diabetic cardiomyopathy (DCM), but it remains largely unknown whether and how MIF regulates GLUT4 expression in cardiomyocytes. The present study aims to investigate the mechanism underlying the modulation of GLUT4 by MIF in cardiomyocytes.

METHODS Activations of AKT and AMPK signaling, and expressions of MIF, GLUT4 and the candidate GLUT4 regulation associated transcription factors in the diabetic mouse myocardium were determined. The screened transcription factors mediating MIF-promoted GLUT4 expression were verified by RNA interference (RNAi) and electrophoretic mobility shift assay (EMSA), respectively.

RESULTS MIF was increased, but GLUT4 was decreased in the diabetic mouse myocardium. MIF could enhance glucose uptake and up-regulate GLUT4 expression in NMVCs. Expressions of transcription factor MEF2A, -2C, -2D and Zac1 were significantly up-regulated in MIF-treated neonatal mouse ventricular cardiomyocytes (NMVCs), and markedly reduced in the diabetic myocardium. Knockdown of MEF2A, -2C, -2D and Zac1 could significantly inhibit glucose uptake and GLUT4 expression in cardiomyocytes. Moreover, EMSA results revealed that transcriptional activities of MEF2 and Zac1 were significantly increased in MIF-treated NMVCs. Additionally, MIF effects were inhibited by an AMPK inhibitor compound C and siRNA targeting MIF receptor CD74, suggesting the involvement of CD74-dependent AMPK activation.

CONCLUSIONS Transcription factor MEF2 and Zac1 mediate MIF-induced GLUT4 expression through CD74-dependent AMPK activation in cardiomyocytes.

GW26-e1024 Mechanism of QSYQ on Anti-Apoptosis Mediated by Different Subtypes of Cyclooxygenase in AMI Induced Heart Failure Rats

Jing Wang,1,2 Yuan Cao,1,2 Yan Wu,1 Jing Han,3 Yong Wang,1 Chun Li,1 Pengfei Tu1

1Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; 2School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China; 3Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing 100029, China; 4Basic Medical College, Beijing University of Chinese Medicine, Beijing, China

OBJECTIVES Qi-shen-yi-qi (QSYQ), one of the most well-known TCM formula, has been demonstrated to improve cardiac function by its anti-inflammatory and anti-apoptosis efficacy in the acute myocardial infarction (AMI) heart failure (HF) rats. However, the mechanisms governing its therapeutic effects remain unclear. In this study, we aim to demonstrate that QSYQ treatment can prevent left ventricular remodeling in HF by inhibiting myocardial apoptosis and inflammation mainly through the PLA2-COXs-P53 pathway.

METHODS Sprague-Dawley (SD) rats were randomly divided into 4 groups: sham group, model group (left anterior descending (LAD) coronary artery ligation), QSYQ treatment group and aspirin group. 28 days after surgery, hemodynamic were detected. 2D echocardiography was adopted to evaluate heart function. TUNEL assay was applied to assess myocardial apoptosis rate. COX-1, COX-2, Fas and MDM2 protein expressions were measured by western-blot. RT-PCR was used to detect mRNA expressions of P35 and four subtype receptors of PGE2 (EP1, 2, 3, and 4).

RESULTS Ultrasonic testing results showed that EF and FS values decreased significantly and abnormal hemodynamic alterations were observed in model group compared to sham group. These indications illustrated that HF models was successful induced. Levels of pro-inflammatory cytokines (TNF-α and IL-6) in myocardial tissue were up-regulated in model group compared to sham group. Western-blot results showed that cyclooxygenase 2, which is highly inducible by pro-inflammatory cytokines, increased significantly. Moreover, RT-PCR showed that expressions of EP2 and EP4, which are the receptors of PGE2, were also up-regulated. Increased expressions of apoptotic pathway factors, including P53 and Fas, might be induced by the binding of PGE2 with EP2/4. MDM2, the inhibitor of P53, decreased in model group. TUNEL results manifested that apoptosis rates of myocardial cells increased in model group. After treatment with QSYQ, expressions of inflammation factors, including TNF-α, IL-6 and COX-2, were reduced. Expressions of EP2 and EP4 receptors also decreased, suggesting that PGE2-mediated apoptosis was inhibited by QSYQ. MDM2 was up-regulated and p53 and Fas in the apoptotic pathway were down-regulated. Apoptosis rates in myocardial tissue in QSYQ group decreased compared with model group.

