirected and unweighted.We show that the variant
where the graph is directed with edge-influences becomes #P-hard.

2. Preliminaries and model definitions

All graphs in this paper are simple and undirected, unless stated otherwise. For any graph G, we use V (G) and E(G) to
respectively denote the vertices and edges of G. We will mostly use G to denote our input graph, or social network, and we
use n to denote the number of vertices in G and w − 1 its treewidth (see definition below). We also assume we have at hand
a threshold function t : V (G) → N for the vertices of G. For a subset of vertices X ⊆ V (G), we let G[X] denote the subgraph
of G induced by X . That is, the subgraph G′ with V (G′) = X and E(G′) = {{u, v} ∈ E(G) : u, v ∈ X}. For two graphs G′ and
G′′, we let G′

∪ G denote the graph Gwith V (G) := V (G′) ∪ V (G′′) and E(G) := E(G′) ∪ E(G′′).

2.1. Model definition

Let S be any subset of vertices in G. An activation process in G starting at S is a chain of vertex subsets Active[0] ⊆

Active[1] ⊆ · · · ⊆ V (G), with Active[0] = S, and Active[i] including all vertices u such that either u ∈ Active[i−1], or t(u) ≤

|{v ∈ Active[i − 1] : {u, v} ∈ E(G)}|, for all i > 0. We say that v is activated at iteration i if v ∈ Active[i] \ Active[i − 1]. We
assume that the activationprocess terminates at iteration z, where z is the smallest index forwhichActive[z] = Active[z+1].
Clearly, z < n. We say that S activates Active[z] in G. We now give a formal definition of the key social networking problem
we will be working on in this paper:

Target Set Selection:
Instance: Two integers k, ℓ ∈ N, and a graph Gwith thresholds t : V (G) → N.
Goal: Find a subset S ⊆ V (G) of size at most k that activates at least ℓ vertices in G.

There are many natural generalizations of the above formulation. First, one can consider directed graphs instead
of undirected, where now the activation of a vertex is determined only by its incoming neighbors. Another natural
generalization is obtained by adding weights to the vertices of the network, and asking for a target set of total weight
not exceeding k. Finally, one can model the situation where different vertices have different influences on each other, by
adding influence values to the edges of the network. In this case, a vertex gets activated in an activation process, if the sum
of influence from all of its active neighbors exceeds its threshold. We also may allow influence values to be negative.

2.2. Treewidth

We next briefly discuss the treewidth parameter of graphs which plays a central role in this paper. There are many ways
for defining the treewidth of a graph. We will use a slightly different definition from the original version by Robertson and
Seymour [18] which uses an extremely handy form of graph decompositions, namely tree-decompositions:

Definition 2.1 (Tree Decomposition, Treewidth [18]). A tree decomposition of a graph G is a pair (T , X), where X is a family
of subsets of V (G), and T is a tree over X, satisfying the following conditions:

1.


X∈X G[X] = G, and
2. ∀v ∈ V (G) : {X ∈ X | v ∈ X} is connected in T .

The width of T is maxX∈X |X | − 1. The treewidth of G is the minimum width over all tree decompositions of G.

Arnborg et al. [23] showed how to compute a tree-decomposition of widthw for an n-vertex graphwith treewidth bounded
by w in nw+O(1) time. This algorithm was later improved by Bodlaender [24] to a linear-time algorithm for constant values
of w. See also [25–27] for various approximation algorithms.

Given a tree decomposition (T , X) of G, we will assume that T is rooted at some arbitrary R ∈ X. With this in place,
there is an important one-to-one correspondence between subgraphs of G and nodes X in T . For a node X ∈ X, let TX
denote the subtree of T rooted at X , and let XX denote the collection of nodes in this tree, including X itself. The subgraph
GX associated with X in TX is defined by GX =


Y∈XX

G[Y ]. The vertices of X are called the boundary of GX .
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3. Small treewidth networks

In this sectionwewe provide a proof for Theorem1.1 by presenting an nO(w) algorithm for Target Set Selection in graphs
with treewidth bounded by w. To simplify matters, we will first assume that we are required to compute what we call a
perfect target set for G, which is a set S that activates all vertices of the graph. That is, we assume we are given an instance
of Target Set Selection with ℓ = n. This simplifies many details necessary for our algorithm; however, the essence of the
problem remains the same. Later in the section, we will explain how to extend our algorithm for general values of ℓ.

