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Summary

Hepatitis C virus (HCV) is one of the major aetiologic agents that
causes hepatocellular carcinoma (HCC) by generating an inflam-
matory, fibrogenic, and carcinogenic tissue microenvironment in
the liver. HCV-induced HCC is a rational target for cancer preven-
tive intervention because of the clear-cut high-risk condition, cir-
rhosis, associated with high cancer incidence (1% to 7% per year).
Studies have elucidated direct and indirect carcinogenic effects
of HCV, which have in turn led to the identification of candidate
HCC chemoprevention targets. Selective molecular targeted agents
may enable personalized strategies for HCC chemoprevention. In
addition, multiple experimental and epidemiological studies sug-
gest the potential value of generic drugs or dietary supplements
targeting inflammation, oxidant stress, or metabolic derange-
ments as possible HCC chemopreventive agents. While the suc-
cessful use of highly effective direct-acting antiviral agents will
make important inroads into reducing long-term HCC risk, there
will remain an important role for HCC chemoprevention even after
viral cure, given the persistence of HCC risk in persons with
advanced HCV fibrosis, as shown in recent studies. The successful
development of cancer preventive therapies will be more challeng-
ing compared to cancer therapeutics because of the requirement
for larger and longer clinical trials and the need for a safer toxicity
profile given its use as a preventive agent. Molecular biomarkers to
selectively identify high-risk population could help mitigate these
challenges. Genome-wide, unbiased molecular characterization,
high-throughput drug/gene screening, experimental model-based
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functional analysis, and systems-level in silico modelling are
expected to complement each other to facilitate discovery of
new HCC chemoprevention targets and therapies.
� 2014 European Association for the Study of the Liver. Published
by Elsevier B.V. Open access under CC BY-NC-ND license.
Introduction

Liver cancer, predominantly hepatocellular carcinoma (HCC), is
the second most deadly cancer worldwide (GLOBOCAN 2012,
http://globocan.iarc.fr). HCC is the most rapidly increasing cause
of cancer-related mortality in the U.S. In contrast to developing
countries in the Asia-Pacific regions and sub-Saharan Africa,
where hepatitis B virus (HBV) is the major risk factor for HCC,
chronic infection with hepatitis C virus (HCV) has been responsi-
ble for the increasing HCC incidence in developed countries [1]. It
is estimated that approximately 3% of the world population is
chronically infected with HCV (WHO, www.who.int). More than
one million individuals, representing the ‘‘baby boomer’’ popula-
tion, are estimated to develop HCV-related cirrhosis, hepatic
decompensation, or HCC by 2020, and estimated costs for man-
agement of the patients reach $8.6 billion (non-pharmacological
cost only) by 2015 in the U.S. [2]. In Canada, total health care
costs associated with HCV are expected to increase by 60% until
they peak in 2032 [3]. Given the extremely frequent tumour
recurrence even after aggressive treatment (70% after 5 years of
surgical resection) and limited treatment options available for
advanced-stage liver disease, including liver transplantation, a
costly proposition, prevention of HCC development in patients
with advanced liver fibrosis may be the most effective strategy
to substantially impact patient survival [4]. Prevention of expo-
sure to the risk factors (primary prevention) with vaccination
has shown to be an effective measure in reducing HBV-related
HCC, although no analogous vaccine is available for HCV [5].
Efforts have been made to prevent HCC in individuals who have
already acquired the risk factors (secondary prevention) with
no substantial success as of yet. Prevention of HCC recurrence
14 vol. 61 j S79–S90
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after curative therapies (tertiary prevention) has also been
explored because the patients are still at risk for new HCC [4].

In patients with chronic HCV infection, the risk of HCC gradu-
ally increases as liver fibrosis progresses. Once cirrhosis is estab-
lished, the annual incidence of HCC is extremely high (1–7% per
year), although HCC rarely develops in less fibrotic livers [6,7].
The emergence of highly effective direct-acting antivirals (DAAs)
for HCV is expected to reduce HCV-related HCC [8]. However,
HCV eradication does not eliminate the risk of HCC, especially
when the patients already have advanced liver fibrosis [9].
Although molecular mechanisms of HCV-induced HCC develop-
ment have not been fully elucidated, these epidemiological
observations suggest that the major role of HCV in carcinogenesis
is to create a cirrhotic tissue microenvironment that serves as a
carcinogenic milieu. In addition, direct carcinogenic effects of
HCV proteins have been suggested in a variety of experimental
models as additional drivers of HCV-induced HCC development
[10]. These findings may lead to the discovery of targets for sec-
ondary/tertiary HCC prevention strategies. Targets in the mecha-
nisms of fibrosis/cirrhosis-driven carcinogenesis may also be
relevant to other aetiologies, including HBV, alcohol, and non-
alcoholic fatty liver diseases (NAFLD).

In this article, we review the current knowledge regarding
molecular mechanisms of HCV-induced hepatocarcinogenesis
that potentially provide clues about preventive therapies, and
discuss strategies to translate the knowledge into clinical practice
to ultimately prevent the poor prognosis of HCV-related HCC.

