Two-point Padé-type approximation to the Cauchy transform of certain strong distributions ${ }^{2 \pi}$

C. Díaz-Mendoza, P. González-Vera *, R. Orive
Department of Mathematical Analysis, La Laguna University, 38271 La Laguna, Tenerife, Canary Islands, Spain
Received 21 October 1997; received in revised form 6 February 1998
Dedicated to Professor Haakon Waadeland on the occasion of his 70th birthday

Abstract

In this paper we are mainly concerned with the Cauchy transform of certain strong distributions satisfying a type of symmetric property introduced by A.S. Ranga. Algebraic properties of the corresponding two-point Padé-type approximants are given along with results about convergence for sequences of such approximants © 1999 Elsevier Science B.V. All rights reserved.

MSC: 41A21; 30E05; 34E05
Keywords: Two-point Padé-type approximation; Strong distribution; Cauchy transform; Orthogonal polynomial; Rate of convergence

1. Introduction

In 1980, Jones et al. [9] introduced and solved the so-called strong Stieltjes moment problem. Namely, for a given sequence $\left\{c_{k}\right\}_{k \in \mathbb{Z}}$, find a distribution function, i.e. a real valued, bounded, nondecreasing function $\phi(t)$ with infinitely many points of increase on $[0, \infty)$ such that

$$
\begin{equation*}
c_{k}=\int_{0}^{\infty} t^{k} \mathrm{~d} \phi(t), \quad k \in \mathbb{Z} \tag{1.1}
\end{equation*}
$$

Such functions are usually described as strong distributions and since then, many contributions have been given in connection with continued fractions, orthogonal Laurent polynomials, quadrature formulas, two-point Padé approximants and so on. (For a survey about these topics, see [8] and references therein.)

[^0]Associated with a distribution ϕ, we have its Cauchy transform (Stieltjes function) given by

$$
\begin{equation*}
F_{\phi}(z)=\int_{0}^{\infty} \frac{\mathrm{d} \phi(t)}{z-t} \tag{1.2}
\end{equation*}
$$

which admits the asymptotic expansions (see [9])

$$
\begin{equation*}
L_{0}(z)=-\sum_{j=0}^{\infty} c_{-(j+1)} z^{j} \quad \text { and } \quad L_{\infty}(z)=\sum_{j=1}^{\infty} c_{j-1} z^{-j} \tag{1.3}
\end{equation*}
$$

around $z=0$ and $z=\infty$, respectively.
When considering rational approximation to $F_{\phi}(z)$, starting from the asymptotic expansions L_{0} and L_{∞}, then, two-point Padé approximants immediately arise. Thus, given two nonnegative integers k and m with $0 \leqslant k \leqslant 2 m$, there exist two polynomials $P_{m-1}(z)$ and $Q_{m}(z)$ of degrees $m-1$ and m respectively such that,

$$
\begin{align*}
& L_{0}(z)-\frac{P_{m-1}(z)}{Q_{m}(z)}=\mathrm{O}\left(z^{k}\right)(z \rightarrow 0), \\
& L_{\infty}(z)-\frac{P_{m-1}(z)}{Q_{m}(z)}=\mathrm{O}\left(\left(\frac{1}{z}\right)^{2 m-k+1}\right)(z \rightarrow \infty) . \tag{1.4}
\end{align*}
$$

Furthermore, it is known (see $[4,10]$) that $Q_{m}(z)$ coincides, up to a multiplicative factor, with the m th orthogonal polynomial with respect to the distribution $\mathrm{d} \phi(t) / t^{k}$, so that $Q_{m}(z)$ has exact degree m and all its zeros lie on $(0, \infty)$. We will refer to the rational function $P_{m-1}(z) / Q_{m}(z)$ as the two-point Padé approximant (2PA) to $F_{\phi}(z)$ and we will write

$$
\frac{P_{m-1}(z)}{Q_{m}(z)}=[k / m]_{F_{\phi}}(z), \quad 0 \leqslant k \leqslant 2 m
$$

(For an alternative approach based upon orthogonal Laurent polynomials see the papers [6,7].)
On the other hand, according to the ideas given by Brezinski [1], one could also consider rational approximants with prescribed poles, i.e. the denominator is given in advance. Thus, we have the so-called Padé-type approximation. More precisely, let m and p be nonnegative integers with $0 \leqslant p \leqslant m$ and $B_{m}(z)$ a given polynomial of exact degree m such that $B_{m}(0) \neq 0$, then there exists a unique polynomial $A_{m-1}(z)$ of degree at most $m-1$, such that,

$$
\begin{align*}
& L_{0}(z)-\frac{A_{m-1}(z)}{B_{m}(z)}=\mathrm{O}\left(z^{p}\right)(z \rightarrow 0), \\
& L_{\infty}(z)-\frac{A_{m-1}(z)}{B_{m}(z)}=\mathrm{O}\left(\left(\frac{1}{z}\right)^{m-p+1}\right)(z \rightarrow \infty) . \tag{1.5}
\end{align*}
$$

It will be said that $A_{m-1}(z) / B_{m}(z)$ represents a (p / m) two-point Padé-type approximant (2PTA) to $F_{\phi}(z)$, denoted by

$$
(p / m)_{F_{\phi}}(z), \quad 0 \leqslant p \leqslant m .
$$

In this paper we will be mainly concerned with the study and characterization of these rational approximants to the function $F_{\phi}(z)$ when the distribution ϕ satisfies a certain symmetric property introduced by Ranga in [12].

2. Strong c-inversive Stieltjes distributions

In a series of papers (see e.g. [11-13]), Sri Ranga et al. have dealt with some strong distributions on $(a, b)(0 \leqslant a<b \leqslant+\infty)$ along with properties of sequences of polynomials associated with such distributions satisfying certain orthogonality properties. More exactly, for a given strong distribution $\mathrm{d} \phi(t)$ on (a, b), this author considers the monic polynomials $B_{m}(z)$ of degree m defined by

$$
\begin{equation*}
\int_{a}^{b} t^{-m+s} B_{m}(t) \mathrm{d} \phi(t)=0, \quad s=0,1, \ldots, m-1 \tag{2.1}
\end{equation*}
$$

and shows that they satisfy a three-term recurrence relation of the type,

$$
\begin{equation*}
B_{m+1}(z)=\left(z-\beta_{m+1}\right) B_{m}(z)-\alpha_{m+1} z B_{m-1}(z), \quad m \geqslant 0 \tag{2.2}
\end{equation*}
$$

with $B_{-1}=0$ and $B_{0}=1$.
These polynomials are related to certain continued fractions (\hat{J}-fraction) and their zeros provide quadrature formulas exactly integrating certain subspaces of Laurent polynomials (see [7]). Note that these continued fractions must be called \hat{J}-fractions. (J-fractions are associated with ordinary orthogonal polynomials, and are not equivalent to \hat{J}-fractions.)