3.1. Algorithm blueprint

Our algorithm first constructs a tree-decomposition (T , X) for G. Then it traverses the tree T in this decomposition
in bottom–up fashion, constructing solutions for the subgraph GX corresponding to the current node X ∈ X it is visiting
by combining solutions for subgraphs GY corresponding to the children Y of X in T . We will actually be working with
a more convenient type of composition called nice tree decompositions, initially introduced in slightly different form by
Bodlaender [28].

Definition 3.1 (Nice Tree Decomposition). A tree decomposition (T , X) of a graph G is nice if T is rooted, binary, each node
in X has exactly w vertices, and is of one of the following three types:

• Leaf nodes are leaves in T , and consist of w non-adjacent vertices of G.
• Replace nodes X ∈ X have one child Y in T , with X \ Y = {u} and Y \ X = {v} for some pair of distinct vertices

u ≠ v ∈ V (G).
• Join nodes X ∈ X have two children Y and Z in T with X = Y = Z .

Given a tree decomposition of width w − 1 for G, one can obtain in linear time a nice tree decomposition for G with
the same width and with O(wn) nodes (see for instance [28,29]). We will assume in the following that we have a nice tree
decomposition (T , X) at hand, of width w − 1.

Let us begin the description of our algorithm by discussing the difficulties in applying the generic solution-combining
treewidth paradigmmentioned above to Target Set Selection. Consider the subgraph GX corresponding to some join node
X ∈ X of our nice tree decomposition, and let Y and Z be the two children of X in T with X = Y = Z . Suppose S ⊆ V (GX )
is a perfect target set for GX . When restricting the activation process of S in GX only to the part of GY , a boundary vertex
v may have less than t(v) GY -neighbors active, before it gets activated. We know only that the total number of active GY
and GZ -neighbors of v in GX is t(v) or more. For this reason, we need to consider perfect target sets for GY that activate the
boundary vertices according tomany different threshold values. As it turns out, we only need to consider different threshold
assignments to the boundary vertices; we can keep the original thresholds of all remaining vertices in the graph.

Definition 3.2 (Threshold Vector). Let GX be a subgraph of G corresponding to a node X of T , and let [n] denote the interval
of non-negative integers {0, 1, . . . , n}. A threshold vector, T ∈ [n]w , is a vector with a coordinate for each boundary vertex in
X . Letting T (v) denote the coordinate in T corresponding to the boundary vertex v ∈ X , and t denote the original threshold
function of G, the subgraph GX (T ) is defined as the graph GX with thresholds:

• T (v) for any boundary vertex v ∈ X , and
• t(u) for all other vertices u ∉ X .

Another difficulty is that when combining perfect target sets SY and SZ of GY (TY ) and GZ (TZ ), we need to make sure that
their combination actually constitutes a perfect target set in GX (T ). There are several problems with this: First, we need to
add up the threshold vectors at the boundary correctly, since there can be intersections in the GY and GZ -neighborhoods
of boundary vertices. More importantly, there can be dependencies in the activation processes, causing a deadlock in the
combined process: For instance, a boundary vertex u might require another boundary vertex v to be activated in GY (TY )
before u itself can be activated, while the situation could be reversed in GZ (TZ ). To overcome these difficulties, we introduce
the notion of activation orders, and activation processes constrained by activation orders.

Definition 3.3 (Activation Order). Let GX be some subgraph of G corresponding to a node X of T , and recall that [w − 1]
denotes the interval of non-negative integers {0, 1, . . . , w − 1}. An activation order is a function A : X → [w − 1], where
for any v ∈ X, A(v) represents the relative iteration in the boundary at which v is activated.