Key Points

• HCV-induced HCC is a model of chronic inflammation-
driven cancer, where complex interactions between 
multiple cell types form a carcinogenic tissue 
microenvironment that fosters and promotes 
progression of neoplastic clones

• Recent clinical data suggest that HCV eradication does 
not eliminate the risk of HCC development, especially 
when the patients have more advanced fibrosis, 
indicating the necessity to develop HCC prevention 
therapies to improve patient prognosis

• Direct and indirect oncogenic effects of HCV have 
been identified as potential targets to prevent disease 
progression to HCC development by using various, 
mostly cell culture-based, experimental systems

• Better in vitro, in vivo, and ex vivo experimental models 
of HCV infection are needed to study molecular 
mechanisms of HCV-induced hepatocarcinogenesis 
under more physiological conditions

• Molecular biomarkers of HCC risk will help clinical 
translation of molecular targeted chemoprevention 
therapies for HCV-induced HCC
Molecular targets in HCV-induced hepatocarcinogenesis

As HCV is an RNA virus with little potential for integration of its
genetic material into the host genome, it is generally assumed
that HCV contributes to HCC development in an indirect way,
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through induction of chronic inflammation, and directly, by
means of viral factors. HCV-induced HCC development is a
multi-step process that involves establishment of chronic HCV
infection, persistent chronic hepatic inflammation, progressive
liver fibrogenesis, initiation of neoplastic clones accompanied
by irreversible somatic genetic/epigenetic alterations, and pro-
gression of the malignant clones in a carcinogenic tissue microen-
vironment. This process could take 20–40 years (Fig. 1), and each
step in the process could be a target for prevention of HCC.

A major obstacle for the understanding of the mechanisms
linking HCV infection, inflammation and carcinogenesis is the
lack of efficient and convenient model systems to study disease
biology. While tremendous progress has been made in recent
years regarding the establishment of novel cell culture models
to study HCV-host interactions, there are limited in vitro models
to study virus-induced liver disease. Moreover, the very narrow
host range of HCV, infecting only humans and chimpanzees, so
far precludes the study of HCV infection in conventional small
animal models. Different mouse models, including HCV trans-
genic mice, immunodeficient human liver chimeric mice and
immunocompetent humanized mice have been developed to
study defined aspects of HCV pathogenesis. While these mouse
models provided first insights into HCV-induced fibrosis and
carcinogenesis, a mouse model that closely mimics human liver
disease including HCC is still lacking [11,12].

Oncogenic effects of HCV proteins

HCV is a single-strand RNA virus in the Flaviviridae family that
encodes structural (core, E1, E2) and non-structural proteins
(p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B) [13]. The viral par-
ticle is formed by a nucleocapsid, comprising the core protein and
viral genome and an envelope consisting of envelope glycopro-
teins E1 and E2. Following viral infection, the cellular expression
of the nucleocapsid core protein localizes in the cytosol, lipid
droplets, endoplasmic reticulum/Golgi apparatus, mitochondria
and nuclei, and has been suggested to affect a variety of cellular
functions. The envelope glycoproteins (E1 and E2) are involved in
interactions with host cells and viral entry, and potential targets
for vaccine development [14,15]. NS3 has serine protease and
helicase activities, and cleaves downstream NS proteins together
with NS4A. NS4B is a component of a membrane-associated cyto-
plasmic HCV replication complex. NS5A is an indispensable factor
in the HCV replication complex and virion assembly. NS5B, an
RNA-dependent RNA polymerase, synthesizes viral RNA. Due to
its inability to stably integrate into the host genome, in contrast
to HBV, HCV requires continuous replication for its viability.
There are several clinical data, suggesting the role of HCV viral
factors in disease progression, such as more frequent steatosis
in genotype 3 and more frequent HCC development in genotype
1b, although some of the evidences are conflicting [16–19]. Nev-
ertheless, several experimental models have suggested direct
oncogenic effects of HCV proteins (Fig. 2).

Cellular proliferation and survival pathways
Artificial over-expression of HCV proteins, e.g., core, NS3, and
NS5A promotes cellular proliferation, transformation, anchor-
age-independent growth, and/or tumour formation in mice, sug-
gesting their direct contribution in activating oncogenic
molecular pathways [20–23]. The core protein inhibits tumour
suppressor genes TP53, TP73, and RB1 as well as negative
4 vol. 61 j S79–S90
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Fig. 1. Natural history and biological processes in HCV-induced HCC development. HCV, hepatitis C virus; HCC, hepatocellular carcinoma; LPS, lipopolysaccharide; SNP,
single nucleotide polymorphism.

C
li

n
ic

a
l 

C
o

u
rs

e

JOURNAL OF HEPATOLOGY
regulators of cell cycle such as CDKN1A (also known as p21/CIP)
through physical interaction, modulation of regulatory networks,
or post-translational modifications [24–27]. NS3 and NS5A
also inhibit p53 (TP53) [28,29], and NS5B inhibits the
retinoblastoma-associated protein (RB1) [30]. HCV core, E2,
NS5A, and NS5B activate cellular proliferative RAF/MAPK/ERK
kinase pathways and the E2F1 pathway, which are associated
with a more aggressive biological phenotype of HCC tumours
[26,30–33]. HCV proteins, such as core, are known to induce
the generation of reactive oxygen species (ROS) and to transacti-
vate MAPK and AP1 pathways [34]. Insulin-like growth factor sig-
nalling is activated via the insulin-like growth factor 1 receptor
(IGF1R) in early stage HCV-related HCC [35]. NS5A was found to
be involved in activation of PI3K/AKT and beta-catenin/WNT
pathways, and evasion from apoptosis by caspase-3 inhibition
[36]. Transforming growth factor-beta (TGF-beta) is elevated in
the serum of chronic hepatitis C patients [37]. HCV core directly
interacts with Smad3 and inhibits the tumour suppressor activity
of the TGF-beta pathway [38]. YAP1 and IGF2BP3 expressed in
TLR4/NANOG-dependent tumour-initiating stem-like cells (TICs)
also inhibit the tumour suppressing role of the TGF-beta pathway
in HCV-related HCC [39]. NS5A inhibits TGF-beta signalling by
preventing nuclear translocation of Smad proteins, resulting in
downregulation of the tumour suppressor cyclin-dependent
kinase inhibitor 1 (CDKN1A) [40]. NS5A downregulates
abnormal spindle-like, microcephaly-associated (ASPM), a regula-
tor of mitotic spindle, and induces mitotic dysregulation and
chromosomal instability [41]. NS5A inhibits tumour necrosis
factor-alpha (TNF-alpha) mediated apoptosis [42]. HCV induces
cancer stem cell-like gene signatures in cell culture and murine
tumour xenografts through DCLK1 [43].