On the other hand, when considering strong distributions with a somewhat symmetric behavior with respect to the origin and infinity, the concept of a c-inversive distribution arises. Indeed, a strong distribution $\mathrm{d} \phi(t)$ on (a, b) is said to be c-inversive [12] if there exists a positive number $c>0$ such that for all $t \in(a, b)$ it holds that

$$
\begin{equation*}
\frac{c}{t} \in(a, b) \quad \text { and } \quad \frac{\mathrm{d} \phi(t)}{\sqrt{t}}=-\frac{\mathrm{d} \phi(c / t)}{\sqrt{c / t}} . \tag{2.3}
\end{equation*}
$$

If $0<a<b<+\infty$, then $c=a b$. Furthermore, if $a=0$ then $b=+\infty$. In the sequel and for the sake of simplicity we will assume that ϕ is absolutely continuous on (a, b), i.e. a nonnegative function $w(t)$ exists such that

$$
\begin{equation*}
\mathrm{d} \phi(t)=w(t) \mathrm{d} t, \quad t \in(a, b) \tag{2.4}
\end{equation*}
$$

At the same time, the term 'strong' could be omitted when confusion does not take place.
Now, Eq. (2.3) can be written as

$$
\sqrt{t} w(t)=\sqrt{\frac{c}{t}} w\left(\begin{array}{l}
\frac{c}{t} \tag{2.5}
\end{array}\right) \quad \text { or } \quad \frac{\sqrt{c}}{t} w\binom{c}{t}=w(t) .
$$

Let us now consider the Cauchy transform

$$
\begin{equation*}
F_{w}(z)=\int_{a}^{b} \frac{w(t)}{z-t} \mathrm{~d} t \tag{2.6}
\end{equation*}
$$

of the c-inversive distribution $\mathrm{d} \phi(t)=w(t) \mathrm{d} t$. One has $F_{w}(z)=\int_{a}^{b}(\sqrt{c} / t)\left(w\left(\frac{c}{t}\right) / z-t\right) \mathrm{d} t$. Setting $c / t=x$, it follows:

$$
\begin{equation*}
F_{w}\left(\frac{c}{z}\right)=-\frac{z}{\sqrt{c}} F_{w}(z), \quad \forall z \in \mathbb{C} \backslash[a, b] . \tag{2.7}
\end{equation*}
$$

In this case, we will also say that $F_{w}(z)$ is c-inversive.

Example 2.1.

$$
w(t)=\frac{1}{\sqrt{b-t} \sqrt{t-a}}, \quad t \in(a, b), \quad 0<a<b<+\infty .
$$

It can be easily verified that $\mathrm{d} \phi(t)=w(t) \mathrm{d} t$ is c-inversive with $c=a b$.
Furthermore, $F_{w}(z)$ is now given by (see [12])

$$
F_{w}(z)=\frac{\pi}{\sqrt{z-b} \sqrt{z-a}},
$$

so that Eq. (2.7) holds.

Example 2.2.

$$
w(t)=\frac{1}{\sqrt{t}}, \quad t \in(a, b), \quad 0<a<b<+\infty .
$$

Again this distribution is c-inversive with $c=a b$. Now, we have

$$
F_{w}(z)=\frac{1}{\sqrt{z}} \ln \frac{(\sqrt{b}+\sqrt{z})(\sqrt{a}-\sqrt{z})}{(\sqrt{b}-\sqrt{z})(\sqrt{a}+\sqrt{z})} .
$$

Example 2.3.

$$
w(t)=t^{\alpha} \exp \left[\beta\left(t^{\nu}+\frac{A}{t^{\nu}}\right)\right], t \in(0, \infty), \alpha \in \mathbb{R}, \beta<0, \gamma>\frac{1}{2}, A>0 .
$$

The corresponding distributions $\mathrm{d} \phi(t)=w(t) \mathrm{d} t$ are included in the class studied recently in [10]. It can be checked that $w(t)$ is c-inversive with $c=A^{1 / \gamma}$ if and only if $\alpha=-\frac{1}{2}$. The case $\beta=-\frac{1}{2}$ and $\gamma=1$ was considered by Ranga in [12,13].

3. Two-point Padé-type approximation

From its definition, one can see that the Cauchy transform of a distribution ϕ supported on $[a, b]$ represents an analytic function on the extended complex plane $\widehat{\mathbb{C}}$ except possibly on $[a, b]$. If we assume that ϕ is c-inversive, then by Eq. (2.7) it is enough to compute $F_{w}(z)$ for z such that $|z|<r$ with $r>\sqrt{c}(z \notin[a, b])$.

Thus, when considering 2PTA to $F_{w}(z), w$ being c-inversive, it seems natural to study the existence of appropriate denominators such that Eq. (2.7) is preserved. So, let $(p / m)_{F_{w}}(z)(0 \leqslant p \leqslant m)$ be a 2PTA to $F_{w}(z)$ and set

$$
(p / m)_{F_{w}}(z)=\frac{A_{m-1}(z)}{B_{m}(z)} .
$$

Is it possible to choose the denominator $B_{m}(z) \in \Pi_{m}$ so that

$$
(p / m)_{F_{w}}\left(\frac{c}{z}\right)=-\frac{z}{\sqrt{c}}(p / m)_{F_{w}}(z) ?
$$

Assume that $B_{m}(z)$ is a polynomial of degree m with all its zeros in (a, b), satisfying

$$
\begin{equation*}
B_{m}(z)=\lambda_{m} z^{m} B_{m}\left(\frac{c}{z}\right), \quad \lambda_{m} \neq 0 \tag{3.1}
\end{equation*}
$$

Setting $E_{m}(z)=F_{w}(z)-(p / m)_{F_{w}}(z)$, then one knows [4]

$$
E_{m}(z)=\frac{z^{p}}{B_{m}(z)} \int_{a}^{b} \frac{B_{m}(t)}{t^{p}(z-t)} w(t) \mathrm{d} t .
$$

Therefore, for the numerator $A_{m-1}(z)$, it follows that

$$
A_{m-1}(z)=\int_{a}^{b} \frac{t^{p} B_{m}(z)-z^{p} B_{m}(t)}{t^{p}(z-t)} w(t) \mathrm{d} t .
$$

Since, $w(t)=(\sqrt{c} / t) w(c / t)$, one has

$$
A_{m-1}(z)=\frac{1}{\sqrt{c}} \int_{a}^{b} \frac{t^{p} B_{m}(z)-z^{p} B_{m}(t)}{t^{p}(z-t)} \frac{c}{t} w\left(\frac{c}{t}\right) \mathrm{d} t
$$

Set, $c / t=x$, then it can be deduced

$$
A_{m-1}(z)=\sqrt{c} \lambda_{m} z^{m} \int_{a}^{b} \frac{x^{m-p} B_{m}(c / z)-\left(z^{p-m} c^{-p} / \lambda_{m}^{2}\right) B_{m}(x)}{x^{m-p_{z}}(x-(c / z))} w(x) \mathrm{d} x .
$$

Asumme now that $\lambda_{m}=\sqrt{1 / c^{m}}$. Then,

$$
\begin{equation*}
A_{m-1}(z)=-\sqrt{c} \lambda_{m} z^{m-1} \int_{a}^{b} \frac{x^{m-p} B_{m}(c / z)-(c / z)^{m-p} B_{m}(x)}{x^{m-p}((c / z)-x)} w(x) \mathrm{d} x . \tag{3.2}
\end{equation*}
$$