We now change the definition of the activation process on GX (T ) given in Section 2 so that it is constrained by an
activation order on the boundary of GX (T ). Given a subset S ⊆ V (GX ) and an activation order A, the A-constrained activation
process of S in GX (T ) is defined similarly to the normal activation process of S in GX (T ), except that a boundary vertex v
becomes active at some iteration i only if all boundary vertices u with A(u) < A(v) are active at iteration i − 1, and only
if all other boundary vertices w with A(w) = A(v) will also become activate at this iteration. This includes all boundary
vertices selected in the target set. Note that S may activate in a constraint activation process only a subset of the vertices
it activates in the normal activation process. Nevertheless, it is clear that all vertices that are activated by S in a normal
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activation process get activated in an A-constrained process for some activation order A. A set of vertices which activates all
vertices of GX (T ) in an A-constrained activation process is said to be a perfect target set conforming with A.

We can now describe the information that our algorithm computes for each subgraph GX corresponding to node X of T .
This information is stored in a table, which we denote by OPTGX , that is indexed by two types of objects:

• A threshold vector T ∈ [n]w corresponding to the thresholds of the boundary vertices of GX .
• An activation order Awhich constrains the order of activation on the boundary vertices.

The entry OPTGX [T , A] will store the smallest possible perfect target set in GX (T ) conforming with the activation order A.

Lemma 3.4. The number of different entries in OPTGX is bounded by nO(w).

Proof. We can bound the number of different threshold vectors and activation orders by (n + 1)w and ww respectively.
Thus, the number of different entries is bounded by (n + 1)w · ww

= nO(w). �

Recall that GX = Gwhen X is the root of T . Therefore, if we compute the OPTGX table for the root X , we can determine the
optimal perfect target set for G. Our algorithmwill compute the OPTGX tables in bottom–up fashion, where the computation
at the leaves will be done by brute-force. According to Lemma 3.4 above, and since T has O(wn) nodes, to obtain our
promised time bound of Theorem 1.1 it suffices to OPTGX for any X ∈ X in nO(w) time. Since the graphs at the leaves only
have w vertices, this can be done in nO(w) time for a leaf node X . The next section gives details on how to compute OPTGX in
case X is an internal node of T .

3.2. Implementation

To complete the description of our algorithm, we need to show how to compute the OPTGX table corresponding to the
current node X ∈ X we are visiting in T , from the table(s) correspond to its child(ren) in T . We recall that the computation
of OPTGX is done by brute-force at a leaf X ∈ X.

Replace nodes: Suppose X is a replace node with child Y in T . That is, GX is obtained by adding a new boundary vertex u to
GY , and removing another boundary vertex v from the boundary (but not from GX ). By the second condition of Definition 2.1,
u can only be adjacent to other boundary vertices of GX . Let d denote the number of these neighbors of u in GX , and assume
that they are ordered. Also, let Gi

X , for i = 0, . . . , d, denote the subgraph of GX obtained by adding the edges between u
and all of its neighbors in X , up to and including the ith neighbor. To compute OPTGX , we will actually compute OPTGiX in
increasing values of i, letting OPTGX := OPTGdX .

When i = 0, u is isolated, and thus it must be included in any perfect target set when it has threshold greater than 0. For
any threshold vector T for X , let T uv denote the threshold vector for Y obtained by setting: T uv(w) := T (w) for all w ≠ v,
and T uv(v) := T (u). For an order A for X , let Auv denote the set of all orderings A′ for Y with A′(w) := A(w) for all boundary
vertices w ≠ u, v. Observe that we allow A′(v) ≠ A(u). According to the above, when X is a replace node we get for i = 0:

OPTG0X [T , A] = min
A′∈Auv


OPTGY [T

uv, A′
] if T (u) = 0,

OPTGY [T
uv, A′

] ∪ {u} if T (u) ≠ 0. (1)