Retinoid X receptor-alpha (RXR-alpha), activated by RAF/
MAPK signalling, is a nuclear receptor for retinoids, vitamin A
analogues, involved in cell growth, differentiation, and apoptosis
[44]. Acyclic retinoid counteracts this process and induces
apoptosis. Silymarin, a herbal flavonoid, induces cell cycle arrest
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and apoptosis in HCC cells, suppresses N-nitrosodiethylamine
(NDEA)-induced hepatocarcinogenesis in rats, and shows anti-
HCV activity [45,46]. An observational study showed that silym-
arin use was associated with reduced fibrosis progression, but an
association with HCC incidence was not obvious during the
follow-up of 5.5 years [47].

Genetic instability
Structural alterations of host genomic DNA, including somatic
oncogenic mutations and deletions of tumour suppressor genes,
are major drivers of carcinogenesis. HCV core inhibits mitotic
spindle checkpoint function by reducing the retinoblastoma-
associated protein, and increases chromosomal polyploidy [27].
Chronic oxidative stress induced by the core also leads to mito-
chondrial and chromosomal DNA damage, leading to HCC devel-
opment [34]. NS3/4A interacts with serine-protein kinase (ATM),
a cell cycle checkpoint kinase, and impairs DNA damage repair
[48]. Perturbations of the endoplasmic reticulum (ER) lead to
an evolutionarily conserved cell stress response called the
unfolded protein response (UPR) to compensate for damage or
eventually trigger cell death when ER dysfunction is severe or
prolonged. HCV has been shown to induce ER stress [49]. It has
been hypothesized that persistent ER stress induction could pre-
dispose a cell to mutagenesis, secondary to the intracellular and
extracellular accumulation of DNA-damaging factors.

Immune response, inflammation pathways
Interferon pathway activation is a well-known innate immune
response to HCV infection, and recent studies have elucidated
its role in anti-tumour immunity [50]. The nuclear factor
kappa-B (NF-jB) pathway was implicated in HCC development
especially during progression of initiated tumour clones [51],
although there is somewhat conflicting evidence regarding its
role in hepatocarcinogenesis [52]. HCV core protein inhibits
NF-jB-mediated immune responses [53]. The c-Jun N-terminal
kinase (JNK) pathway, activated in non-parenchymal liver cells
4 vol. 61 j S79–S90 S81
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by pro-inflammatory signals such as reactive oxygen species
(ROS), generates an inflammatory hepatic microenvironment that
supports HCC development [54]. NS5A activates the JNK pathway
through interaction with the TNF receptor-associated factor 2
(TRAF2) [55]. A JNK inhibitor, SP600125, suppressed HCC devel-
opment in diethylnitrosamine-treated rats [56]. Selective inhibi-
tion of cyclooxygenase-2 (COX2) prevents HCC in an
experimental animal model [57]. Liver-specific expression of
lymphotoxin (LT)-alpha and beta in mice caused hepatic inflam-
mation and HCC, which was suppressed by inhibition of the
LT-beta receptor [58].

Viral proteins also appear to subvert innate immune path-
ways. NS3 suppresses innate immunity by cleavage of the mito-
chondrial antiviral signalling protein (MAVS) responsible for
induction of type-I interferon [59]. The inhibition of natural killer
cells by E2 may contribute to immune evasion and establishment
of chronic infection [60]. Interleukin-6 (IL6) is a multifunctional
cytokine involved in oestrogen-regulated liver carcinogenesis
[61]. Extracellular HCV core protein was suggested to impair anti-
gen-presenting cells via the IL-6 pathway [62].

Metabolic pathways
Clinically, HCV-related HCC is often accompanied by steatosis
within the tumours and non-tumourous liver, suggesting modu-
lation of metabolic pathways [63]. HCV core protein co-localizes
S82 Journal of Hepatology 201
with apolipoprotein A2 on the surface of triglyceride containing
lipid droplets in vitro and in vivo, suggesting its association with
lipid metabolism [64]. Transgenic mice that express core protein
develop progressive steatosis in the liver and then HCC [23].
Insulin resistance is another feature of the HCV core transgenic
mice, which results in lipid accumulation in the liver [65]. HCV
core protein suppresses microsomal triglyceride transfer protein
(MTTP) activity and interferes with hepatic assembly and secre-
tion of triglyceride-rich very low density lipoproteins (VLDL), fur-
ther contributing to steatosis [66]. HCV core protein interacts
with RXR-alpha and peroxisome proliferator-activated receptor-
alpha (PPAR-alpha), and modulates cell differentiation,
proliferation and fatty acid transport and catabolism in mice
[67]. PPAR-alpha generally ameliorates steatosis, but in the
presence of HCV core-induced mitochondrial dysfunction, it
exacerbates steatosis, induces oxidative stress, and increases cell
growth signals [68].