If we write $A_{m-1}^{k}(z)$ for the numerator of the $(k / m)_{F_{w}}(z)(0 \leqslant k \leqslant m)$-2PTA with denominator $B_{m}(z)$, from Eq. (3.2) one has

$$
A_{m-1}^{p}(z)=-\sqrt{c} \lambda_{m} z^{m-1} A_{m-1}^{m-p}\left(\frac{c}{z}\right),
$$

when taking in both approximants the same denominator $B_{m}(z)$. By choosing p such that $m-p=p$ or equivalently $m=2 p$, it follows,

$$
(p / m)_{F_{w}}(z)=\frac{A_{m-1}^{p}(z)}{B_{m}(z)}=\frac{-\sqrt{c} \lambda_{m} z^{m-1} A_{m-1}^{p}\left(\frac{c}{z}\right)}{z^{m} \lambda_{m} B_{m}\left(\frac{c}{z}\right)}=-\frac{\sqrt{c}}{z}(p / m)_{F_{w}}\left(\frac{c}{z}\right) .
$$

Thus, we have proved the following,
Theorem 3.1. Let $\mathrm{d} \phi(t)=w(t) \mathrm{d} t$ be a c-inversive distribution on (a, b) and $B_{n}(z)$ a polynomial of degree n such that

$$
\begin{equation*}
B_{n}(z)=\lambda_{n} z^{n} B_{n}\left(\frac{c}{z}\right), \quad \lambda_{n}=\frac{1}{\sqrt{c^{n}}} . \tag{3.3}
\end{equation*}
$$

Let us consider the ($m / 2 m$)-2PTA with denominator $B_{2 m}(z)$ satisfying Eq. (3.3), then,

$$
\begin{equation*}
(m / 2 m)_{F_{w}}\left(\frac{c}{z}\right)=-\frac{z}{\sqrt{c}}(m / 2 m)_{F_{w_{w}}}(z) . \tag{3.4}
\end{equation*}
$$

In this case, we will say that the ($m / 2 m$)-2PTA is also c-invesive.
Let us next see how to find polynomials $B_{2 m}(z)$ satisfying Eq. (3.3).

Proposition 3.2. Let c be a real positive number and $\left\{x_{j}\right\}_{j=1}^{m} m$ points on (a, b). Define,

$$
B_{2 m}(z)=\gamma \prod_{j=1}^{m}\left(z-x_{j}\right)\left(z-\frac{c}{x_{j}}\right), \quad \gamma \neq 0 .
$$

Then, $B_{2 m}(z)$ satisfies Eq. (3.3) with $c=a b$ when $0<a<b<+\infty$.
Proof. Since $a<x_{j}<b$, then $c / x_{j}=a b / x_{j}<a b / a=b$, and $c / x_{j}=a b / x_{j}>a b / b=a$. Thus, $B_{2 m}(z)$ is a polynomial of degree $2 m$ with all its zeros in (a, b) at the points $\left\{x_{j}, \frac{c}{x_{j}}\right\}_{j=1}^{m}$. Furthermore,

$$
\begin{aligned}
B_{2 m}\left(\frac{c}{z}\right) & =\gamma c^{m} \prod_{j=1}^{m}\left(\frac{c}{z}-x_{j}\right)\left(\frac{1}{z}-\frac{1}{x_{j}}\right)=\frac{c^{m}}{z^{2 m}} \gamma \prod_{j=1}^{m}\left(c-z x_{j}\right) \frac{\left(x_{j}-z\right)}{x_{j}} \\
& =\frac{c^{m}}{z^{2 m}} \gamma \prod_{j=1}^{m}\left(z-x_{j}\right)\left(z-\frac{c}{x_{j}}\right)=\frac{c^{m}}{z^{2 m}} B_{2 m}(z) .
\end{aligned}
$$

Proposition 3.3. Let $P_{m}(z)$ be a polynomial of degree m with all its zeros on (a, b) and $P_{m}(0) \neq$ 0 . Take $c>0$, (as before, if $0<a<b<\infty, c=a b$). Then $B_{2 m}(z)=\frac{z^{m}}{P_{m}(0)} P_{m}(z) P_{m}\left(\frac{c}{z}\right)$, satisfies Eq. (3.3).

Proof. Write $P_{m}(z)=\gamma \prod_{j=1}^{m}\left(z-x_{j}\right)(\gamma \neq 0)$. Thus

$$
\begin{equation*}
P_{m}\left(\frac{c}{z}\right)=\gamma z^{-m}(-1)^{m} \prod_{j=1}^{m} x_{j} \prod_{j=1}^{m}\left(z-\frac{c}{x_{j}}\right) . \tag{3.5}
\end{equation*}
$$

Then, $B_{2 m}(z)=\gamma^{2} \prod_{j=1}^{m}\left(z-x_{j}\right)\left(z-\left(c / x_{j}\right)\right)$ and the proof follows by Proposition 3.2.
In order to get c-inversive 2PTA with arbitary $p(0 \leqslant p \leqslant m)$ extra requirements are now needed. Indeed, one has

Theorem 3.4. Let m and p be nonnegative integers $(m>1)$ such that $0 \leqslant p \leqslant m$ and $2 p>m$. Let $B_{m}(z)$ be a polynomial of degree m such that
(i) $B_{m}(z)=\lambda_{m} z^{m} B_{m}\left(\frac{c}{z}\right), \lambda_{m}=1 / \sqrt{c^{m}}, c>0$;
(ii) $\int_{a}^{b} t^{j} B_{m}(t)\left[w(t) / t^{p}\right] \mathrm{d} t=0, j=0,1, \ldots, E\left[\frac{2 p-m+1}{2}\right]-1$.

Then, the $(p / m) 2 P T A$ with denominator $B_{m}(z)$ is c-inversive.
Proof. First, we must assure that a polynomial of degree at most $m, B_{m}(z)$, satisfying (i) and (ii) exists. Set

$$
B_{m}(z)=\sum_{j=0}^{m} b_{j} z^{j} .
$$

Then, by (i) we deduce for the coefficients $\left\{b_{j}\right\}$ the following linear system:

$$
b_{j}=\lambda_{m} c^{m-j} b_{m-j}, \quad j=0,1, \ldots, E\left[\frac{m+1}{2}\right]-1 .
$$

As usual $E[x], x \in \mathbb{R}$, denotes the integer part of x.
Next, we will first consider the case $p<m$. From (i) and (ii) we have an homogeneous linear system of $E\left[\frac{m+1}{2}\right]+E\left[\frac{2 p-m+1}{2}\right]$ equations with $m+1$ unknowns.

Since

$$
E\left[\frac{m+1}{2}\right]+E\left[\frac{2 p-m+1}{2}\right]= \begin{cases}p & \text { if } m \text { is even } \\ p+1 & \text { if } m \text { is odd }\end{cases}
$$

one sees that such system admits a nontrivial solution.
On the other hand, when $p=m$, by virtue of c-inversivity, (ii) implies that

$$
\int_{a}^{b} t^{j} B_{m}(t) \frac{w(t)}{t^{p}} \mathrm{~d} t=0, \quad j=0,1, \ldots, m-1 .
$$

That is, $B_{m}(z)$ is uniquely determined up to a multiplicative factor and represents the m th orthogonal polynomial with respect to the varying weight function $w(t) / t^{m}$. In [12] it can be seen that this polynomial satisfies property (i). Furthermore, it should be noted that, in this case, we are actually dealing with the $[m / m]-2 \mathrm{PA}$ to $F_{w}(z)$. Let us next check that the approximant with denominator $B_{m}(z)$ as given before is c-inversive.