Now if i > 0, then Gi
X is obtained from Gi−1

X by connecting u to some boundary vertex w ∈ X . For any threshold vector
T , let T u− denote the threshold vector obtained by setting T u−(u) := max{T (u) − 1, 0}, and all remaining thresholds the
same. Define Tw− similarly. Since the {u, w} edge can only influence v if A(w) < A(v), and vice-versa, we have:

OPTGiX [T , A] =


OPTGi−1

X
[T , A], if A(w) = A(u),

OPTGi−1
X

[T u−, A], if A(w) < A(u),
OPTGi−1

X
[Tw−, A], if A(u) < A(w).

(2)

Join nodes: Let X be a join node with children Y and Z in T . Due to the second condition of Definition 2.1, GY and GZ are
two subgraphs who share the same boundary vertices Y = Z , GX is obtained by taking the union of these two subgraphs.
Observe that this means that there are no edges between V (GY ) \ Y and V (GZ ) \ Z in GX . For a boundary vertex v ∈ X , let
NG[X](v) denote the set of boundary vertices that are connected to v in GX . For v ∈ X , and an activation order A, let A≤v be
the set of all boundary vertices u such that A(u) < A(v). Given an order A, and a pair of threshold threshold TY and TZ , define
the threshold vector TY ⊕A TZ as the vector T where a coordinate T (v) for v ∈ X is defined by

T (v) := TY (v) + TZ (v) − |NG[X](v) ∩ A≤v
|.

Observe that for a given activation order A, if SY ⊆ V (GY ) activates in an A-constrained activation process TY (v) neighbors
of v in GY , and SZ ⊆ V (GZ ) activates in an A-constrained activation process TZ (v) neighbors of v in GZ , then T (v) is exactly
the number of neighbors of v activated by SY ∪SZ in an A-constrained activation process in GX . This is because only boundary
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vertices w with A(w) < A(v) will be active prior to v, and there are no edges between V (GY ) \ Y and V (GZ ) \ Z in GX . We
thus can compute OPTGX [T , A] using the following equation:

OPTGX [T , A] = min
TY ⊕A TZ=T

OPTGY [TY , A] ∪ OPTGZ [TZ , A]. (3)

Correctness of the above equation is clear. Indeed, any perfect target set S for GX (T ) which conforms with A can be
decomposed into two subsets SY = S ∩ V (GY ) and SZ = S ∩ V (GZ ) which activate in an A-constrained activation process all
vertices inGY (TY ) andGZ (TZ ), for some pair of threshold vectors TY , TZ for which TY ⊕A TZ = T . The converse is also true; any
pair of perfect target sets for GY (TY ) and GZ (TZ ) conforming with A can be united into a perfect target set for GX (TY ⊕A TZ ),
also conforming with A.

3.3. Summary and generalizations

It is easy to see that using the equations given in Section 3.2 above, we can correctly compute the OPTGX table correspond-
ing to a node X in T , in time polynomial with respect to the total sizes of the tables of its children. According to Lemma 3.4,
and since |X| = O(wn), this gives us a total running time of nO(w), as promised by Theorem 1.1.

Note that while our algorithm solves the Target Set Selection problem in case the given social network is represented
by an undirected and unweighted graph, it is easy to see that the algorithm can also straightforwardly be extended to
natural generalizations such as directed graphs or weighted vertices. Adding influence values to edges of the network is
another generalization our algorithm supports, by slightly altering the computation on the replace and join nodes of the
tree decomposition.

Observe that these three generalizations give an easy way to alter the algorithm from computing a perfect target set to
any general target set. Given an input directed graph Gwhich we are required to activate at least ℓ vertices in, we construct
a directed graph G′ by adding a new universal vertex v with weight ∞ and threshold ℓ that has an influence value of t(u)
on every vertex u in G, and every vertex u in G has influence value of 1 on v. Now clearly a subset of vertices S ⊆ V (G) that
activates at least ℓ vertices in G is a perfect target set in G′, and vice-versa, every perfect target set in G′ with total weight
less than ∞ activates at least ℓ vertices in G. Note also that the treewidth of G′ differs by at most one from the treewidth
of G.