Cellular senescence
Hepatocyte proliferation is generally decreased at the stage of cir-
rhosis after many rounds of regeneration accompanied by telo-
mere shortening that triggers cellular senescence though ATM,
TP53, and CDKN1A as a safeguard to prevent carcinogenesis
[69]. Activating somatic mutations in the telomerase reverse-
transcriptase (TERT) promoter is a frequent early neoplastic event
4 vol. 61 j S79–S90
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in HCC with mixed aetiologies including HCV [70]. HCV core
protein overcomes stress-induced hepatocyte senescence by
downregulating CDKN2A expression via DNA methylation [71].
Senescence of hepatic stellate cells has also been shown to limit
liver fibrosis [72]. HCV does not infect stellate cells but could have
an indirect role in this process.

Fibrogenic pathways
Irrespective of the aetiology, established cirrhosis serves as a
milieu/microenvironment that fosters initiation and promotion
of neoplastic clones by facilitating genetic aberrations and cellu-
lar transformation, which is often referred to as ‘‘field canceriza-
tion’’ or ‘‘field effect’’ [73]. Liver fibrosis is an excessive wound
healing response to chronic liver injury that results in increased
production and deposition of extracellular matrix (ECM).
Dynamic balancing between fibrogenesis and fibrolysis deter-
mines liver fibrosis as a result of a complex interplay between
various cell types in the liver, including hepatic stellate cells,
Kupffer cells, hepatocytes, cholangiocytes, sinusoidal endothelial
cells, and infiltrating immune cells. Severity of liver fibrosis is
tightly correlated with an increasing risk of HCC in patients with
chronic HCV infection, suggesting that cirrhosis-driven carcino-
genesis is the major mechanism in the development of HCV-
related HCC [6,74]. Although sustained virological response
(SVR) from HCV improves histological fibrosis, a subset of
patients is still at risk of fibrosis progression and HCC develop-
ment [75], indicating the necessity of anti-fibrotic therapies to
prevent HCC [76].

Activation of hepatic stellate cells, or myofibroblasts, is the
major driver of liver fibrogenesis [77]. HCV broadly infects hepa-
tocytes, monocytes, lymphocytes and other secretory cells,
and contributes to stellate cell activation. HCV core and non-
structural proteins stimulate profibrogenic mediators such as
TGF-beta [78]. HCV infection induces TGFB1 through ROS produc-
tion, p38 MAPK, JNK, ERK, and NF-jB pathways [79], although
concerns regarding toxicities have been raised about targeting
the TGF-beta pathway exclusively [80]. Platelet-derived growth
factor (PDGF) is the most potent mitogenic signal, inducing
expression of beta PDGF receptor expression in stellate cells
together with other cell surface receptors of growth signalling
such as integrins [81]. Transgenic mice, expressing PDGF-C,
develop liver fibrosis and HCC [82], and the acyclic retinoid, pere-
tinoin, represses fibrosis and HCC development in the model [83].

In cell culture models, HCV non-structural proteins and, to a
lesser extent, core protein stimulate production of pro-inflamma-
tory chemokines such as IL-8, MCP-1, and RANTES and induce
expression of ICAM-1, a cell adhesion molecule known to activate
T cells [78]. JNK-pathway activation by the pro-inflammatory
cytokine IL1-beta can shift TGF-beta signalling from tumour sup-
pression to oncogenesis through accelerated fibrogenesis [84,85].
IL32 expression in hepatocytes is associated with hepatic inflam-
mation and fibrosis in HCV infection [86]. Hepatocyte death
serves as a stimuli activating stellate cells [87], and is a potential
therapeutic target in chronic hepatitis C [88]. Apoptotic bodies
with HCV infection could amplify fibrogenic signals [89]. Bacterial
lipopolysaccharide (LPS), permeabilized from intestinal microbi-
ota, elicits fibrogenic response and carcinogenesis through the
Toll-like receptor 4 (TLR4), expressed on stellate cells, by inducing
TGF-beta, which can be prevented by gut sterilization [90]. Multi-
ple variants in TLR4 modulate the risk of fibrosis in HCV-infected
Caucasian patients [91]. Matrix metalloproteinase-2 (MMP2), a
Journal of Hepatology 201
major ECM-degrading enzyme, is induced by interaction of E2
with CD81, a member of the receptor complex for HCV cellular
internalization, which may exacerbate inflammatory infiltration
and parenchymal damage [92].

Adipokines, including leptin, adiponectin, and resistin are
implicated in liver fibrogenesis in hepatitis C and NAFLD [93].
Suppression of the heat shock protein 47 (HSP47), a collagen-spe-
cific chaperon, by siRNA in stellate cells reduced fibrosis in rodent
models of fibrosis, and is now under early clinical evaluation [94].
Renin-angiotensin system (RAS) is suggested to be involved in
hepatocarcinogenesis [95]. Inhibition of angiotensin-II (AT-II) by
angiotensin-converting enzyme inhibitor (ACE-I) downregulates
angiogenic factors such as VEGF, and ACE-I administration, com-
bined with branched-chain amino acids (BCAA), has been shown
to attenuate insulin resistance-related hepatocarcinogenesis in a
diabetic rat model [96].