Indeed, because of c-inversivity (ii) implies that

$$
\begin{equation*}
\int_{a}^{b} t^{j} B_{m}(t) \frac{w(t)}{t^{p}} \mathrm{~d} t=0, \quad j=0,1,2, \ldots, 2 p-m-1 . \tag{3.6}
\end{equation*}
$$

Write

$$
\begin{equation*}
E_{m}(z)=F_{w}(z)-(p / m)_{F_{w}}(z)=E_{m}(z)=\frac{z^{p}}{B_{m}(z)} \int_{a}^{b} \frac{B_{m}(t)}{t^{p}(z-t)} w(t) \mathrm{d} t . \tag{3.7}
\end{equation*}
$$

Now, for any nonnegative integer k one has,

$$
\begin{equation*}
E_{m}(z)=\frac{z^{p-1}}{B_{m}(z)} \int_{a}^{b} B_{m}(t)\left[1+\frac{t}{z}+\cdots+\frac{t^{k}}{z^{k}}+\frac{t^{k+1}}{z^{k}(z-t)}\right] \frac{w(t)}{t^{p}} \mathrm{~d} t . \tag{3.8}
\end{equation*}
$$

Take $k=2 p-m-1$. By Eq. (3.6) it follows that

$$
\begin{equation*}
E_{m}(z)=\frac{z^{p-1}}{B_{m}(z)} \int_{a}^{b} \frac{B_{m}(t)}{t^{p}} \frac{t^{2 p-m}}{z^{2 p-m-1}} \frac{w(t)}{z-t} \mathrm{~d} t=\frac{z^{m-p}}{B_{m}(z)} \int_{a}^{b} \frac{B_{m}(t)}{t^{m-p}} \frac{w(t)}{z-t} \mathrm{~d} t . \tag{3.9}
\end{equation*}
$$

Thus, from Eq. (3.7) see that (3.9) represents the error for the $(m-p / m)$ 2PTA with denominator $B_{m}(z)$. If we put

$$
(p / m)(z)=\frac{A_{m-1}^{p}(z)}{B_{m}(z)} \quad \text { and } \quad(m-p / m)(z)=\frac{A_{m-1}^{m-p}(z)}{B_{m}(z)}
$$

then from Eq. (3.9) it follows that both approximants coincide and since they have the same denominator we conclude that

$$
A_{m-1}^{p}(z)=A_{m-1}^{m-p}(z),
$$

so that proceeding as in Theorem 3.1, the proof follows.

Remark 3.5. From Eqs. (3.7)-(3.9) one has actually a higher order 2PTA (see [5]), since,

$$
E_{m}(z)=\mathrm{O}\left(z^{p}\right)(z \rightarrow 0) \quad \text { and } \quad E_{m}(z)=\mathrm{O}\left(\frac{1}{z^{p+1}}\right)(z \rightarrow \infty) .
$$

So, the total order of correspondence both at $z=0$ and $z=\infty$ is equal to $2 p>m$.
Paralleling the proof of Theorem 3.4, a similar result can be deduced for $m>2 p$. Thus, we have

Theorem 3.6. Let m and p be nonnegative integers ($m>1$) such that $0 \leqslant p \leqslant m$ and $m>2 p$. Let $B_{m}(z)$ be a polynomial of degree m, such that
(i) $B_{m}(z)=\lambda_{m} z^{m} B_{m}\left(\frac{c}{z}\right), c>0, \lambda_{m}=\frac{1}{\sqrt{c c^{m}}}$,
(ii) $\int_{a}^{b} t^{j} B_{m}(t) \frac{w(t)}{t^{m-p}} \mathrm{~d} t=0, j=0,1, \ldots, E\left[\frac{m-2 p+1}{2}\right]-1$.

Then, the $(p / m)-2 P T A$ with denominator $B_{m}(z)$ is c-inversive.

Remark 3.7. As before, actually one has again a higher order 2PTA, since now

$$
E_{m}(z)=\mathrm{O}\left(z^{m-p}\right)(z \rightarrow 0) \quad \text { and } \quad E_{m}(z)=\mathrm{O}\left(\frac{1}{z^{m-p+1}}\right)(z \rightarrow \infty) .
$$

Thus, the total order of correspondence both at the origin and infinity is equal to $2(m-p)>m$.
Let us next consider a (p / m)-2PTA whose total order of correspondence is exactly equal to m, i.e.

$$
\begin{align*}
& E_{m}(z)=\sum_{j=p}^{\infty} d_{j} z^{j}=\mathrm{O}\left(z^{p}\right), \quad d_{p} \neq 0(z \rightarrow 0), \\
& E_{m}(z)=\sum_{j=m-p+1}^{\infty} d_{j}^{*} z^{-j}=\mathrm{O}\left(\frac{1}{z^{m-p+1}}\right), \quad d_{m-p+1}^{*} \neq 0(z \rightarrow \infty) . \tag{3.10}
\end{align*}
$$

Theorem 3.8. Let $(p / m)_{F_{w}}(z)(0 \leqslant p \leqslant m)$ be a $2 P T A$ to $F_{w}(z)$ satisfying Eq. (3.10). Set $(p / m)_{F_{w}}$ $(z)=A_{m-1}(z) / B_{m}(z)$ with $A_{m-1} \in \Pi_{m-1}$ and $B_{m}(z)$ a monic polynomial of degree m with $B_{m}(0) \neq 0$. Assume that $(p / m)_{F_{w}}(z)$ is c-inversive $(c>0)$. Then
(i) $m=2 p$ and (ii) $B_{m}(z)=\lambda_{m} z^{m} B_{m}(c / z), \lambda_{m}=1 / c^{p}$.

Proof. (i) $F_{w}(z)-(p / m)_{F_{w}}(z)=\mathrm{O}\left(z^{p}\right)(z \rightarrow 0)$ and $F_{w}(z)-(p / m)_{F_{w}}(z)=\mathrm{O}\left(1 / z^{m-p+1}\right)(z \rightarrow \infty)$ which gives

$$
\frac{\sqrt{c}}{z} F_{w}\left(\frac{c}{z}\right)-\frac{\sqrt{c}}{z}(p / m)_{F_{w}}\left(\frac{c}{z}\right)=\frac{\sqrt{c}}{z} \mathrm{O}\left(\frac{1}{z^{p}}\right)=\mathrm{O}\left(\frac{1}{z^{p+1}}\right)
$$

and by c-inversivity, this implies

$$
\begin{equation*}
F_{w}(z)-(p / m)_{F_{w}}(z)=\mathrm{O}\left(\frac{1}{z^{p+1}}\right) \quad(z \rightarrow \infty), \quad F_{w}(z)-(p / m)_{F_{w}}(z)=\mathrm{O}\left(z^{m-p}\right)(z \rightarrow 0) . \tag{3.11}
\end{equation*}
$$