4. A lower bound

In this section we present our lower-bounds for Target Set Selection in small treewidth graphs, and in particular, we
provide a proof of Theorem 1.2. At the core of this proof is a theorem of Chen et al. [30] which shows a similar lower-bound
for the Clique problem. Recall that Clique is the problem of finding a pairwise adjacent subset of k vertices in a graph with
n vertices. Chen et al. proved the following lower-bound for Clique:

Theorem 4.1 ([30]). Clique cannot be solved in no(k) time unless all problems in SNP can be solved in sub-exponential time.

Wewill show a reduction from Clique to Target Set Selectionwhere the treewidth of the graph in the reduced instance
is relatively close to the size of the clique to be searched for in the graph of the source instance. For this, we will actually
use an intermediate problem, called theMulti-Colored Clique problem, where we are given a graph with vertices that are
each colored by one of k different colors, and the goal is to find a clique of size kwhere all vertices have different colors.

Lemma 4.2. Multi-Colored Clique cannot be solved in no(k) time unless all problems in SNP can be solved in sub-exponential
time.

Proof. We reduce from Clique. Given an instance (G, k) for Clique, we construct a graph G′ by taking k copies v1, . . . , vk of
each vertex v of G, and then coloring each vertex vi with color i ∈ [k]. We then add an edge in G′ between two vertices ui
and vj, i ≠ j, iff u and v are connected in G. It is straightforward to verify that G has a clique of size k iff G′ has a multicolored
clique. Therefore if Multi-Colored Clique can be solved in no(k) time, then Clique can be solved in (k · n)o(k) = no(k) time,
implying by Theorem 4.1 that all SNP problems are solvable in sub-exponential time. �

The approach for usingMulti-Colored Clique in reductions is described in [31], and has been proven to be very useful in
showing hardness results in the parameterized complexity setting. Before giving details of our construction, we will need to
introduce some new terminology. We use G to denote a graph colored with k colors given in an instance ofMulti-Colored
Clique, and G′ to denote the graph in the reduced instance of Target Set Selection. For a color c ∈ [k], we let Vc denote the
subset of vertices in G colored with color c , and for a pair of distinct colors c1, c2 ∈ [k], we let E{c1,c2} denote the subset of
edges in G with endpoints colored c1 and c2. In general, we use u and v for denoting arbitrary vertices in G, and x to denote
an arbitrary vertex in G′.

We construct G′ using two types of gadgets. Our goal is to guarantee that any perfect target set of G′ with a specific size
encodes a multi-colored clique in G. These gadgets are the selection and validation gadgets. The selection gadgets encode
the selection of k vertices and


k
2


edges that together encode a vertex and edge set of some multi-colored clique in G. The
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Fig. 1. A graphical depiction of the validation gadget. In the example, n = 5 and low(u) = 3.

selection gadgets also ensure that in fact k distinct vertices are chosen from k distinct color classes, and that


k
2


distinct

edges are chosen from


k
2


distinct edge color classes. The validation gadgets validate the selection done in the selection

gadgets in the sense that they make sure that the edges chosen are in fact incident to the selected vertices. In the following
we sketch the construction of these gadgets:
• Selection: For each color-class c ∈ [k], and each pair of distinct colors c1, c2 ∈ [k], we construct a c-selection gadget and

a {c1, c2}-selection gadget which respectively encode the selection of a vertex colored c and an edge colored {c1, c2} in G.
The c-selection gadget consists of a vertex xv for every vertex v ∈ Vc , and likewise, the {c1, c2}-selection gadget consists
of a vertex x{u,v} for every edge {u, v} ∈ E{c1,c2}. There are no edges between the vertices of the selection gadgets, i.e.
the union of all vertices in these gadgets is an independent set in G′. We next add a guard vertex at each (vertex and
edge) selection gadget that is connected to all vertices in the gadget. In this way, a selection gadget is nomore than a star
centered at a guard vertex.