CONCLUSIONS QSYQ has definite cardiac protective efficacy in improving cardiac function mainly through inhibiting the inflammatory response and down-regulating apoptosis. Its anti-inflammatory and anti-apoptosis efficacies are probably related to inhibition of COXs-induced P35/Fas pathway. These findings provide evidence for cardiac protective efficacy of QSYQ and validate the beneficial effects of QSYQ in the clinical application for HF.

GW26-e1037 Tanshinones IIA Attenuated Oxidative Stress and Restored Balance between Pro- and Anti-inflammatory Cytokines in Hypothalamic Paraventricular Nucleus Contribute to Sympathoexcitatory in Chronic High-Salt Intake Induced Hypertension

Zhiming Yang, Hui-Yu Yang, Shi-Guo Ju, Yun-Fei Bian, Bin Liang, Rui Bai

Department of Cardiology, The Second Hospital of Shanxi Medical University

OBJECTIVES In this study, arterial blood pressure (BP) of the rats, renal sympathetic nerve activity (RSNA) and the expression of gp91phox, angiotensin-converting enzyme (ACE), interleukin (IL)-beta (IL-1β), interleukin (IL)-6 (IL-6) in the PVN had been determined. We conducted to assess whether Tan IIA attenuates oxidative stress in the hypothalamic paraventricular nucleus (PVN) and contributes to the high-salt induced hypertensive response. The results from this study will lead to a better understanding of the disease process and aid in designing new therapeutic strategies for the treatment of hypertension.

METHODS Thirty two Sprague-Dawley rats which were 7 weeks old with baseline body weights between 150 and 170 grams fed with a normal salt (0.3% NaCl) (NS) or a high salt (6% NaCl) (HS) diet for 16 weeks. Meanwhile half of each team received Tan IIA administration or vehicle by intragastric administration. Arterial pressure was determined every 2 weeks by a tail-cuff occlusion and their recording system which was noninvasively. After 16 weeks, the rats were decapitated while were under anesthesia. The PVN tissue samples were collected and stored at ~80 °C for later analyses. We performed the following experimental procedures: Western blot analysis, immunofluorescence, immunofluorescence and statistical analysis.

RESULTS There was a blunted increase in arterial blood pressure (BP) of the rats, renal sympathetic nerve activity (RSNA) and the expression of gp91phox, angiotensin-converting enzyme (ACE), interleukin (IL)-beta (IL-1β), interleukin (IL)-6 (IL-6) in the PVN had been determined. We conducted to assess whether Tan IIA attenuates oxidative stress in the hypothalamic paraventricular nucleus (PVN) and contributes to the high-salt induced hypertensive response. The results from this study will lead to a better understanding of the disease process and aid in designing new therapeutic strategies for the treatment of hypertension.

CONCLUSIONS High-salt administration with concomitant Tan IIA treatment acts upon neurons in PVN to reduce arterial pressure and renal sympathetic nerve activity, perhaps by reducing the influence of reactive oxygen species in the region. Tan IIA may be used as a nature antioxidant to attenuated Oxidative Stress via modulating pro-inflammatory cytokines and reducing component of RAS in the PVN.

GW26-e1078 A Molecular Switch Regulating Heart and Pancreatic Development

Li Chen,1,2 Weijia Luo,1 Kuo-Chan Weng,1,2 Zengbin Wu,1,4 Wei Yu,1 Benjamin Sobam,1 Xueming Xu,1,4 Yu Liu,1 Austin Cooney,1,2 Robert J. Schwartz1,2

1University of Houston; 2Texas Heart Institute; 3Baylor College of Medicine; 4Xinhua Hospital, Shanghai Jiaotong University

OBJECTIVES Mesoderm is thought to be a population of the intermediate and transient common progenitors prior to the emergence of the mesoderm (Mé, the parental progenitor population of heart) and the endoderm (En, the parental progenitor population of pancreas) in vitro; however, it is unclear whether it exists in vivo, and if so, what are the molecular mechanisms that establish the subsequent cell fate differentiation. The purpose of this study is to delineate the stem cell origin of the heart and the pancreas in vivo, and the