
 Procedia IUTAM   9  ( 2013 )  69 – 78 

Available online at www.sciencedirect.com

2210-9838 © 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.

Selection and peer-review under responsibility of the School of Mathematical Sciences, University College Dublin
doi: 10.1016/j.piutam.2013.09.007 

ScienceDirect

IUTAM Symposium on Understanding Common Aspects of Extreme Events in Fluids

On the singular nature of turbulent boundary layers

J.C. Klewickia,b

aUniversity of New Hampshire, Department of Mechanical Engineering, Durham 03824, USA
bUniversity of Melbourne, Department of Mechanical Engineering, Melbourne 3010, Australia

Abstract

An estimate is derived for the rate at which, with increasing Reynolds number, the vorticity in turbulent boundary layers is confined

to a diminishing fraction of the overall flow domain. For laminar boundary layers this rate is reflected in the self-similar coordinate

stretching that determines the Reynolds number scalings for boundary layer growth and skin friction. For the turbulent boundary

layer this rate is shown to also derive from an underlying similarity structure. An accounting of the magnitude ordering of terms

in the mean dynamical equation for the turbulent boundary layer reveals a four layer structure. This structure forms during the

transitional regime, persists for all subsequent Reynolds numbers, and provides a framework for describing the evolution of the

boundary layer vorticity and momentum fields. Multiscale analyses that exploit the four layer ordering reveal that two kinds

of self-similarities are formally admitted. With increasing Reynolds number, these are shown to be associated with two kinds

of scale-separation between the motions characteristic of the velocity and vorticity fields. One pertains to the near-wall spatial

confinement of the vorticity field owing to vorticity stretching, and the other pertains to the advective transport of decreasingly

smaller scale vortical motions over a domain that approaches the overall flow width as the Reynolds number becomes large. The

scalings associated with the self-similar structure indicate that slightly greater than 50% of the total vorticity content is, with

increasing Reynolds number, confined to a near-wall layer of diminishing thickness, with the remainder attributable to a domain

that approaches the total layer thickness. Within the larger domain at least 50% of the vorticity is concentrated in narrow vortical

fissures that also decrease in relative scale with Reynolds number. Spanwise vorticity measurements in laboratory boundary layers

and the atmospheric surface layer are shown to be in agreement with the theoretical predictions, but also provide evidence that

at sufficiently high Reynolds number, the vortical fissures develop an intermittent internal structure. Collectively, these results

indicate that, on average at any given instant, at least 75% of the boundary layer circulation (per unit length) is confined to a region

that diminishes like log(δ+)/
√

δ+ as the boundary layer Reynolds number, δ+ = δuτ/ν → ∞.
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1. Introduction

The existence of a region near a no-slip surface within which the direct effects of viscosity are dynamically sig-

nificant constitutes a definitional attribute of boundary layer structure (laminar, transitional, or turbulent). From an
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examination of the vorticity form of the Navier-Stokes equation, this region also coincides with non-negligible vor-

ticity. As the Reynolds number (say δ+ = δuτ/ν) increases, this region occupies a decreasing fraction of the overall

flow domain. This physically describes how the solution to the Navier-Stokes equation approaches that of the Euler

equation as δ+ → ∞, with the associated conceptual model for the boundary layer being a vortex sheet positioned

infinitesimally above the wall. The purpose of the present study is to provide a description of how this process occurs

in the turbulent boundary layer over a smooth surface.

The analysis applies to statistically stationary incompressible turbulent boundary layer flow with zero streamwise

pressure gradient. The main flow is in the x direction, with the wall-normal direction denoted by y. Upper case

letters or angle brackets denote time-averaged quantities, lower case letters indicate fluctuations about the mean,

instantaneous quantities are denoted by a tilde, and a prime denotes the rms of a fluctuating quantity. The x, y and

z velocity components are given by variants of u, v and w, respectively. Vorticity component directions are denoted

by their subscript, δ is used to denote the boundary layer thickness, and U∞ is the freestream velocity. The friction

velocity is given by uτ =
√

τw/ρ , where τw is the mean wall shear stress and ρ is the mass density. The dynamic and

kinematic viscosities are respectively denoted by μ , and ν = μ/ρ . Quantities normalized by ν and uτ are denoted

by a superscript +. The Reynolds number is given by δ+ = δuτ/ν , and the small parameter, ε , by ε = 1/
√

δ+.

Circulation per unit length is denoted by Γ.