• Validation: We assign to every vertex v in G two unique identification numbers, low(v) and high(v), with low(v) ∈ [n]
and high(v) = 2n − low(v). For every pair of distinct colors c1, c2 ∈ [k], we construct validation gadgets between the
{c1, c2}-selection gadget and the c1- and c2-selection gadget. Let c1 and c2 be any pair of distinct colors. We describe
the validation gadget between the c1- and {c1, c2}-selection gadgets. It consists of two vertices, the validation-pair of
this gadget. The first vertex of this pair is connected to each vertex xv, v ∈ Vc1 , by low(v) parallel edges, and to each
edge-selection vertex x{u,v}, {u, v} ∈ E{c1,c2} and v ∈ Vc1 , by high(v) parallel edges. The other vertex is connected to
each xv, v ∈ Vc1 , by high(v) parallel edges, and to each x{u,v}, {u, v} ∈ E{c1,c2} and v ∈ Vc1 , by low(v) parallel edges. We
next subdivide the edges between the selection and validation gadgets to obtain a simple graph, where all new vertices
introduced by the subdivision are referred to as the connection vertices.

To complete the construction, we specify the thresholds of the vertices in G′. First, all guard vertices have threshold 1. All
selection vertices have thresholds equaling their degree in G′. Second, the connection vertices all have thresholds 1. Finally,
the vertices in the validation pairs all have thresholds 2n. Fig. 1 depicts a schematic description of selection and validation
gadgets.

Themain idea behind the validation gadgets is as follows:We bound the size of the required perfect target set, so that any
solution must select at most one vertex from each selection gadget. When selecting from vertex and edge selection gadgets
connected by a validation gadget, both vertices in the validation pair get active only if the vertex incident to that edge has
been selected: This is because for any u ≠ v either high(u)+ low(v) < 2n or low(u)+high(v) < 2n. This allows us to state
the following lemma:

Lemma 4.3. G has a k-multicolored clique iff G′ has a perfect target set of size k +


k
2


.

Proof. Suppose that K is a multi-colored clique in G of size k. We argue that the subset S of k +


k
2


vertices, defined by

S = {xv : v ∈ K} ∪ {x{u,v} : u, v ∈ K},

is a perfect target set for G′. Indeed, at the first iteration of the activation process of S in G, all guard vertices will be activated,
since all of these have threshold 1, and each one has a neighbor in S. Furthermore, all connection vertices adjacent to vertices
in S will also be activated. In the second iteration of the activation process all validation-pair vertices are activated, since
each one has exactly 2n neighbors which are active. Finally, in the third iteration, all other connection vertices are activated,
since all validation-pairs are active, which causes all remaining selection vertices to be activated in the fourth iteration.

For the converse direction, assume S is a perfect target set of size k +


k
2


in G′. First observe that we can assume,

without loss of generality, that S does not include any guard vertex. This is because we can replace each guard vertex by an
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appropriate selection vertex, and still activate G′. Furthermore, as guard vertices are connected only to selection vertices,
there has to be at least one active vertex in each selection gadget, before all guards can be active. Since selection vertices not
chosen in the target set of G′ need their guards to be active before they can be activated, it follows that exactly one vertex
from each selection gadget must be in any perfect target set S of size k+


k
2


in G′. Finally, as discussed above, the only way

to activate a validation pair between a vertex and edge selection gadget, is to select a pair of vertices corresponding to an
incident vertex and edge pair in G. Thus all edges of G selected in the edge-selection gadgets of G′, are incident to all vertices
of G selected in the vertex selection gadgets of G′, and thus S corresponds to a k-multicolored clique in G. �

Lemma 4.4. G′ has treewidth O(k2).