However, it is important to note that most of these findings
have been derived from experimental cell culture or animal mod-
els, overexpressing individual proteins. Since a robust infectious
small animal model, recapitulating the virus-induced carcinogen-
esis, is not yet available [11], the functional relevance of these
observations for hepatocarcinogenesis in humans is still unclear
and needs to be confirmed. The development of immunocompe-
tent animal models, fully recapitulating the viral life cycle and
virus-induced liver disease, in combination with studies in liver
tissue from HCV-infected patients will ultimately be required to
validate these findings and concepts. Also, ancillary assessment
of HCC development as an additional end point in clinical trials
of the anti-fibrotic agents may provide insight into their potential
role as HCC chemoprevention therapies [97].

Host factors affecting susceptibility to HCV-related HCC

Growth signalling pathways
Kinase signalling pathways represent druggable/targetable molec-
ular pathways that have been extensively studied. In HCV-related
HCC, genome-wide profiling of genomic DNA variants as well as
RNA transcripts has identified several candidate genes and path-
ways. Epidermal growth factor (EGF) is a mitogen involved in cel-
lular growth, proliferation, differentiation, and carcinogenesis. In
rodent models of cirrhosis-driven HCC, the EGF pathway was acti-
vated in hepatic stellate cells, and pharmacological inhibition with
a small molecule EGF receptor (EGFR) inhibitor, erlotinib, regressed
fibrosis and inhibited HCC development [98]. Interestingly, there
was no inhibition of the EGF pathway in the tumours, suggesting
that the HCC preventive effect was through regression of the
cirrhotic tissue microenvironment that supports initiation of neo-
plastic clones. In contrast, another small molecule EGFR inhibitor,
gefitinib, suppressed growth of initiated HCC clones in rats [99].
EGFR was recently identified as a co-factor for HCV cellular entry,
and erlotinib inhibited HCV infection, suggesting its role as anti-
HCV drug [100,101]. The role of the EGF pathway in HCV-related
liver diseases might be complicated though because HCV infection
induces the expression of other EGFR ligands such as amphiregulin
(AREG) and heparin-binding EGF-like growth factor (HBEGF), and
while AREG enhances liver fibrosis, HB-EGF suppresses liver fibro-
sis [102–105]. A multi-kinase inhibitor, sorafenib, improved portal
hypertension in cirrhosis patients, supposedly due to its anti-
angiogenic activity [106]. Sorafenib showed its anti-HCC effect
by blocking paracrine hepatocyte growth factor (HGF) from
stromal cells in response to vascular endothelial growth factor-A
4 vol. 61 j S79–S90 S83
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(VEGFA) secreted from HCC cells [107]. Selective inhibitors of these
growth signalling pathways have been clinically evaluated mostly
as cancer therapeutics. There may be opportunities to repurpose
this class of drugs for HCC chemoprevention if the toxicity concern
is satisfactorily addressed.

Immune pathways
An IL28B variant (rs12979860), initially identified as an interferon
response predictor [108], may be associated with increased risk of
HCV-related HCC [109]. Interferon effector genes (IEGs) such as
BCHE were identified through high-throughput RNAi screening
[110]. A genome-wide association study (GWAS) comparing
HCV-related HCC patients with chronic hepatitis C patients in
Japan identified a SNP in the MHC class I polypeptide-related
sequence A (MICA) (rs2596542), which is involved in response of
dendritic cells to type-I interferon in chronic hepatitis C
[111,112]. Another SNP in the MICA promoter (rs2596538) was
associated with increased serum soluble MICA protein [113].
Because the controls are patients without cirrhosis, it is possible
that the variants indirectly contribute to carcinogenesis through
increased inflammation and/or fibrogenesis [114]. A subsequent
study in Caucasian hepatitis C patients in Switzerland did not rep-
licate the association with HCC for this locus, but for a nearby locus
in HCP5 (rs2244546), suggesting that the MICA/HCP5 region con-
tains a potential susceptibility locus [115]. An additional GWAS-
identified locus in another Japanese patient series is in DEPDC5
(rs1012068) [116], which was not replicated in the Caucasian
patients [115].

Metabolic pathways
A SNP in the patatin-like phospholipase domain-containing pro-
tein 3 (PNPLA3) gene (rs738409) associated with alcoholic and
non-alcoholic steatohepatitis may have weak association with
HCV-related HCC [117]. In patients with chronic hepatitis C with
advanced fibrosis, positive association between liver iron deposi-
tion and higher incidence of HCC and poor prognosis was
observed [118]. Hepatic iron overload was associated with ele-
vated levels of 8-hydroxy-20-deoxyguanosine (8-OHdG), which
signifies hepatic oxidative DNA damage in patients with chronic
hepatitis C [119]. With an excess iron diet, transgenic mice
expressing HCV polyprotein developed hepatic steatosis, ultra-
structural alterations of mitochondria, and HCC, accompanied
with elevated levels of hepatic 8-OHdG [120]. HFE gene muta-
tions, in particular H63D, were associated with increased SVR
[121].

