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Abstract

In this paper we are mainly concerned with the Cauchy transform of certain strong distributions satisfying a type of
symmetric property introduced by A.S. Ranga. Algebraic properties of the corresponding two-point Pad�e-type approximants
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1. Introduction

In 1980, Jones et al. [9] introduced and solved the so-called strong Stieltjes moment problem.
Namely, for a given sequence {ck}k ∈Z, �nd a distribution function, i.e. a real valued, bounded,
nondecreasing function �(t) with in�nitely many points of increase on [0;∞) such that

ck =
∫ ∞

0
tk d�(t); k ∈Z: (1.1)

Such functions are usually described as strong distributions and since then, many contributions
have been given in connection with continued fractions, orthogonal Laurent polynomials, quadrature
formulas, two-point Pad�e approximants and so on. (For a survey about these topics, see [8] and
references therein.)
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Associated with a distribution �, we have its Cauchy transform (Stieltjes function) given by

F�(z) =
∫ ∞

0

d�(t)
z − t (1.2)

which admits the asymptotic expansions (see [9])

L0(z) =−
∞∑
j=0

c−(j+1)z j and L∞(z) =
∞∑
j=1

cj−1z−j (1.3)

around z = 0 and z =∞, respectively.
When considering rational approximation to F�(z), starting from the asymptotic expansions L0 and

L∞, then, two-point Pad�e approximants immediately arise. Thus, given two nonnegative integers k
and m with 06 k6 2m, there exist two polynomials Pm−1(z) and Qm(z) of degrees m − 1 and m
respectively such that,

L0(z)− Pm−1(z)
Qm(z)

= O
(
zk
)
(z → 0);

L∞(z)− Pm−1(z)
Qm(z)

= O

((
1
z

)2m−k+1)
(z → ∞):

(1.4)

Furthermore, it is known (see [4,10]) that Qm(z) coincides, up to a multiplicative factor, with the mth
orthogonal polynomial with respect to the distribution d�(t)=tk , so that Qm(z) has exact degree m
and all its zeros lie on (0;∞). We will refer to the rational function Pm−1(z)=Qm(z) as the two-point
Pad�e approximant (2PA) to F�(z) and we will write

Pm−1(z)
Qm(z)

= [k=m]F� (z); 06 k6 2m:

(For an alternative approach based upon orthogonal Laurent polynomials see the papers [6,7].)
On the other hand, according to the ideas given by Brezinski [1], one could also consider ratio-

nal approximants with prescribed poles, i.e. the denominator is given in advance. Thus, we have
the so-called Pad�e-type approximation. More precisely, let m and p be nonnegative integers with
06p6m and Bm(z) a given polynomial of exact degree m such that Bm(0) 6= 0, then there exists
a unique polynomial Am−1(z) of degree at most m− 1, such that,

L0(z)− Am−1(z)
Bm(z)

= O(zp) (z → 0);

L∞(z)− Am−1(z)
Bm(z)

= O

((
1
z

)m−p+1)
(z → ∞):

(1.5)

It will be said that Am−1(z)=Bm(z) represents a (p=m) two-point Pad�e-type approximant (2PTA) to
F�(z), denoted by

(p=m)F�(z); 06p6m:

In this paper we will be mainly concerned with the study and characterization of these rational
approximants to the function F�(z) when the distribution � satis�es a certain symmetric property
introduced by Ranga in [12].
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2. Strong c-inversive Stieltjes distributions

In a series of papers (see e.g. [11–13]), Sri Ranga et al. have dealt with some strong distributions
on (a; b) (06 a¡b6 +∞) along with properties of sequences of polynomials associated with such
distributions satisfying certain orthogonality properties. More exactly, for a given strong distribution
d�(t) on (a; b), this author considers the monic polynomials Bm(z) of degree m de�ned by∫ b

a
t−m+sBm(t) d�(t) = 0; s= 0; 1; : : : ; m− 1 (2.1)

and shows that they satisfy a three-term recurrence relation of the type,

Bm+1(z) = (z − �m+1)Bm(z)− �m+1zBm−1(z); m¿0 (2.2)

with B−1 = 0 and B0 = 1.
These polynomials are related to certain continued fractions (Ĵ -fraction) and their zeros provide

quadrature formulas exactly integrating certain subspaces of Laurent polynomials (see [7]). Note
that these continued fractions must be called Ĵ -fractions. (J -fractions are associated with ordinary
orthogonal polynomials, and are not equivalent to Ĵ -fractions.)
On the other hand, when considering strong distributions with a somewhat symmetric behavior

with respect to the origin and in�nity, the concept of a c-inversive distribution arises. Indeed, a
strong distribution d�(t) on (a; b) is said to be c-inversive [12] if there exists a positive number
c¿ 0 such that for all t ∈ (a; b) it holds that

c
t
∈ (a; b) and

d�(t)√
t
=−d�(c=t)√

c=t
: (2.3)