Proof. Removing all validation pairs in G′ leaves a forest which has treewidth 1. Therefore, we can add all O(k2) vertices
belonging to validation pairs to each node X ∈ X in a width 1 tree-decomposition of this forest, giving us a tree-
decomposition of width O(k2) for G′. �

According to the two lemmata above, we have shown a polynomial-time reduction that maps every instance (G, k)
of Clique to an instance (G′, k′) of Target Set Selection, k′

= k +


k
2


, such that G has a multi-colored clique of size

k ⇐⇒ G′ has a perfect target set of size k′, and G′ has treewidth O(k2). Combining this with Lemma 4.2 completes the
proof of Theorem 1.2. Indeed, if Target Set Selection has an no(

√
w) algorithm, where w is the treewidth of the input graph,

then we could use the above reduction to map an instance (G, k) of Multi-Colored Clique with |G| = n, to an instance
(G′, k′) of Target Set Selection with |G| = O(nc), for a constant c ∈ N, and w = O(k2), use this algorithm to determine
whether G′ has a perfect target set of size k′, and according to this determine whether G has a multi-colored clique of size k.
The running time of the entire procedurewill be the running-time of the reductionwhich is polynomial in n and independent
of k, plus the running-time of the presumed algorithm for Target Set Selectionwhich is (nc)o(

√
w)

= no(k). All together this
gives us an no(k) algorithm for Multi-Colored Clique, which by Lemma 4.2 implies that all problems in SNP can be solved
in sub-exponential time.

5. A non-monotone model

In this section we discuss the non-monotone variant of Target Set Selection. In Non-Monotone Target Set Selection,
a vertex may become non-active in any iteration of the activation process once the total number of its active neighbors is
smaller than its threshold. Thus, for example, the target set selected at the beginning of the process may get deactivated
as the process continues. Formally, an activation process given a target set S is defined by a sequence of vertex subsets
Active[0],Active[1], . . . which are no-longer necessarily a chain, where Active[0] = S, and Active[i] for i > 0 is the set of
all vertices uwith t(u) ≤ |{v ∈ Active[i− 1] : {u, v} ∈ E(G)}|. A subset of vertices T is said to be activated by this process if
T ⊆ Active[i] for some i. The goal is thus to determine whether there exists a subset of k vertices that activates a subset of
ℓ vertices in G. In what follows, the network Gwe consider is directed.

In the following we show that Non-Monotone Target Set Selection with edge influence values is #P-hard. Before
this, let us first observe that the problem is in PSPACE. Consider the configuration graph CG corresponding to G, which is
a directed graph whose vertex-set is 2V (G), and an edge (S, S ′) connects two subsets S, S ′

⊆ V (G) if in an activation process
Active[i] = S for some i, then Active[i + 1] = S ′. Explicitly storing this graph requires exponential space, but we can
maintain an adjacency oracle (i.e. an algorithm outputting ‘‘yes’’ on input S and S ′ iff (S, S ′) ∈ E(CG)) in polynomial-time and
space. Now a non-deterministic algorithm can solve Non-Monotone Target Set Selection by guessing two vertex subsets
S, T ⊆ V (G), with |S| = k and |T | = ℓ, and then mimicking the PSPACE algorithm for S–T Connectivity on implicit graphs.
Thus,Non-Monotone Target Set Selection is in NPSPACE, which is the same class as PSPACE due to Savitch’s Theorem [32].

Theorem 5.1. Non-Monotone Target Set Selection with edge influence values is #P-hard.

Proof Sketch. The proof follows by a reduction from the #P-complete problem #2-SAT, which asks to determine whether
a 2-CNF formula ϕ has r satisfying assignments, for some r ∈ N.