A brief examination of steady zero pressure gradient boundary layer flow in the laminar regime provides a useful

context for highlighting the practical and theoretical significances of this issue. The relevant differential statement of

dynamics for this flow is

ũ
∂ ũ
∂x

+ ṽ
∂ ũ
∂y

= ν
∂ 2ũ
∂y2

, (1)

which indicates that the time rate of change of streamwise momentum is affected by a retarding viscous force. To

within the boundary layer approximation, ω̃z �−∂ ũ/∂y, and thus the outward spread of momentum deficit identically

coincides with a wall-normal gradient of ω̃z. Also in accord with boundary layer concepts, (1) constitutes the leading

order approximation to the Navier-Stokes equations for laminar flow over a flat no-slip surface as the Reynolds number

(generally defined as Rx = U∞x/ν , where x is measured from the leading edge) tends to infinity. When combined

with the continuity equation and relevant boundary conditions, (1) forms a well-posed boundary value problem that

formally admits the similarity solution first demonstrated by Blasius, e.g., see [1]. Important to the present purpose,

the scalings embodied in the coordinate transformations associated with this similarity solution describe the rate at

which the subdomain where the viscous/vortical effects are of leading order shrinks in proportion to the overall size

of the flow domain. This rate is proportional to 1/
√

Rx for laminar flow. The physics underlying this rate dictate

important Reynolds number dependent properties, such as the growth of the boundary layer and the net viscous drag.

The analysis herein exploits the similarity structure admitted by the relevant mean dynamical equation to estimate the

analogous rate for the turbulent boundary layer, and to describe the operative physical processes.

Increases in Reynolds number are generically accompanied by a scale separation between the motions characteristic

of the spatially coincident velocity and vorticity fields. In the laminar case, scale separation is reflected in the overall

growth rate of δ . This is because (1) contains only two mechanisms, and thus the viscous force retains leading

order across the entire boundary layer. In the turbulent case, the situation is more complicated. Here, purely inertial

mechanisms constitute the leading order balance in the mean statement of dynamics over a significant and Reynolds

number dependent portion of the boundary layer. About 50% of the mean vorticity exists on this domain, but this

vorticity is on average confined, at any given instant, to a sub-volume of diminishing relative size. Owing to this,

it is useful to conceptualize two possible ways that scale separation can occur in the turbulent boundary layer. One

involves reducing the size of the vortical motions relative to the size of the velocity field motions upon which they are

superposed. This can occur even if the physical size of the velocity field motions is also decreasing. The converse

possibility involves small scale vortical motions being sparsely spread over a velocity field domain whose relative

size is increasing. This can occur even if the physical size of the vortical motions is also increasing. As described

herein, the distinction between these two similar scale separation scenarios becomes significant when considering the

physical mechanisms associated with them.

The present effort seeks to describe the average rate at which the vorticity in the turbulent boundary layer concen-

trates onto a sub-volume of the overall flow domain. Toward this aim, theoretical analyses, as complemented/verified
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by empirical observations, provide guidance [2]. One part of the resulting description uses the analysis of the mean

dynamical equation directly to describe the scaling behaviors of a near-wall subdomain that accounts for about half

of the mean vorticity integral. Another part exploits the self-similar behaviors exhibited by the mean and fluctuating

vorticity, in concert with the under-appreciated fact that beyond the near-wall domain the ω̃z bearing motions gener-

ally have an amplitude that greatly exceeds |Ωz|. This allows for an asymptotic description of the domain size that, at

any given instant, contains the bulk of the outer region spanwise vorticity.

2. Similarity structure admitted by the mean momentum equation

The desired estimates are obtained through consideration of the self-similarities admitted by the mean momentum

equation relevant to the problem of turbulent boundary layer flow over a flat plate. Under inner-normalization, this

equation is given by

(
U+ ∂U+

∂x+
+V+ ∂U+

∂y+

)
− ∂T+

∂y+
=

∂ 2U+

∂y+2
. (2)

While commonly called the Reynolds shear stress, T+ = −〈uv〉+ is in reality associated with the inertia of the tur-

bulence. Three physical mechanisms are apparent in (2). Mean inertia (MI) is represented by the terms inside the

parentheses on the left. The remaining term on the left is the mean effect of turbulent inertia (T I). The term on the

right of (2) is the mean viscous force (V F). For purposes of describing the mechanisms underlying the T I term, there

is use in the representation,

∂T+

∂y+
= 〈vωz〉+−〈wωy〉+, (3)

which holds to within the boundary layer approximation. (Note that (3) is exact in channel flow.)