If 0¡a¡b¡+∞, then c=ab. Furthermore, if a=0 then b=+∞. In the sequel and for the sake
of simplicity we will assume that � is absolutely continuous on (a; b), i.e. a nonnegative function
w(t) exists such that

d�(t) = w(t) dt; t ∈ (a; b): (2.4)

At the same time, the term ‘strong’ could be omitted when confusion does not take place.
Now, Eq. (2.3) can be written as

√
tw(t) =

√
c
t
w
(
c
t

)
or

√
c
t
w
(
c
t

)
= w(t): (2.5)

Let us now consider the Cauchy transform

Fw(z) =
∫ b

a

w(t)
z − t dt; (2.6)

of the c-inversive distribution d�(t) = w(t) dt. One has Fw(z) =
∫ b
a (
√
c=t)(w( ct )=z − t) dt. Setting

c=t = x, it follows:

Fw

(
c
z

)
=− z√

c
Fw(z); ∀z ∈C\[a; b]: (2.7)

In this case, we will also say that Fw(z) is c-inversive.
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Example 2.1.

w(t) =
1√

b− t√t − a ; t ∈ (a; b); 0¡a¡b¡+∞:

It can be easily veri�ed that d�(t) = w(t) dt is c-inversive with c = ab.
Furthermore, Fw(z) is now given by (see [12])

Fw(z) =
�√

z − b√z − a ;

so that Eq. (2.7) holds.

Example 2.2.

w(t) =
1√
t
; t ∈ (a; b); 0¡a¡b¡+∞:

Again this distribution is c-inversive with c = ab. Now, we have

Fw(z) =
1√
z
ln
(
√
b+

√
z)(

√
a−√

z)

(
√
b−√

z)(
√
a+

√
z)
:

Example 2.3.

w(t) = t�exp
[
�
(
t
 +

A
t


)]
; t ∈ (0;∞); �∈R; �¡ 0; 
¿

1
2
; A¿ 0:

The corresponding distributions d�(t) =w(t) dt are included in the class studied recently in [10]. It
can be checked that w(t) is c-inversive with c = A1=
 if and only if � =− 1

2 . The case � =− 1
2 and


= 1 was considered by Ranga in [12,13].

3. Two-point Pad�e-type approximation

From its de�nition, one can see that the Cauchy transform of a distribution � supported on [a; b]
represents an analytic function on the extended complex plane Ĉ except possibly on [a; b]. If we
assume that � is c-inversive, then by Eq. (2.7) it is enough to compute Fw(z) for z such that |z|¡r
with r ¿

√
c (z 6∈ [a; b]).

Thus, when considering 2PTA to Fw(z); w being c-inversive, it seems natural to study the existence
of appropriate denominators such that Eq. (2.7) is preserved. So, let (p=m)Fw(z)(06p6m) be a
2PTA to Fw(z) and set

(p=m)Fw(z) =
Am−1(z)
Bm(z)

:

Is it possible to choose the denominator Bm(z)∈�m so that

(p=m)Fw

(
c
z

)
=− z√

c
(p=m)Fw (z)?
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Assume that Bm(z) is a polynomial of degree m with all its zeros in (a; b), satisfying

Bm(z) = �mzmBm

(
c
z

)
; �m 6= 0: (3.1)

Setting Em(z) = Fw(z)− (p=m)Fw(z), then one knows [4]

Em(z) =
zp

Bm(z)

∫ b

a

Bm(t)
tp(z − t)w(t) dt:

Therefore, for the numerator Am−1(z), it follows that

Am−1(z) =
∫ b

a

tpBm(z)− zpBm(t)
tp(z − t) w(t) dt:

Since, w(t) = (
√
c=t)w(c=t), one has

Am−1(z) =
1√
c

∫ b

a

tpBm(z)− zpBm(t)
tp(z − t)

c
t
w
(
c
t

)
dt:

Set, c=t = x, then it can be deduced

Am−1(z) =
√
c�mzm

∫ b

a

xm−pBm(c=z)− (zp−mc−p=�2m)Bm(x)
xm−pz(x − (c=z)) w(x) dx:

Asumme now that �m =
√
1=cm. Then,

Am−1(z) =−√
c�mzm−1

∫ b

a

xm−pBm(c=z)− (c=z)m−pBm(x)
xm−p((c=z)− x) w(x) dx: (3.2)

If we write Akm−1(z) for the numerator of the (k=m)Fw(z) (06 k6m)-2PTA with denominator Bm(z),
from Eq. (3.2) one has

Apm−1(z) =−√
c�mzm−1A

m−p
m−1

(
c
z

)
;

when taking in both approximants the same denominator Bm(z). By choosing p such that m−p=p
or equivalently m= 2p, it follows,

(p=m)Fw(z) =
Apm−1(z)
Bm(z)

=
−√

c�mzm−1A
p
m−1(

c
z )

zm�mBm( cz )
=−

√
c
z
(p=m)Fw

(
c
z

)
:

Thus, we have proved the following,

Theorem 3.1. Let d�(t)=w(t) dt be a c-inversive distribution on (a; b) and Bn(z) a polynomial of
degree n such that

Bn(z) = �nznBn

(
c
z

)
; �n =

1√
cn
: (3.3)

Let us consider the (m=2m)-2PTA with denominator B2m(z) satisfying Eq. (3:3); then;

(m=2m)Fw

(
c
z

)
=− z√

c
(m=2m)Fw (z): (3.4)
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In this case, we will say that the (m=2m)-2PTA is also c-invesive.
Let us next see how to �nd polynomials B2m(z) satisfying Eq. (3.3).

Proposition 3.2. Let c be a real positive number and {xj}mj=1 m points on (a; b). De�ne;

B2m(z) = 

m∏
j=1

(z − xj)
(
z − c

xj

)
; 
 6= 0:

Then; B2m(z) satis�es Eq. (3:3) with c = ab when 0¡a¡b¡+∞.

Proof. Since a¡xj ¡b, then c=xj = ab=xj ¡ab=a= b, and c=xj = ab=xj ¿ab=b= a. Thus, B2m(z) is
a polynomial of degree 2m with all its zeros in (a; b) at the points {xj; cxj }mj=1. Furthermore,

B2m

(
c
z

)
= 
cm

m∏
j=1

(
c
z
− xj

)(
1
z
− 1
xj

)
=
cm

z2m


m∏
j=1

(
c − zxj

) (xj − z)
xj

=
cm

z2m


m∏
j=1

(
z − xj

)(
z − c

xj

)
=
cm

z2m
B2m(z):

Proposition 3.3. Let Pm(z) be a polynomial of degree m with all its zeros on (a; b) and Pm(0) 6=
0. Take c¿ 0; (as before; if 0¡a¡b¡∞; c = ab). Then B2m(z) = zm

Pm(0)
Pm(z)Pm( cz ); satis�es

Eq. (3:3).

Proof. Write Pm(z) = 

∏m
j=1(z − xj)(
 6= 0). Thus

Pm

(
c
z

)
= 
z−m(−1)m

m∏
j=1

xj
m∏
j=1

(
z − c

xj

)
: (3.5)

Then, B2m(z) = 
2
∏m
j=1(z − xj)(z − (c=xj)) and the proof follows by Proposition 3.2.

In order to get c-inversive 2PTA with arbitary p (06p6m) extra requirements are now needed.
Indeed, one has

Theorem 3.4. Let m and p be nonnegative integers (m¿ 1) such that 06p6m and 2p¿m.
Let Bm(z) be a polynomial of degree m such that

(i) Bm(z) = �mzmBm( cz ); �m = 1=
√
cm; c¿ 0;

(ii)
∫ b
a t

jBm(t)[w(t)=tp] dt = 0; j = 0; 1; : : : ; E[
2p−m+1

2 ]− 1:
Then; the (p=m) 2PTA with denominator Bm(z) is c-inversive.