Thus from Eqs. (3.10) and (3.11) it follows: $m-p=p$, i.e. $m=2 p$.
(ii) Let us assume that the approximant is not an irreducible rational fraction, otherwise the proof follows easily. So, we can write

$$
\begin{aligned}
& A_{2 p-1}(z)=P(z) A(z), \quad \operatorname{deg}(P)=l \geqslant 1 \\
& B_{2 p}(z)=P(z) B(z) .
\end{aligned}
$$

Thus $(p / 2 p)_{F_{w}}(z)=A_{2 p-1}(z) / B_{2 p}(z)=A(z) / B(z)$.
On the other hand, from the error expression for the ($p / 2 p$)-2PTA it follows:

$$
\begin{equation*}
F_{w}(z)-\frac{A(z)}{B(z)}=\frac{z^{p}}{P(z) B(z)} \int_{a}^{b} \frac{P(t) B(t)}{(z-t) t^{p}} w(t) \mathrm{d} t . \tag{3.12}
\end{equation*}
$$

Since the approximant is c-inversive, one has

$$
\begin{equation*}
\frac{A(z)}{B(z)}=-\frac{\sqrt{c} z^{2 p-l-1} A(c / z)}{z^{2 p-l} B(c / z)} \tag{3.13}
\end{equation*}
$$

and because of $A(z) / B(z)$ is irreducible, this implies that

$$
\begin{equation*}
B(z)=\gamma z^{2 p-l} B(c / z), \quad \gamma \neq 0 . \tag{3.14}
\end{equation*}
$$

Putting $z=\sqrt{c}$ we deduce that $\gamma=1 / c^{\frac{2 p-l}{2}}$. For it, take into account that from Eq. (3.13) $A(\sqrt{c})=0$, which gives $B(\sqrt{c}) \neq 0$. Furthermore, $A(z)$ should also satisfy

$$
\begin{equation*}
A(z)=-\sqrt{c} \gamma z^{2 p-l-1} A(c / z) . \tag{3.15}
\end{equation*}
$$

Now, from Eq. (3.12) we have

$$
B(z) E(z)=B(z) F_{w}(z)-A(z)=\frac{z^{p}}{P(z)} \int_{a}^{b} \frac{P(t)}{z-t} \frac{B(t)}{t^{p}} w(t) \mathrm{d} t=M(z) .
$$

By Eqs. (3.14) and (3.15) and that $F_{w}(z)=-(c / z) F_{w}(c / z)$ we see that

$$
\begin{equation*}
\sqrt{c} \gamma z^{2 p-l-1} E(c / z)=-E(z) . \tag{3.16}
\end{equation*}
$$

Now, replacing $E(z)$ by $M(z)$ in Eq. (3.16) and after some elementary calculations (including the usual change of variable $c / t=x)$ the following holds:

$$
\frac{1}{z^{l} P(c / z)} \int_{a}^{b} \frac{x^{l} P(c / x)}{z-x} B(x) \frac{w(x)}{x^{p}} \mathrm{~d} x=\frac{1}{P(z)} \int_{a}^{b} \frac{P(x)}{z-x} B(x) \frac{w(x)}{x^{p}} \mathrm{~d} x,
$$

or equivalently,

$$
\begin{equation*}
\frac{P(z)}{z^{l} P(c / z)}=\frac{\int_{a}^{b} \frac{P(x)}{z-x} B(x) \frac{w(x)}{x^{p}} \mathrm{~d} x}{\int_{a}^{b} \frac{x^{\prime} P(c(x)}{z-x} B(x) \frac{w(x)}{x^{p}} \mathrm{~d} x} \tag{3.17}
\end{equation*}
$$

Now, the functions appearing in the right-hand member of Eq. (3.17) are holomorphic functions outside $[a, b]$. Furthermore, since $w(x)>0$ a.e. on $[a, b]$, they cannot be rational functions. Thus, there must exist a constant β such that

$$
P(z)=\beta z^{l} P(c / z)
$$

Setting, $z=\sqrt{c}$, we have $\beta=1 / \sqrt{c^{l}}$.
Therefore, $B_{2 p}(z)=P(z) B(z)=\left(1 / \sqrt{c^{l}}\right) P(c / z)\left(1 / \sqrt{c^{2 p-l}}\right) B(c / z)=\left(1 / c^{p}\right) P(c / z) B(c / z)=\left(1 / c^{p}\right) B_{2 p}(c / z)$.

This has been done under the assumption that $P(\sqrt{c}) \neq 0$. Suppose that $P(\sqrt{c})=0$. Since $\operatorname{deg}(P)=l$ is even, then $z=\sqrt{c}$ must be a root with multiplicity even. More precisely,

$$
P(z)=(z-\sqrt{c})^{2 j} R(z), \quad j \geqslant 1 .
$$

Thus,

$$
\begin{aligned}
P(z) & =(z-\sqrt{c})^{2 j} R(z)=\beta z^{l}\left(\frac{c}{z}-\sqrt{c}\right)^{2 j} R(c / z) \\
& =\beta c^{i} z^{l-2 j} R(z)(z-\sqrt{c})^{2 j}, \quad R(\sqrt{c}) \neq 0 .
\end{aligned}
$$

Hence, $\beta c^{j}(\sqrt{c})^{l-2 j}=1$, which gives $\beta=1 / \sqrt{c^{l}}$.
Theorems 3.1 and 3.9 provide us with the following
Corollary 3.9. Let $(p / m)_{F_{w}}(z)=A_{m-1} / B_{m}(z)$ be a $2 P T A$ with $B_{m}(z)$ a polynomial of the degree m where $B_{m}(0) \neq 0$ and assume that Eq. (3.10) holds. Then $(p / m)_{F_{w}}(z)$ is c-inversive, if and only if, (i) $m=2 p$ and (ii) $B_{m}(z)=\lambda_{m} z^{m} B_{m}\left(\frac{c}{z}\right), \lambda_{m}=1 / c^{p}$.

To end this section, let us see the reciprocals of Theorems 3.4 and 3.6. Indeed, one first has,
Proposition 3.10. Let $(p / m)_{F_{w}}(z)=A_{m-1}(z) / B_{m}(z)$ be a $2 P T A$ to $F_{w}(z)$ where p and m are nonnegative integers such that $0 \leqslant p \leqslant m$ and $2 p>m$. Assume that $(p / m)_{F_{v}}(z)$ is c-inversive. Then, (i) $\int_{a}^{b} t^{j} B_{m}(t)\left(w(t) / t^{p}\right) \mathrm{d} t=0, j=0,1,2, \ldots, 2 p-m-1$ and (ii) $B_{m}(z)=\lambda_{m} z^{m} B_{m}(c / z), \lambda_{m}=1 / \sqrt{c^{m}}$.