The terms in (2) exhibit distinct magnitude orderings on four layers. The scaling properties associated with these

layers are summarized in table 1, e.g., see [2, 3, 4]. The ensuing section describes how these properties stem from a

self-similar and continuous hierarchy of layers. Each layer on the hierarchy replicates the magnitude ordering of layer

III, but as a function of scale. The hierarchy extends from near the bottom of layer II (y+ � 7) to near the middle of

layer IV (y/δ � 0.5). From (3) it is apparent that 〈wωy〉+ = 〈vωz〉+ at the point where T+ reaches a maximum, or

equivalently, where the T I term has a positive to negative zero-crossing. Closer to the wall 〈wωy〉+ is larger, while

farther from the wall 〈vωz〉+ is larger. The 〈wωy〉+ term is associated with change of scale effects caused by vorticity

stretching, while the 〈vωz〉+ term is associated with advective transport [5].

Table 1. Magnitude ordering and scaling behaviors associated with the four layer structure of the mean momentum equation. Note that the layer

IV properties are asymptotically attained as δ+ → ∞.

Physical layer Magnitude ordering Δy increment ΔU increment

I |MI| � |VF| � |TI| O(ν/uτ ) (≤ 3) O(uτ ) (≤ 3)

II |VF| � |TI| � |MI| O(
√

νδ/uτ ) (� 1.6) O(U∞) (� 0.5)

III |MI| � |VF| � |TI| O(
√

νδ/uτ ) (� 1.0) O(uτ ) (� 1)

IV |MI| � |TI| � |VF| O(δ ) (→ 1) O(U∞) (→ 0.5)

2.1. Synopsis of the Boundary Layer Analysis

The boundary layer analysis has analogy with the somewhat simpler case of channel flow [4]. Relative to fully

developed channel flow, however, the boundary layer analysis is complicated by an x−dependence, and by the non-

constancy of the profile of the MI term in (2) over 0 ≤ y ≤ δ . For equilibrium boundary layer flows (2) is well-

approximated by

d2U+

dy+2
+

dT+

dy+
+ ε2b(y+,ε) = 0, (4)
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where ε = 1/
√

δ+ = ε(x+), and b= b(y+,ε) [6, 7]. The unknown O(1) function b is constrained such that
∫ δ+

0 bdy+ =
O(δ+) for all ε . Given this, integration of (4) yields ε−2(x+) = O(δ+). Thus, the function b(y+) predominantly de-

scribes the shape of the MI profile, and ε predominantly describes the Reynolds number variation of its amplitude.

Equation 4 admits an invariant form on each of a continuous hierarchy of internal scaling layers called the Lβ
hierarchy [2, 4]. Each Lβ layer has a width that varies with wall-normal position. Thus, there is a corresponding layer

width distribution, W+(y+). The attributes of W+(y+) derive from the leading order balance of all three terms in (2)

as expressed by (9) under the stretched coordinates described by (8). The position and width of each member of the

self-similar layer hierarchy is determined by the small positive parameter, β . The existence of the invariant form is

exposed by using the transformation

Tβ (y
+) = T+(y+)−T ∗(η ,ε)−βy+, (5)

where η = ε2y+ = O(y/δ ). Equation (5) effectively defines β . In (5) T ∗(η ,ε) is the outer approximation to T+,

T ∗ =
∫ η(δ )

η
b(s,ε)ds, (6)

where η(δ ) denotes the value of η = O(1) at y = δ . Substitution of (5) into (4) yields

d2U+

dy+2
+

dT+

dy+
+β = 0, (7)

which is of a form identical to that found for channel flow. From here, differential transformations,

dy+ = β−1/2dŷ, dT+ = β 1/2dT̂ , dU+ = dÛ , (8)

yield the invariant form,

d2U+

dŷ2
+

dT̂
dŷ

+1 = 0, (9)

of the differential force balance [2].