Proof. First, we must assure that a polynomial of degree at most m; Bm(z), satisfying (i) and (ii)
exists. Set

Bm(z) =
m∑
j=0

bj zj:
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Then, by (i) we deduce for the coe�cients {bj} the following linear system:
bj = �mcm−jbm−j; j = 0; 1; : : : ; E

[
m+ 1
2

]
− 1:

As usual E[x]; x∈R, denotes the integer part of x.
Next, we will �rst consider the case p¡m. From (i) and (ii) we have an homogeneous linear

system of E[m+12 ] + E[
2p−m+1

2 ] equations with m+ 1 unknowns.
Since

E
[
m+ 1
2

]
+ E

[
2p− m+ 1

2

]
=

{
p if m is even;

p+ 1 if m is odd;

one sees that such system admits a nontrivial solution.
On the other hand, when p= m, by virtue of c-inversivity, (ii) implies that∫ b

a
tjBm(t)

w(t)
tp

dt = 0; j = 0; 1; : : : ; m− 1:
That is, Bm(z) is uniquely determined up to a multiplicative factor and represents the mth orthogonal
polynomial with respect to the varying weight function w(t)=tm. In [12] it can be seen that this
polynomial satis�es property (i). Furthermore, it should be noted that, in this case, we are actually
dealing with the [m=m]-2PA to Fw(z). Let us next check that the approximant with denominator
Bm(z) as given before is c-inversive.

Indeed, because of c-inversivity (ii) implies that∫ b

a
tjBm(t)

w(t)
tp

dt = 0; j = 0; 1; 2; : : : ; 2p− m− 1: (3.6)

Write

Em(z) = Fw(z)− (p=m)Fw(z) = Em(z) =
zp

Bm(z)

∫ b

a

Bm(t)
tp(z − t)w(t) dt: (3.7)

Now, for any nonnegative integer k one has,

Em(z) =
zp−1

Bm(z)

∫ b

a
Bm(t)

[
1 +

t
z
+ · · ·+ tk

zk
+

tk+1

zk(z − t)

]
w(t)
tp

dt: (3.8)

Take k = 2p− m− 1. By Eq. (3.6) it follows that
Em(z) =

zp−1

Bm(z)

∫ b

a

Bm(t)
tp

t2p−m

z2p−m−1
w(t)
z − t dt =

zm−p

Bm(z)

∫ b

a

Bm(t)
tm−p

w(t)
z − t dt: (3.9)

Thus, from Eq. (3.7) see that (3.9) represents the error for the (m− p=m) 2PTA with denominator
Bm(z). If we put

(p=m)(z) =
Apm−1(z)
Bm(z)

and (m− p=m)(z) = A
m−p
m−1 (z)
Bm(z)

;

then from Eq. (3.9) it follows that both approximants coincide and since they have the same de-
nominator we conclude that

Apm−1(z) = A
m−p
m−1 (z);

so that proceeding as in Theorem 3.1, the proof follows.
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Remark 3.5. From Eqs. (3.7)–(3.9) one has actually a higher order 2PTA (see [5]), since,

Em(z) = O(zp) (z → 0) and Em(z) = O
(
1
zp+1

)
(z → ∞):

So, the total order of correspondence both at z = 0 and z =∞ is equal to 2p¿m.

Paralleling the proof of Theorem 3.4, a similar result can be deduced for m¿ 2p. Thus, we have

Theorem 3.6. Let m and p be nonnegative integers (m¿ 1) such that 06p6m and m¿ 2p. Let
Bm(z) be a polynomial of degree m; such that

(i) Bm(z) = �mzmBm( cz ); c¿ 0; �m = 1√
cm
;

(ii)
∫ b
a t

jBm(t)
w(t)
tm−p dt = 0; j = 0; 1; : : : ; E[

m−2p+1
2 ]− 1:

Then; the (p=m)-2PTA with denominator Bm(z) is c-inversive.

Remark 3.7. As before, actually one has again a higher order 2PTA, since now

Em(z) = O(zm−p) (z → 0) and Em(z) = O
(

1
zm−p+1

)
(z → ∞):

Thus, the total order of correspondence both at the origin and in�nity is equal to 2(m− p)¿m:

Let us next consider a (p=m)-2PTA whose total order of correspondence is exactly equal to m, i.e.