Proof. (a) We have

$$
\begin{align*}
& F_{w}(z)-(p / m)_{F_{w}}(z)=\mathrm{O}\left(z^{p}\right)(z \rightarrow 0) \\
& F_{w}(z)-(p / m)_{F_{w}}(z)=\mathrm{O}\left(\frac{1}{z^{m-p+1}}\right)(z \rightarrow \infty) . \tag{3.18}
\end{align*}
$$

As the approximant is c-inversive we can also write

$$
\begin{align*}
& F_{w}(z)-(p / m)_{F_{w}}(z)=\mathrm{O}\left(z^{m-p}\right)(z \rightarrow 0) \\
& F_{w}(z)-(p / m)_{F_{w}}(z)=\mathrm{O}\left(\frac{1}{z^{p+1}}\right)(z \rightarrow \infty) . \tag{3.19}
\end{align*}
$$

Since $2 p>m$ then $p>m-p$. Thus, by Eqs. (3.18) and (3.19), it follows that

$$
\begin{equation*}
E_{m}(z)=\mathrm{O}\left(z^{p}\right)(z \rightarrow 0) \quad \text { and } \quad E_{m}(z)=\mathrm{O}\left(\frac{1}{z^{p+1}}\right)(z \rightarrow \infty) . \tag{3.20}
\end{equation*}
$$

Since $\operatorname{deg}\left(B_{m}\right)=m$, then one has

$$
\frac{1}{B_{m}(z)}=z^{-m} \sum_{j=0}^{\infty} b_{j} z^{-j}, \quad b_{0} \neq 0 .
$$

Thus, by Eq. (3.8) one can write:

$$
E_{m}(z)=z^{-(m-p+1)}\left(\sum_{j=0}^{\infty} b_{j} z^{-j}\right)\left(\sum_{k=0}^{\infty} d_{k} z^{-k}\right),
$$

where

$$
d_{k}=\int_{a}^{b} t^{k} B_{m}(t) \frac{w(t)}{t^{p}} \mathrm{~d} t, \quad k=0,1,2, \ldots
$$

Hence, this results in

$$
E_{m}(z)=\left(\frac{1}{z}\right)^{m-p+1} \sum_{j=0}^{\infty} \alpha_{j} z^{-j} \quad \text { with } \quad \alpha_{j}=\sum_{i=0}^{j} b_{i} d_{j-i}, \quad j=0,1, \ldots, \quad b_{0} \neq 0
$$

From Eq. (3.20) it follows $\alpha_{j}=0 ; j=0,1, \ldots, 2 p-m-1$, and since $b_{0} \neq 0$ this implies $d_{j}=0, j=$ $0,1, \ldots, 2 p-m-1$, which yields (i). Now proceeding as in proof of (ii) for Theorem 3.8, (ii) can be achieved.

In a similar way one can also prove the following.

Proposition 3.11. Let $(p / m)_{F_{w}}(z)=A_{m-1}(z) / B_{m}(z)$ be a $2 P T A$ to $F_{w}(z)$ where p and m are nonnegative integers such that $0 \leqslant p \leqslant m$ and $2 p<m$. Assume that $(p / m)_{F_{w}}(z)$ is c-inversive. Then, (i) $B_{m}(z)=\lambda_{m} z^{m} B_{m}(c / z), \lambda_{m}=1 / \sqrt{c^{m}}$ and (ii) $\int_{a}^{b} t^{j} B_{m}(t)\left[w(t) / t^{m-p}\right] \mathrm{d} t=0, j=0,1,2, \ldots, m-2 p-1$.

4. Convergence

Let us first consider the case $0<a<b<+\infty$ and $w(t) c$-inversive $(c=a b)$. For a given sequence $\{(n / 2 n)\}$ of 2PTA, to $F_{w}(z)$, we will study when it converges to $F_{w}(z)$. As usual in Padé-type approximation [1], the key is to find an appropriate choice of denominators. Indeed, one has

Theorem 4.1. Let α be a positive measure on $[a, b]$ such that $\alpha^{\prime}(x)>0$ a.e. on $[a, b]$. Let $Q_{n}(z)$ denote the nth monic orthogonal polynomial with respect to d α. Set

$$
\begin{equation*}
B_{2 n}(z)=\frac{z^{n}}{Q_{n}(0)} Q_{n}(z) Q_{n}\left(\frac{c}{z}\right) \tag{4.1}
\end{equation*}
$$

Under these conditions the following holds:
(i) $(n / 2 n)_{F_{w}}(z)=A_{2 n-1} / B_{2 n}(z)$ is c-inversive;
(ii) Let K be a compact in $\mathbb{C} \backslash[a, b]$. Then, there exits a positive constant $\lambda=\lambda(K)<1$ so that

$$
\limsup _{n \rightarrow \infty}\left\|F_{w}(z)-(n / 2 n)_{F_{w}}(z)\right\|_{K}^{1 / 2 n} \leqslant \lambda(K)
$$

where $\|-\|_{K}$ represents the suprem norm.
Proof. (i) It immediately follows from Proposition 3.3.
(ii) Set

$$
\begin{aligned}
E_{2 n}(z) & =F_{w}(z)-(n / 2 n)_{F_{w}}(z) \\
& =\frac{z^{n}}{B_{2 n}(z)} \int_{a}^{b} \frac{B_{2 n}(t)}{t^{n}(z-t)} w(t) \mathrm{d} t
\end{aligned}
$$

$$
\begin{align*}
& =\frac{z^{n} Q_{n}(0)}{z^{n} Q_{n}(z) Q_{n}\left(\frac{c}{z}\right)} \int_{a}^{b} \frac{t^{n} Q_{n}(t) Q_{n}\left(\frac{c}{t}\right)}{Q_{n}(0) t^{n}(z-t)} w(t) \mathrm{d} t \\
& =\frac{1}{Q_{n}(z) Q_{n}\left(\frac{c}{z}\right)} \int_{a}^{b} \frac{Q_{n}(t) Q_{n}\left(\frac{c}{t}\right)}{z-t} w(t) \mathrm{d} t, \quad \forall z \in \widehat{\mathbb{C}} \backslash[a, b] . \tag{4.2}
\end{align*}
$$

Define: $\left\|Q_{n}\right\|_{\infty}=\max _{x \in[a, b]}\left|Q_{n}(x)\right|$. Since $c / t \in[a, b] \forall t \in[a, b]$ then $\left|Q_{n}(t)\right| \leqslant\left\|Q_{n}\right\|_{\infty}$ and $\left|Q_{n}(c / t)\right| \leqslant$ $\left\|Q_{n}\right\|_{\infty} \forall t \in[a, b]$. Take $z \in K \subset \mathbb{C} \backslash[a, b], K$ compact. For $z \notin[a, b]$, we have

$$
\left|E_{2 n}(z)\right| \leqslant \frac{\left\|Q_{n}\right\|_{\infty}^{2}}{\left|Q_{n}(z)\right|\left|Q_{n}\left(\frac{c}{z}\right)\right|} \int_{a}^{b} \frac{w(t)}{|z-t|} \mathrm{d} t \leqslant \frac{M(K)\left\|Q_{n}\right\|_{\infty}^{2}}{\left|Q_{n}(z)\right|\left|Q_{n}\left(\frac{c}{z}\right)\right|}
$$

M being a positive constant dependent on K. Furthermore, if $z \notin[a, b]$, then $c / z \notin[a, b]$, so

$$
\left|E_{2 n}(z)\right|^{1 / 2 n} \leqslant \frac{[M(K)]^{1 / 2 n}| | Q_{n}| |_{\infty}^{1 / n}}{\left|Q_{n}(z)\right|^{1 / 2 n}\left|Q_{n}\left(\frac{c}{z}\right)\right|^{1 / 2 n}}
$$

and consequently

$$
\limsup _{n \rightarrow \infty}\left|E_{2 n}(z)\right|^{1 / 2 n} \leqslant \frac{\lim \sup _{n \rightarrow \infty}\left\|Q_{n}\right\|_{\infty}^{1 / n}}{\liminf _{n \rightarrow \infty}\left\{\left|Q_{n}(z)\right|^{1 / 2 n}\left|Q_{n}(c / z)\right|^{1 / 2 n}\right\}}
$$