We say that a circuit C is balanced if the distance between any pair of input–output gates is the same. Before we explicitly
describe our construction, we first show that given a balanced circuit C , we can construct a graph G and emulate the
computation of C by an activation process on G. The graph G will be the graph isomorphic to the underlying graph of C ,
with vertex thresholds and edge influence values set as follows:

• If v corresponds to an input gate then we set its threshold to 1.
• If v corresponds a ¬-gate connected to a gate u, then we set t(v) := −1, and we let the influence value of the directed

edge (u, v) be −2.
• If v corresponds to a ∨-gate connected to gates u1 and u2, we set t(v) := 1 and let the influences of (u1, v) and (u2, v)

be 1.
• If v corresponds to a ∧-gate connected to gates u1 and u2, we set t(v) := 2 and let the influences of (u1, v) and (u2, v)

be 1.
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ϕ

Fig. 2. A schematic depiction of the way the circuits Cf , Cϕ , and Cg are connected together.

Let {x1, . . . , xn} denote the input gates of C . It is clear that a truth assignment α : {x1, . . . , xn} → {0, 1} satisfies C iff the
vertex corresponding to the output gate in G gets activatedwhen the vertices corresponding to input gates xi with α(xi) = 1
are selected in the target set. Thus, we can simulate the computation of any balanced circuit by an activation process in
a graph G. In particular, we simulate a balanced circuit which computes the binary expansion of f (x) := x + 1 given the
binary expansion of x ∈ N as input, and the balanced circuit which computes the binary expansion of x+ y given the binary
expansion of x and y.

Our construction works as follows (see Fig. 2): We connect the outputs of a balanced circuit Cf computing f (x) := x + 1
back to its inputs, and also to the inputs of a balanced circuit Cϕ computing ϕ. We connect the output of Cϕ to the input of
a circuit Cg computing g(x, y) := x + y. The output of Cϕ is connected to the input corresponding to x in g(x, y), and the
outputs of Cg are connected to the inputs of Cg that correspond to y. In this way, Cf enumerates all assignments to Cϕ , and
Cg counts the number of these assignments that satisfy Cϕ .

Note that there might by some synchronization issues when simulating Cf , Cϕ , and Cg together. For instance, if Cf has
depth (i.e. input–output distance) i, then we need to consider its output only at iterations i apart in the activation process. In
this case, we can simply add a directed cycle of length i, with all vertex-thresholds and edge-influences set to 1, and connect
one vertex of this cycle to the outputs of Cf by a ∧-gate. We add similar synchronization gadgets for Cϕ and Cg . Finally, to
complete the construction, we add a gate u which has edges incoming from the outputs of Cg , whose influences are set in
such away so that u gets activated iff the output of Cg correspond to the binary expansion of r . We then connect u to another
gate v that gets activated as soon as u gets activated, and has outgoing edges to all other vertices with influences in such a
way so that they all get activated as soon as v is activated.

LetGdenote the graph resulting fromour construction. It is clear fromour construction thatϕ has r satisfying assignments
iff G has a target set of size 0 that activates all vertices in G. The theorem thus follows. �

6. Conclusions

In this paper we studied the Target Set Selection problem, a problem arising in viral marketing and other social and
economic applications. We presented an algorithm running in nO(w) time for networks of size n and treewidthw, which also
applies for various variants and generalizations of the problem. We also showed that this problem cannot be solved (under
a natural complexity assumption) in time no(

√
w). Therefore, the time complexity needed to solve Target Set Selection is, in

a sense, determined by the treewidth of the network. There are several open issues stemming from these two results. The
following are three natural examples:

• Are there other parameters that govern the complexity of Target Set Selection?
• Can our lower bound extend to the path width parameter of graphs?
• Can our upper and lower bounds be tightened?

For Non-Monotone Target Set Selection we showed that the most general case, where we have a directed network
with edge influence values (which could be negative), is #P-hard and is thus much harder than the monotone problem.
Note that our algorithm fails to solve even the most restrictive non-monotone variant where the graph is undirected and
unweighted. We propose the following three questions:

• Is Non-Monotone Target Set Selection PSPACE-complete, or is it in #P?
• What is the complexity of the unweighted undirected variant of this problem?
• Is there a polynomial algorithm when the network is a tree?
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