microRNAs
microRNAs (miRNAs) are small non-coding RNA that negatively
regulate gene expression by binding to complementary sites
within the 30UTR of multiple target protein-coding mRNAs. miRNA
expression profiling of HCV-related HCC tissues revealed deregu-
lated miRNAs including MIR122, MIR100, MIR10A, MIR198,
MIR145, and MIR517A as well as distinct expression patterns com-
pared to HBV-related HCC [122–124]. MIR122 is a liver-specific
miRNA that promotes replication of HCV [125]. In contrast,
MIR122 is under-expressed in HCC and associated with a more
aggressive biological phenotype, including overexpression of
alpha-fetoprotein [126]. Therapeutic delivery of MIR122 inhibits
MYC-driven mouse HCC [127]. Infection of HCV genotypes 1a,
1b, and 2a in primary human hepatocytes revealed that MIR141
targets a tumour suppressor gene DLC1 [128].
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It has been noted that early detection and prevention is the most
effective and rational approach to substantially impact the prog-
nosis of cancer patients rather than starting the treatment at
advanced/terminal stage [129]. However, development of cancer
prevention therapies is more challenging compared to cancer
therapeutics, due to the requirement for larger and longer clinical
trials because of the lower incidence of clinical events. In addi-
tion, a safer toxicity profile is required as preventive medicine,
administered to asymptomatic, cancer-free patients potentially
for long durations. HCV-related HCC is one of the most rational
targets for cancer preventive intervention because of the well-
established risk factor, HCV infection and cirrhosis, which in fact
enabled conduction of cancer chemoprevention trials with signif-
icantly smaller sample size compared to other cancer types [130–
133]. Although the trials failed to demonstrate a satisfactory
effect and toxicity profile as a standard of care, the HCC preven-
tive effect in patients with established or more advanced cirrho-
sis provides the proof of concept of HCC chemoprevention as a
valid option for further exploration.
Molecular biomarkers of HCC risk in HCV-related cirrhosis

Molecular biomarkers of HCC risk and/or poor prognosis will
enable further enrichment of the high-risk population and boost
statistical power in HCC chemoprevention trials [134]. HCC risk
biomarkers will also significantly contribute to the improvement
of early HCC detection. The current practice guidelines recom-
mend regular tumour surveillance with biannual ultrasound to
increase the opportunity to identify lesions at a stage where
potentially curative radical therapies can be applied [135]. How-
ever, the sizable cirrhosis population poses a challenge in imple-
menting the surveillance program: only 12% of new HCV-related
HCC patients are diagnosed through the surveillance in the U.S.
[136] Growing numbers of early-stage, asymptomatic cirrhotics
identified by non-invasive fibrosis detection methods such as
elastography will also add to the HCC screening burden [137].
Clinical variable-based prediction models for HCC development
have been explored, although their performance is limited and
none of them has been established in practice [138,139].

Numerous germline SNPs have been reported as HCC risk vari-
ants, although very few of them are replicated in independent
patient series/cohorts [140]. The EGF 61⁄G allele (rs4444903)
was associated with HCC risk in a prospective cohort of patients
with HCV-related advanced fibrosis or cirrhosis with a hazard
ratio (HR) of 2.10 for the G/G genotype in comparison to A/A
(Table 1) [141,142]. Despite diverse allele frequencies across
patient populations, association between the EGF genotype and
HCC risk remains significant and independent of patient race
[143]. A SNP in an antioxidant enzyme, myeloperoxidase, (MPO
�463⁄G, rs2333227) was associated with HCC risk in a prospec-
tive study (HR = 2.80) [144]. A panel of 7 SNPs (cirrhosis risk
score) was shown to be associated with the risk of fibrosis pro-
gression in male Caucasian patients with chronic hepatitis C,
although association with long-term outcomes, including HCC,
is yet to be determined [145]. A 186-gene-expression signature
was associated with HCC risk in prospectively followed patients
with early-stage HCV-related cirrhosis (HR = 2.65) [146]. Annual
HCC incidence in patients with poor-prognosis signature (5.8%)
was nearly 4 times higher than the incidence in patients with
4 vol. 61 j S79–S90



Table 1. Molecular biomarkers of HCV-related HCC risk.

Molecular biomarker Type No. of patients HR Race/ethnicity [Ref.]
EGF 61*G (rs4444903) SNP 816 2.10 White, Hispanic, Black, Asian [142]
MPO -463*G (rs2333227) SNP 205 2.80 White [144]
CAT -262*C (rs1001179) SNP 205 1.74 White [144]
186-gene poor prognosis signature Gene expression 216 2.65 White, Hispanic, Black, Asian [146]

Molecular biomarkers demonstrating HR >1.50 in independent prospective or prospective-retrospective cohort (n >100) are shown.
rs numbers indicate accession numbers in the NCBI dbSNP database (www.ncbi.nlm.nih.gov/snp).
HCV, hepatitis C virus; HCC, hepatocellular carcinoma; HR, hazard ratio.
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good-prognosis signature (1.5%). The signature reflects activation
of NF-jB, IL6, EGF, and interferon pathways, suppression of DNA
damage repair genes such as GSNOR, and hepatic stellate cell
activation. In rodent models of cirrhosis-driven HCC, the signa-
ture was induced from the inception of liver fibrosis, reversed
in response to an EGFR inhibitor, erlotinib, and accompanied its
HCC chemopreventive effect, suggesting its role as a pharmacog-
enomic companion biomarker [98]. With the recent emergence of
highly selective molecular targeted agents, the tissue-based
assessment of predictive biomarker for response is now recom-
mended in practice guidelines [135]. Circulating cells or biomol-
ecules such as miRNAs may be alternative sources to obtain
similar molecular information less invasively [147]. In addition,
molecular imaging of collagen could potentially be used to mon-
itor fibrosis regression, which may correlate with decreased HCC
risk [148].