Em(z) =
∞∑
j=p

djzj =O(zp); dp 6= 0 (z → 0);

Em(z) =
∞∑

j=m−p+1
d∗j z

−j =O
(

1
zm−p+1

)
; d∗m−p+1 6= 0 (z → ∞):

(3.10)

Theorem 3.8. Let (p=m)Fw(z) (06p6m) be a 2PTA to Fw(z) satisfying Eq. (3:10). Set (p=m)Fw
(z) =Am−1(z)=Bm(z) with Am−1 ∈�m−1 and Bm(z) a monic polynomial of degree m with Bm(0) 6= 0.
Assume that (p=m)Fw(z) is c-inversive (c¿ 0). Then

(i) m= 2p and (ii) Bm(z) = �mzmBm(c=z); �m = 1=cp:

Proof. (i) Fw(z)−(p=m)Fw(z)=O(zp)(z → 0) and Fw(z)−(p=m)Fw(z)=O(1=zm−p+1)(z → ∞) which
gives

√
c
z
Fw

(
c
z

)
−

√
c
z
(p=m)Fw

(
c
z

)
=

√
c
z
O
(
1
zp

)
=O

(
1
zp+1

)
and by c-inversivity, this implies

Fw(z)− (p=m)Fw(z) = O
(
1
zp+1

)
(z → ∞); Fw(z)− (p=m)Fw(z) = O (zm−p)(z → 0): (3.11)

Thus from Eqs. (3.10) and (3.11) it follows: m− p= p; i.e. m= 2p.
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(ii) Let us assume that the approximant is not an irreducible rational fraction, otherwise the proof
follows easily. So, we can write

A2p−1(z) = P(z)A(z); deg(P) = l¿1

B2p(z) = P(z)B(z):

Thus (p=2p)Fw(z) = A2p−1(z)=B2p(z) = A(z)=B(z):
On the other hand, from the error expression for the (p=2p)-2PTA it follows:

Fw(z)− A(z)
B(z)

=
zp

P(z)B(z)

∫ b

a

P(t)B(t)
(z − t)tp w(t) dt: (3.12)

Since the approximant is c-inversive, one has

A(z)
B(z)

=−
√
cz2p−l−1A(c=z)
z2p−lB(c=z)

(3.13)

and because of A(z)=B(z) is irreducible, this implies that

B(z) = 
z2p−lB(c=z); 
 6= 0: (3.14)

Putting z=
√
c we deduce that 
=1=c

2p−l
2 . For it, take into account that from Eq. (3.13) A(

√
c)=0,

which gives B(
√
c) 6= 0. Furthermore, A(z) should also satisfy

A(z) =−√
c
z2p−l−1A(c=z): (3.15)

Now, from Eq. (3.12) we have

B(z)E(z) = B(z)Fw(z)− A(z) = zp

P(z)

∫ b

a

P(t)
z − t

B(t)
tp
w(t) dt =M (z):

By Eqs. (3.14) and (3.15) and that Fw(z) =−(c=z)Fw(c=z) we see that√
c
z2p−l−1E(c=z) =−E(z): (3.16)

Now, replacing E(z) by M (z) in Eq. (3.16) and after some elementary calculations (including the
usual change of variable c=t = x) the following holds:

1
zlP(c=z)

∫ b

a

xlP(c=x)
z − x B(x)

w(x)
xp

dx =
1
P(z)

∫ b

a

P(x)
z − xB(x)

w(x)
xp

dx;

or equivalently,

P(z)
zlP(c=z)

=

∫ b
a
P(x)
z−x B(x)

w(x)
xp dx∫ b

a
xlP(c=x)
z−x B(x)

w(x)
xp dx

: (3.17)

Now, the functions appearing in the right-hand member of Eq. (3.17) are holomorphic functions
outside [a; b]. Furthermore, since w(x)¿ 0 a.e. on [a; b], they cannot be rational functions. Thus,
there must exist a constant � such that

P(z) = �zlP(c=z):

Setting, z =
√
c, we have � = 1=

√
cl:

Therefore, B2p(z)=P(z)B(z)=(1=
√
cl)P(c=z)(1=

√
c2p−l)B(c=z)=(1=cp)P(c=z)B(c=z)=(1=cp)B2p(c=z):
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This has been done under the assumption that P(
√
c) 6= 0: Suppose that P(√c)=0. Since deg(P)=l

is even, then z =
√
c must be a root with multiplicity even. More precisely,

P(z) = (z −√
c)2jR(z); j¿1:

Thus,

P(z) = (z −√
c)2jR(z) = �zl

(
c
z
−√

c
)2j
R(c=z)

= �cjzl−2jR(z)(z −√
c)2j; R(

√
c) 6= 0:

Hence, �cj(
√
c)l−2j = 1, which gives � = 1=

√
cl.