On the other hand, one knows (see [14])

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty}\left\|Q_{n}\right\|_{\infty}^{1 / n}=\operatorname{Cap}([a, b]) \\
& \limsup _{n \rightarrow \infty}\left|Q_{n}(z)\right|^{1 / n}=\operatorname{Cap}([a, b]) \Phi_{[a, b]}(z), \quad \forall z \notin[a, b]
\end{aligned}
$$

where $\operatorname{Cap}([a, b])=\frac{1}{4}(b-a)$ (see e.g. [14]) and $\Phi_{[a, b]}$ is the conformal transformation mapping $\widehat{\mathbb{C}} \backslash[a, b]$ onto the exterior of the unit circle, preserving the point at infinity. Therefore

$$
\left|\Phi_{[a, b]}(z)\right|>1, \quad \forall z \in \widehat{\mathbb{C}} \backslash[a, b] .
$$

Thus, we finally obtain,

$$
\limsup _{n \rightarrow \infty}\left|E_{2 m}(z)\right|^{1 / 2 n} \leqslant \frac{1}{\sqrt{\left|\Phi_{[a, b]}(z)\right|\left|\Phi_{[a, b]}(c / z)\right|}} \leqslant \lambda(K)<1
$$

with

$$
\begin{equation*}
\lambda(K)=\frac{1}{\inf _{z \in K} \sqrt{\left|\Phi_{[a, b]}(z)\right|\left|\Phi_{[a, b]}(c / z)\right|}} \tag{4.3}
\end{equation*}
$$

Remark 4.2. Certainly, it should be observed that part (ii) in Theorem 4.1 is valid for a general distribution $\mathrm{d} \phi(t)=w(t) \mathrm{d} t$ not necessarily c-inversive. Even more, $w(t)$ can be an L_{1}-integrable function on $(a, b)(0<a<b<+\infty)$ and an arbitrary sequence of 2PTA $(k / n)_{F_{w(z)}}(z)=A_{n-1}(z) / B_{n}(z)$ can be considered where $B_{n}(z)=z^{k} Q_{k}(c / z) Q_{n-k}(z)$, with $k=k(n)$ a sequence of nonnegative integers such that $0 \leqslant k(n) \leqslant n$ and $\lim _{n \rightarrow \infty} k(n) / n=\theta(0 \leqslant \theta \leqslant 1)$. In this respect see [4]. On the other hand, assume that the 'auxiliary' measure $\alpha(t)$ is c-inversive too. Here it is assumed that
$\mathrm{d} \alpha(t) / t^{2 n}=\left[\alpha^{\prime}(t) / t^{2 n}\right] \mathrm{d} t$, i.e., that α is absolutely continuous, with $\alpha^{\prime}(t)>0$ a.e. on $[a, b]$. Let $B_{2 n}(z)$ be orthogonal with respect to $\mathrm{d} \alpha(t) / t^{2 n}$ i.e.

$$
\int_{a}^{b} t^{j} B_{2 n}(t) \frac{\alpha^{\prime}(t)}{t^{2 n}} \mathrm{~d} t=0, \quad j=0,1,2, \ldots, 2 n-1
$$

By [12] we have that the 2PTA with denominator $B_{2 n}(z)$ is c-inversive. Set

$$
(n / 2 n)_{F_{w}}(z)=\frac{A_{2 n-1}(z)}{B_{2 n}(z)}
$$

then, making use of [2, Theorem 5.4], we have $\left(\theta=\frac{1}{2}\right)$

$$
\limsup _{n \rightarrow \infty}\left|E_{2 m}(z)\right|^{1 / 2 n} \leqslant \exp \left\{-G_{[a, b]}(v, z)\right\}
$$

Here, $G_{[a, b]}(v, z)$ denotes the Green potencial of the measure $v=\frac{1}{2}\left[\delta_{0}+\delta_{\infty}\right]$ and δ_{x} the Dirac measure corresponding to the point x. Thus, $G_{[a, b]}(v, z)=\frac{1}{2}\left[g_{[a, b]}(z, 0)+g_{[a, b]}(z, \infty)\right]$.

As usual, $g_{[a, b]}(z, t)$ is the Green function whith singularity in $t \in \widehat{\mathbb{C}} \backslash[a, b]$.
Therefore, one obtains

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left|E_{2 n}(z)\right|^{1 / 2 n} & \leqslant \exp \left\{-\frac{1}{2}\left[g_{[a, b]}(z, 0)+g_{[a, b]}(z, \infty)\right]\right\} \\
& =\frac{1}{\sqrt{\exp g_{[a, b]}(z, 0) \exp g_{[a, b]}(z, \infty)}} . \tag{4.4}
\end{align*}
$$

Compare the estimate deduced from Eq. (4.4) with the one obtained in Eq. (4.3). It can be checked that both estimates coincide.

Let us see next what happens when $[a, b]$ is an infinite interval i.e. $[a, b]=[0, \infty)$. We first have,

Theorem 4.3. Let $w(t)$ be c-inversive on $[0, \infty)(w(t)$ not necessarily positive $)$ and let $\alpha(t)$ be a positive measure which is also c-inversive on $[0, \infty)$ and the unique solution of a strong Stieltjes moment problem. Assume that $\int_{0}^{\infty}\left(|w(t)|^{2} / \alpha^{\prime}(t)\right) \mathrm{d} t=k_{1}^{2}<+\infty$.

Let $B_{2 n}(z)$ be an orthogonal polynomial of degree $2 n$ with respect to $\mathrm{d} \alpha(t) / t^{2 n}$. Then,
(i) $(n / 2 n)_{F_{w}}(z)=A_{2 n-1}(z) / B_{2 n}(z)$ is c-inversive,
(ii) $\left\{(n / 2 n)_{F_{w}}(z)\right\}$ converges uniformly to $F_{w}(z)$ on any compact set of $\mathbb{C} \backslash[0, \infty)$.

Proof. (i) By Theorem 3.2 of [12] we see that $B_{2 n}(z)$ satifies $B_{2 n}(z)=\lambda_{2 n} z^{2 n} B_{2 n}(c / z)$ with $\lambda_{2 n}=1 / c^{n}$. Thus, from Theorem 3.1(i) is proved.
(ii) It readily follows from Theorem 5.1 of [3].