Strategies to prevent HCV-related HCC

Primary prevention, i.e., HCV vaccination, is currently unavailable
due to the high variability in the viral genomic structure and enve-
lope proteins, the large number of quasispecies, and the lack of a
neutralizing antibody. Secondary prevention aims at preventing
HCC development in established HCV-related advanced fibrosis
or cirrhosis. To date, several relatively large phase 3 trials have
been conducted, which demonstrated limited efficacy and utility
of the tested therapies [130–132]. Tertiary prevention targets
recurrence of de novo second primary HCC after curative treat-
ment of initial primary HCC, but available evidence is still scarce
[149–151]. Theoretically, secondary and tertiary prevention could
be achieved by anti-HCV therapies and/or non-aetiology-specific
therapies, targeting inflammation, fibrogenesis, and/or carcino-
genesis, which have been extensively studied in the past decades.
However, there are still several undetermined study design issues,
including appropriate sample size, study duration, and elusive pri-
mary and surrogate study end points according to the preventive
strategies. These points need to be clarified to streamline and
facilitate design and conduction of HCC chemoprevention trials
in HCV cirrhosis. Targeted disease stage/severity, e.g., compen-
sated or decompensated cirrhosis, should be specified in the
inclusion criteria especially in secondary prevention trials
because of the distinct difference in expected outcome. Enrich-
ment of high-risk patients with the use of HCC risk biomarkers
and/or prognostic indices is critical to boost HCC incidence and
keep the required sample size and study duration within practi-
cally feasible range. Testing candidate chemoprevention therapies
in the setting of tertiary instead of secondary prevention could be
a way to further boost HCC incidence because post-surgical recur-
rence is approximately three times more frequent compared to
the first HCC in cirrhosis, although diagnosis of de novo HCC
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recurrence should be unambiguously determined based on expli-
cit criteria [152]. Also, a consensus needs to be developed on
acceptable toxicities in the context of preventive intervention in
patients with advanced fibrosis or cirrhosis.

Anti-HCV therapies

Recent clinical trials have reported SVR rates greater than 90%
with the use of DAA-based interferon-free regimens even in
patients with cirrhosis [153,154]. Interferon-based therapies
have shown that SVR is consistently associated with gradual
regression of fibrosis and lower risk of HCC in retrospective stud-
ies [9,155]. However, the clinical utility of achieving SVR with the
use of anti-HCV therapies in the context of HCC prevention needs
to be clarified especially in patients with comorbid conditions,
e.g., decompensated cirrhosis and older age, in future studies. It
also needs to be determined whether DAAs have any role in ter-
tiary prevention. Nevertheless, the cost of DAAs could be prohib-
itive in their use as preventive drugs. Also, because the patients
are still at risk of HCC even after SVR, additional measures of sec-
ondary/tertiary prevention are needed. In liver transplantation
for HCV-related HCC, HCV reinfection in grafted liver could lead
to progressive fibrosis and de novo HCC, which may be prevented
by inhibition of HCV entry [100].

Non-aetiology-specific HCC chemoprevention

Anti-inflammatory, immune therapies
Suppression of hepatic inflammation could delay disease progres-
sion and reduce HCC risk; biochemical response, i.e., normaliza-
tion of liver enzymes, such as alanine aminotransferase (ALT),
achieved by either glycyrrhizin or ursodeoxycholic acid (UDCA),
have been suggested to reduce HCC risk [4]. Interferon has been
extensively evaluated as a chemopreventive agent in HCV-related
HCC. In two relatively large randomized trials of maintenance
low-dose interferon, HCC risk was modestly reduced in patients
with more advanced fibrosis/cirrhosis (HALT-C trial), and the
composite of first liver-related clinical events was reduced in
patients with portal hypertension (EPIC3 trial) in post hoc sub-
group analyses [131,156]. However, the modest effects and poor
tolerability (nearly 40% drop out and excess mortality in HALT-C
trial) of Peg-interferon preclude its wide application as standard
of care. The HCC suppressive effect in these studies was not evi-
dent during the first two to three years of treatment, which may
reflect a latent period for newly initiated cancer clones to be clin-
ically detected. Interferon has also been also assessed as tertiary
prevention in retrospective and prospective studies, which consis-
tently showed a trend of reducing post-treatment recurrence or
death [4]. Immunosuppression after liver transplantation with
sirolimus, an mTOR inhibitor, reduced HCC recurrence and
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Table 2. Ongoing HCC chemoprevention trails relevant to HCV-related HCC.

Trial number Agent Type of agent Phase Type of 
prevention

Participants Completion

NCT00513461 S-adenosylmethionine (SAMe) Dietary supplement 2 Secondary Advanced chronic hepatitis C Dec 2013
NCT01956864 High-dose vitamin D Dietary supplement 1 Secondary Cirrhosis without HCC Sep 2014
MAY2013-02-02 Erlotinib Kinase (EGFR) 

inhibitor
1 Secondary/

tertiary
HCC after resection 2015-2016

NCT00355862 Sirolimus (SiLVER trial) Immune modulator 3 Tertiary HCC after transplantation May 2014
NCT01924624* Thalidomide Immune modulator, 