Theorems 3:1 and 3:9 provide us with the following

Corollary 3.9. Let (p=m)Fw(z) = Am−1=Bm(z) be a 2PTA with Bm(z) a polynomial of the degree m
where Bm(0) 6= 0 and assume that Eq. (3:10) holds. Then (p=m)Fw(z) is c-inversive; if and only if;
(i) m= 2p and (ii) Bm(z) = �mzmBm( cz ); �m = 1=c

p:

To end this section, let us see the reciprocals of Theorems 3.4 and 3.6. Indeed, one �rst has,

Proposition 3.10. Let (p=m)Fw(z) = Am−1(z)=Bm(z) be a 2PTA to Fw(z) where p and m are non-
negative integers such that 06p6m and 2p¿m. Assume that (p=m)Fw(z) is c-inversive. Then;
(i)

∫ b
a t

jBm(t)(w(t)=tp) dt = 0; j = 0; 1; 2; : : : ; 2p−m− 1 and (ii) Bm(z) = �mzmBm(c=z); �m = 1=
√
cm:

Proof. (a) We have

Fw(z)− (p=m)Fw(z) = O(zp) (z → 0);

Fw(z)− (p=m)Fw(z) = O
(

1
zm−p+1

)
(z → ∞): (3.18)

As the approximant is c-inversive we can also write

Fw(z)− (p=m)Fw(z) = O(zm−p) (z → 0);

Fw(z)− (p=m)Fw(z) = O
(
1
zp+1

)
(z → ∞): (3.19)

Since 2p¿m then p¿m− p. Thus, by Eqs. (3.18) and (3.19), it follows that
Em(z) = O(zp)(z → 0) and Em(z) = O

(
1
zp+1

)
(z → ∞): (3.20)

Since deg(Bm) = m, then one has

1
Bm(z)

= z−m
∞∑
j=0

bjz−j; b0 6= 0:

Thus, by Eq. (3.8) one can write:

Em(z) = z−(m−p+1)
 ∞∑
j=0

bjz−j
( ∞∑

k=0

dkz−k
)
;
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where

dk =
∫ b

a
tkBm(t)

w(t)
tp

dt; k = 0; 1; 2; : : : :

Hence, this results in

Em(z) =
(
1
z

)m−p+1 ∞∑
j=0

�jz−j with �j =
j∑
i=0

bidj−i ; j = 0; 1; : : : ; b0 6= 0:

From Eq. (3.20) it follows �j=0; j=0; 1; : : : ; 2p−m−1, and since b0 6= 0 this implies dj=0; j=
0; 1; : : : ; 2p−m− 1, which yields (i). Now proceeding as in proof of (ii) for Theorem 3.8, (ii) can
be achieved.

In a similar way one can also prove the following.

Proposition 3.11. Let (p=m)Fw(z) = Am−1(z)=Bm(z) be a 2PTA to Fw(z) where p and m are non-
negative integers such that 06p6m and 2p¡m. Assume that (p=m)Fw(z) is c-inversive. Then;
(i) Bm(z)= �mzmBm(c=z); �m=1=

√
cm and (ii)

∫ b
a t

jBm(t)[w(t)=tm−p] dt=0; j=0; 1; 2; : : : ; m− 2p− 1:

4. Convergence

Let us �rst consider the case 0¡a¡b¡ + ∞ and w(t) c-inversive (c = ab). For a given
sequence {(n=2n)} of 2PTA, to Fw(z), we will study when it converges to Fw(z). As usual in
Pad�e-type approximation [1], the key is to �nd an appropriate choice of denominators. Indeed, one
has

Theorem 4.1. Let � be a positive measure on [a; b] such that �′(x)¿ 0 a.e. on [a; b]. Let Qn(z)
denote the nth monic orthogonal polynomial with respect to d�. Set

B2n(z) =
zn

Qn(0)
Qn(z)Qn

(
c
z

)
: (4.1)

Under these conditions the following holds:

(i) (n=2n)Fw(z) = A2n−1=B2n(z) is c-inversive;
(ii) Let K be a compact in C \ [a; b]. Then; there exits a positive constant �= �(K)¡ 1 so that

lim sup
n→∞

‖Fw(z)− (n=2n)Fw(z)‖1=2nK 6 �(K);

where ‖ − ‖K represents the suprem norm.