As we have already seen in Example 1.3, given $c>0$, the measure

$$
\begin{equation*}
\mathrm{d} \alpha(t)=t^{-1 / 2} \exp \left[\beta\left(t^{\gamma}+\frac{c^{\gamma}}{t^{\gamma}}\right)\right] \mathrm{d} t, \quad \gamma>\frac{1}{2}, \quad \beta<0 \tag{4.5}
\end{equation*}
$$

is c-inversive. Thus proceeding as in Theorem 5.7 of [3], we can also give, in this case, an estimate of the rate of convergence. Indeed,

Theorem 4.4. Let $w(t)$ be c-inversive on $[0, \infty)$. Assume that two constants $\gamma>\frac{1}{2}$ and $\beta<0$ exist such that

$$
\int_{0}^{\infty} \frac{|w(t)|^{2} \sqrt{t}}{\exp \left[\beta\left(t^{\eta}+\frac{c^{2}}{t^{\eta}}\right)\right]} \mathrm{d} t=K_{1}^{2}<+\infty .
$$

Let $B_{2 n}(z)$ be the orthogonal polynomial of degree $2 n$ with respect to $\mathrm{d} \alpha(t) / t^{2 n}$ with $\mathrm{d} \alpha(t)$ given by Eq. (4.5). Then, for any compact subset K of $\mathbb{C} \backslash[0, \infty)$ there exists a positive constant $\eta=\eta(K)<1$ so that

$$
\limsup _{n \rightarrow \infty}\left\|F_{w}(z)-(n / 2 n)_{F_{w}}(z)\right\|^{1 /(2 n)^{r}} \leqslant \eta(K)
$$

with $0<r=1-\frac{1}{2 \gamma}<1$.
Remark 4.5. Take into account that Eq. (4.5) can be written as

$$
\mathrm{d} \alpha(t)=t^{-1 / 2} \exp (-\tau(t)) \quad \text { where } \tau(t)=|\beta|\left(t^{\nu}+\frac{c^{\gamma}}{t^{\nu}}\right), \quad \gamma>\frac{1}{2} .
$$

According to [10], $\tau(t)$ should satisfy for some $s>0$

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}}(s t)^{\eta} \tau(t)=|\beta| \lim _{t \rightarrow+\infty}(s t)^{-\gamma} \tau(t)=A>0 . \tag{4.6}
\end{equation*}
$$

Thus,

$$
\lim _{t \rightarrow 0^{+}}(s t)^{y} \tau(t)=|\beta| \lim _{t \rightarrow 0^{+}}(s t)^{\nu}\left[t^{\nu}+\frac{c^{\nu}}{t^{\nu}}\right]=|\beta| s^{\nu} c^{\nu} .
$$

On the other hand,

$$
\lim _{t \rightarrow+\infty}(s t)^{-\gamma} \tau t=|\beta|, \lim _{t \rightarrow+\infty}(s t)^{-\gamma}\left[t^{\nu}+\frac{c^{\gamma}}{t^{\gamma}}\right]=|\beta| \text { and } \lim _{t \rightarrow+\infty}\left[s^{-\gamma}+\frac{c^{\gamma}}{t^{2 \gamma}}\right]=|\beta| s^{-\gamma} .
$$

In order to fulfill Eq. (4.6), it should hold, $|\beta| s^{\gamma} c^{\gamma}=|\beta| s^{-\gamma}$, i.e. $s=1 / \sqrt{c}>0$. With this choice of the parameter $s>0$, we have

$$
\begin{equation*}
A=|\beta| c^{\gamma / 2} \tag{4.7}
\end{equation*}
$$

In this case, $\eta(K)$ can be expressed as (see [10]) $\eta(K)=\exp (-R)$ with $R=D(\gamma) \inf _{z \in K}\{\delta(z)\}>0$, where $\delta(z)$ and $D(\gamma)$ are given by

$$
\delta(z)=\left(\frac{1}{2}\right)^{r}\left[\operatorname{Im}(s z)^{\frac{1}{2}}+\operatorname{Im}(s z)^{-\frac{1}{2}}\right], \quad s=\frac{1}{\sqrt{c}}
$$

and

$$
D(\gamma)=\frac{2 \gamma}{2 \gamma-1}\left[\frac{A \Gamma\left(\gamma+\frac{1}{2}\right)}{\sqrt{\pi} \Gamma(\gamma)}\right]^{\frac{1}{2 \gamma}}, \quad A=|\beta| c^{\frac{\gamma}{2}} .
$$

Assume $\gamma=1$ (this measure was considered by Ranga [12]), then $r=1-(1 / 2 \gamma)=1-\frac{1}{2}=\frac{1}{2}$. Thus,

$$
\delta(z)=\frac{1}{\sqrt{2}}\left[\operatorname{Im}\left(\frac{z}{\sqrt{c}}\right)^{\frac{1}{2}}+\operatorname{Im}\left(\frac{z}{\sqrt{c}}\right)^{-\frac{1}{2}}\right] \quad \text { and } \quad D(1)=\sqrt{2|\beta| \sqrt{\frac{c}{\pi}}} .
$$

Acknowledgements

The authors wish to thank the referees for their helpful comments and suggestions.

References

[1] C. Brezinski, Padé-type Approximation and General Orthogonal Polynomials, ISNM vol. 50, Birkhäuser, Basel, 1980.
[2] A. Bultheel, C. Díaz-Mendoza, P. González-Vera, R. Orive, Quadrature on the half line and two-point Padé approximants to Stieltjes functions. II Convergence, J. Comput. Appl. Math. 77 (1997) 53-76.
[3] A. Bultheel, C. Díaz-Mendoza, P. González-Vera, R. Orive, Quadrature on the half line and two-point Padé approximants to Stieltjes functions. Part III, The unbounded case, J. Comput. Appl. Math. 87 (1997) 95-117.
[4] C. Diaz Mendoza, P. González-Vera, R. Orive, On the convergence of two-point Padé-type approximants, Numer. Math. 72 (1996) 295-312.
[5] P. González-Vera, M. Jiménez-Páiz, Two-point partial Padé approximants, Appl. Numer. Math. 11 (1993) 385-402.
[6] P. González-Vera, O. Njastad, Convergence of two-point Pade approximants to series of Stieltjes, J. Comput. Appl. Math. 32 (1990) 97-105.
[7] W.B. Jones, O. Njastad, W.J. Thron, Two-point Padé expansions for a family of analytic functions, J. Comput. Appl. Math. 9 (1983) 105-123.
[8] W.B. Jones, W.J. Thron, Continued fractions in numerical analysis, Appl. Numer. Math. 4 (1988) 143-230.
[9] W.B. Jones, W.J. Thron, H. Waadeland, A strong Stieltjes moment problem, Trans. Amer. Math. Soc. 261 (1980) 503-528.
[10] G. López Lagomasino, A. Martinez Finkelshtein, Rate of convergence of two-point Padé approximants and logarithmic asymptotics of Laurent-type orthogonal polynomials, Constr. Approx. 11 (1995) 255-286.
[11] A. Sri Ranga, On a recurrence formula associated with strong distributions, SIAM J. Math. Anal. 21 (5) (1990) 1335-1348.
[12] A. Sri Ranga, Another quadrature rule of highest algebraic degree of precision, Numer. Math. 68 (1994) 283-294.
[13] A. Sri Ranga, J.H. Mc Cabe, On the extension of some classical distributions, Proc. Edinburgh Math. Soc. 34 (1991) 19-29.
[14] H. Stahl, V. Totik, General Orthogonal Polynomials, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1992.

[^0]: ${ }^{i t}$ This work was supported by the Scientific Research Projects of the Spanish D.G.I.C.Y.T. and La Laguna University under contracts PB96-1029 and 201/77/97, respectively.

 * Corresponding author.