anti-angiogenesis
n.a. Tertiary HCC after resection Dec 2019

NCT01717066* Ginsenoside Rg3 Chemo-sensitizer, 
anti-angiogenesis

n.a. Tertiary HCC after resection May 2015

NCT01770431* Huaier Granule Traditional herbal 
medicine

4 Tertiary HCC after resection Dec 2014

NCT01964001* Vitamin B6, Coenzyme Q10 Dietary supplement 2/3 Tertiary HCC after resection Dec 2015
⁄Likely to enrol mainly hepatitis B virus-infected patients.
From www.ClinicalTrials.gov and cancerpreventionnetwork.org accessed May 2014. Verified trials after 2012 are shown.
HCC, hepatocellular carcinoma; HCV, hepatitis C virus; EGFR, epidermal growth factor; NCT, National Clinical Trial number; MAY, Cancer Prevention Network protocol
number; n.a, not available.
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improved survival [157]. The result of an ongoing multicentre trial
of sirolimus (SiLVER study) is anticipated (Table 2). Aspirin
may elicit cancer preventive effects through inhibition of
cyclooxygenase-2 (COX2), although there are conflicting data
about the HCC chemopreventive effect with COX-2 inhibition
[158].

Treatment of metabolic disorders, dietary supplements
Statins, HMG-CoA reductase inhibitors, have been suggested to
have an anti-proliferative effect through inhibition of RAS/MAPK
and cell cycle pathways and a pro-apoptotic effect. Observational
studies suggest an HCC preventive effect by statins, which is not
yet verified in a clinical trial [159]. Diabetes is associated with
prognosis in HCV-related cirrhosis, and an anti-diabetic drug,
metformin, inhibits the mTOR pathway by activating AMPK,
may reduce HCC risk and improve survival [160]. Coffee and
green tea polyphenol, epigallocatechin gallate (EGCG), show a
modest HCC preventive effect, supposedly by activating anti-
oxidant and detoxification pathways in experimental and epide-
miological studies [4,161]. EGCG is also reported to inhibit HCV
entry [162]. S-adenosylmethionine (SAMe), a major methyl
donor, inhibiting hepatocyte growth factor (HGF), is being tested
in HCV-related HCC for AFP reduction in a phase 2 trial (Table 2).
Other phytochemicals such as curcumin, resveratrol, silymarin,
and genistein showed HCC preventive effects in animal models,
but clinical evidence in HCV-infected patients is limited [4]. The
HCC preventive effect of this type of drugs is generally expected
to be modest. Therefore, enrichment of high-risk patients as well
as utilization of epidemiological data/resources will be critical in
determining their clinical utility.

Molecular targeted agents
Given the rapidly expanding inventory of selective molecular
targeted agents, newly synthesized or identified through high-
throughput screening, molecular targeted cancer chemopreven-
tion is now an increasingly feasible option. An acyclic retinoid,
peretinoin, was tested in a large-scale phase 3 trial, enrolling
HCV-related cirrhosis patients, which showed modest HCC pre-
ventive effect [132]. Interestingly, an HCC reduction was observed
S86 Journal of Hepatology 201
after 2 years of enrolment as seen in the previous interferon trials.
The multi-kinase inhibitor, sorafenib, was tested in the setting of
tertiary prevention, although no clear HCC preventive effect was
observed (Table 2). It is assumed that the ‘‘all-comer’’ approach
without biomarker-based enrichment is the major basis for failure
[163]. Nevertheless, a post hoc exploration of predictive biomark-
ers is currently underway. An EGFR inhibitor, erlotinib, is being
tested in a phase 1 trial, in which the 186-gene signature is
assessed as a companion biomarker [151]. A clinical trial of
another EGFR inhibitor, gefitinib, is also registered.

New chemopreventive targets in HCV-related HCC
Genome-wide profiling of various biomolecules and high-
throughput drug screens have facilitated unbiased, large-scale
surveys of new molecular targets and therapeutics [164]. In vivo
high-throughput RNAi screening will be another powerful tool to
identify functional targets [165]. Recent advancement in the
in vitro and in vivo modelling of HCV infection has allowed more
physiological and functional assessment of the HCV-host interac-
tions and viral life cycle and has allowed to identify and verify
candidate target genes and pathways [13]. Transcriptome signa-
tures have been successfully utilized to identify new drugs or
indications, i.e., drug repurposing, in a variety of diseases [166].
Regulatory transcriptome network analysis could be a comple-
mentary approach in identifying key driver genes in hepatocarci-
nogenesis [167]. Genome-scale mathematical metabolic
modelling of hepatocytes led to the identification of serine defi-
ciency as a potential target in non-alcoholic steatohepatitis-
related HCC [168]. This may suggest a potential utility for the
construction of a model of the HCV-infected hepatocyte to
explore HCC chemoprevention targets.
Conclusions

HCV-related HCC will remain a major health problem in the com-
ing decades. Although prevention of HCV-induced HCC is not yet
established, direct and indirect oncogenic roles of HCV and candi-
date targets genes and molecular pathways have been suggested
4 vol. 61 j S79–S90
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in experimental and clinical studies. Integration of genome-wide
association studies, high-throughput and unbiased target/drug
screens against libraries of RNAi/selective targeted agents, and
more physiological HCV infection and liver disease models are
expected to facilitate the development of molecularly targeted
HCC chemoprevention, which may be widely applicable to
cirrhosis-driven HCC, caused by other aetiologies, as well as
inflammation-driven cancer in other organs, such as gastric,
cervical, and colon cancers. Clinical assessment of antiviral,
anti-inflammatory, and anti-fibrosis drugs in the context of HCC
chemoprevention will be a challenge. Molecular biomarkers that
could be used to select target patients and/or predict response
will be the key in designing clinically feasible trials of HCC
chemoprevention therapies.
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