Proof. (i) It immediately follows from Proposition 3.3.
(ii) Set

E2n(z) =Fw(z)− (n=2n)Fw(z)

=
zn

B2n(z)

∫ b

a

B2n(t)
tn(z − t)w(t) dt
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=
znQn(0)

znQn(z)Qn( cz )

∫ b

a

tnQn(t)Qn( ct )
Qn(0)tn(z − t)w(t) dt

=
1

Qn(z)Qn( cz )

∫ b

a

Qn(t)Qn( ct )
z − t w(t) dt; ∀z ∈ Ĉ\[a; b]: (4.2)

De�ne: ‖Qn‖∞=maxx∈ [a;b]|Qn(x)|. Since c=t ∈ [a; b] ∀t ∈ [a; b] then |Qn(t)|6 ‖Qn‖∞ and |Qn(c=t)|6
‖Qn‖∞∀t ∈ [a; b]. Take z ∈K ⊂C\[a; b]; K compact. For z 6∈ [a; b], we have

|E2n(z)|6 ‖Qn‖2∞
|Qn(z)||Qn( cz )|

∫ b

a

w(t)
|z − t| dt6

M (K)‖Qn‖2∞
|Qn(z)||Qn( cz )|

;

M being a positive constant dependent on K . Furthermore, if z 6∈ [a; b], then c=z 6∈ [a; b], so

|E2n(z)|1=2n6 [M (K)]1=2n||Qn||1=n∞
|Qn(z)|1=2n|Qn( cz )|1=2n

;

and consequently

lim sup
n→∞

|E2n(z)|1=2n6 lim supn→∞‖Qn‖1=n∞
lim inf n→∞{|Qn(z)|1=2n|Qn(c=z)|1=2n} :

On the other hand, one knows (see [14])

lim sup
n→∞

||Qn||1=n∞ = Cap([a; b]);

lim sup
n→∞

|Qn(z)|1=n = Cap([a; b])�[a; b](z); ∀z 6∈ [a; b];

where Cap([a; b]) = 1
4(b − a) (see e.g. [14]) and �[a; b] is the conformal transformation mapping

Ĉ\[a; b] onto the exterior of the unit circle, preserving the point at in�nity. Therefore
|�[a; b](z)|¿ 1; ∀z ∈ Ĉ\[a; b]:

Thus, we �nally obtain,

lim sup
n→∞

|E2m(z)|1=2n6 1√
|�[a; b](z)||�[a; b](c=z)|

6 �(K)¡ 1

with

�(K) =
1

inf z∈K
√
|�[a; b](z)||�[a; b](c=z)|

: (4.3)

Remark 4.2. Certainly, it should be observed that part (ii) in Theorem 4.1 is valid for a general
distribution d�(t) = w(t) dt not necessarily c-inversive. Even more, w(t) can be an L1-integrable
function on (a; b)(0¡a¡b¡+∞) and an arbitrary sequence of 2PTA (k=n)Fw(z) (z)=An−1(z)=Bn(z)
can be considered where Bn(z) = zkQk(c=z)Qn−k(z), with k = k(n) a sequence of nonnegative in-
tegers such that 06 k(n)6 n and limn→∞ k(n)=n = � (06 �6 1). In this respect see [4]. On the
other hand, assume that the ‘auxiliary’ measure �(t) is c-inversive too. Here it is assumed that
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d�(t)=t2n= [�′(t)=t2n] dt, i.e., that � is absolutely continuous, with �′(t)¿ 0 a.e. on [a; b]. Let B2n(z)
be orthogonal with respect to d�(t)=t2n i.e.∫ b

a
tjB2n(t)

�′(t)
t2n

dt = 0; j = 0; 1; 2; : : : ; 2n− 1:

By [12] we have that the 2PTA with denominator B2n(z) is c-inversive. Set

(n=2n)Fw(z) =
A2n−1(z)
B2n(z)

then, making use of [2, Theorem 5:4], we have (�= 1
2)

lim sup
n→∞

|E2m(z)|1=2n6 exp {−G[a; b](�; z)} :

Here, G[a; b](�; z) denotes the Green potencial of the measure �= 1
2[�0+�∞] and �x the Dirac measure

corresponding to the point x. Thus, G[a; b](�; z) = 1
2 [g[a; b](z; 0) + g[a; b](z;∞)]:

As usual, g[a; b](z; t) is the Green function whith singularity in t ∈ Ĉ\[a; b]:
Therefore, one obtains

lim sup
n→∞

|E2n(z)|1=2n 6 exp
{− 1

2 [g[a; b](z; 0) + g[a; b](z;∞)]
}

=
1√

expg[a; b](z; 0)expg[a; b](z;∞) : (4.4)

Compare the estimate deduced from Eq. (4.4) with the one obtained in Eq. (4.3). It can be
checked that both estimates coincide.
Let us see next what happens when [a; b] is an in�nite interval i.e. [a; b] = [0;∞). We �rst have,

Theorem 4.3. Let w(t) be c-inversive on [0;∞) (w(t) not necessarily positive) and let �(t) be a
positive measure which is also c-inversive on [0;∞) and the unique solution of a strong Stieltjes
moment problem. Assume that

∫∞
0 (|w(t)|2=�′(t)) dt = k21¡+∞.

Let B2n(z) be an orthogonal polynomial of degree 2n with respect to d�(t)=t2n. Then;

(i) (n=2n)Fw(z) = A2n−1(z)=B2n(z) is c-inversive;
(ii) {(n=2n)Fw(z)} converges uniformly to Fw(z) on any compact set of C\[0;∞):

Proof. (i) By Theorem 3:2 of [12] we see that B2n(z) sati�es B2n(z)=�2nz2nB2n(c=z) with �2n=1=cn.
Thus, from Theorem 3.1(i) is proved.
(ii) It readily follows from Theorem 5:1 of [3].

As we have already seen in Example 1:3, given c¿ 0, the measure

d�(t) = t−1=2exp
[
�
(
t
 +

c


t


)]
dt; 
¿

1
2
; �¡ 0 (4.5)

is c-inversive. Thus proceeding as in Theorem 5:7 of [3], we can also give, in this case, an estimate
of the rate of convergence. Indeed,



242 C. D��az-Mendoza et al. / Journal of Computational and Applied Mathematics 105 (1999) 229–243

Theorem 4.4. Let w(t) be c-inversive on [0;∞). Assume that two constants 
¿ 1
2 and �¡ 0 exist

such that∫ ∞

0

|w(t)|2√t
exp[�(t
 + c


t
 )]
dt = K21 ¡+∞:

Let B2n(z) be the orthogonal polynomial of degree 2n with respect to d�(t)=t2n with d�(t) given by
Eq. (4:5). Then; for any compact subset K of C\[0;∞) there exists a positive constant �=�(K)¡ 1
so that

lim sup
n→∞

||Fw(z)− (n=2n)Fw(z)||1=(2n)
r

6 �(K)

with 0¡r = 1− 1
2
 ¡ 1.

Remark 4.5. Take into account that Eq. (4.5) can be written as

d�(t) = t−1=2exp(−�(t)) where �(t) = |�|
(
t
 +

c


t


)
; 
¿

1
2
:

According to [10], �(t) should satisfy for some s¿ 0

lim
t→0+

(st)
�(t) = |�| lim
t→+∞(st)

−
�(t) = A¿ 0: (4.6)

Thus,

lim
t→0+

(st)
�(t) = |�| lim
t→0+

(st)

[
t
 +

c


t


]
= |�|s
c
:

On the other hand,

lim
t→+∞(st)

−
�t = |�|; lim
t→+∞(st)

−

[
t
 +

c


t


]
= |�| and lim

t→+∞

[
s−
 +

c


t2


]
= |�|s−
:

In order to ful�ll Eq. (4.6), it should hold, |�|s
c
 = |�|s−
; i:e: s = 1=√c¿ 0. With this choice of
the parameter s¿ 0, we have

A= |�|c
=2: (4.7)

In this case, �(K) can be expressed as (see [10]) �(K) = exp(−R) with R=D(
)inf z∈K{�(z)}¿ 0,
where �(z) and D(
) are given by

�(z) =
(
1
2

)r [
Im(sz)

1
2 + Im(sz)−

1
2

]
; s=

1√
c

and

D(
) =
2


2
− 1

[
A�(
+ 1

2)√
��(
)

] 1
2


; A= |�|c


2 :

Assume 
= 1 (this measure was considered by Ranga [12]), then r = 1− (1=2
) = 1− 1
2 =

1
2 . Thus,

�(z) =
1√
2

Im( z√
c

)1
2
+ Im

(
z√
c

)− 1
2

 and D(1) =

√
2|�|

√
c
�
:
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