Equation 9 holds on each Lβ layer [6, 7]. The differential transformations (8) that lead to (9) underlie the similarity

solution demonstrated by Klewicki [8]. The underlying dynamical self-similarity is most succinctly expressed in

terms of the scaled gradient of the mean effect of turbulent inertia. It states that the quantity

A(β ) =−d2T̂β

dŷ2
(0) =−β−3/2 d2T+

dy+2
(10)

becomes an O(1) function on the Lβ hierarchy [2]. Physically, (10) is a statement about the wall-normal flux of

turbulent inertial force. It states that this flux approaches an invariant function when the width of each Lβ layer is

used as a characteristic length. On the portion of the Lβ hierarchy interior to the outer edge of layer III (y+ ≤ 2.6ε−1),

A(β ) is an O(1) but non-constant function. On the portion of the hierarchy outward of y+ � 2.6ε−1, A(β ) approaches

an O(1) constant.

To within the boundary layer approximation, the relatively simpler form of the outer self-similarity leads to a

closure of (2) on an interior domain that begins near the outer edge of layer III. The theory predicts that this is

where logarithmic dependence is most rapidly emergent and accurately approximated in the mean velocity profile,

e.g., [2]. Recent analysis of high Reynolds number boundary layer and pipe flow data support this prediction [9].

The existence of the underlying similarity solution on this subdomain can be demonstrated by directly integrating the

closed equations between the relevant wall-normal limits. This is done, for example, by selecting the starting values

from a direct numerical simulation (DNS) of the boundary layer, and subsequently comparing the similarity solution

with the DNS solution. The analysis details pertaining to the construction of the boundary layer similarity solution

are provided by Klewicki [8], and an example result for low δ+ flow is given in figure 1.
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Fig. 1. Comparison of the inner-normalized profiles of U+, Ω+
z , dΩ+

z /dy+, d2Ω+
z /dy2+ on the domain 2.6

√
δ+ ≤ y+ ≤ δ+/2 as determined from

the δ+ = 1245 boundary layer DNS of [10]; – – –, and similarity solution of (4), with starting values selected from the DNS; ——.

Analysis and comparison of velocity and vorticity spectra from laboratory and field studies indicates that on the

part of the Lβ hierarchy where the V F term in (2) is of leading order (7 ≤ y+ ≤ 2.6ε−1) the relevant vortical motions

become smaller than those representative of the velocity field primarily owing to vorticity stretching. This is described

as scale separation via spatial confinement [11]. Conversely, on the inertially dominated part of the hierarchy the

primary scale separation mechanism is associated with the transport of concentrated vortical motions by turbulent

advection. This is described as scale separation via spatial dispersion. In this regard, instantaneous particle image

velocimetry measurements over the outer region of boundary layers provide evidence of large scale zones of nearly

uniform momentum that are segregated by narrow vortical fissures. These features were first revealed in the study

of Meinhart & Adrian [12], shown to have connection to packets of hairpin-like vortices by Adrian et al. [13], and

described relative to the mechanisms of (3) by Priyadarshana et al. [13]. Consideration of the mean enstrophy equation

provides additional support for the near-wall vorticity stretching mechanism, as does the dominance of the 〈wωy〉+
contributions to (3) in layer II. Similarly, the dominance of the 〈vωz〉+ in layer IV supports advective transport.

Furthermore, the behavior of the 〈vωz〉+ profile clearly exhibits constancy in layer IV when normalized using uτ and

the characteristic layer width distribution, W , of the Lβ hierarchy [14]. This reveals that the advective dispersion of

the vortical fissures in layer IV is described by this distribution. Specifically, as δ+ → ∞, the layer IV distribution of

Lβ layer widths increasingly gains linear proportionality with the distance from the wall [2]. This physically reflects

the process by which the vortical fissures are spatially dispersed in layer IV.

3. Estimating the viscous/vortical domain

The scaling behaviors of the four layer structure described in table 1, along with the associated similarity structure

admitted by (4), provide a basis for estimating the rate at which viscous/vortical effects are confined to a domain of

diminishing size as δ+ → ∞. In what follows, the regions y+ < 2.6ε−1 and y+ > 2.6ε−1 are considered separately.

3.1. Width of the domain where the VF term is of leading order (y+ < 2.6ε−1)

Useful results derive from the structure of the mean vorticity, Ωz(y), profile. To within the boundary layer approx-

imation, Ωz, is given by −∂U/∂y. The integral of the Ωz profile is equal to −U∞, or equivalently the total boundary

layer circulation per unit length, Γ∞. As indicated in table 1, the inner-normalized mean velocity increment (Γ+)

from the wall to the outer edge of layer III is approximately 0.5Γ+
∞ + 4. This stems from the theoretical result that

|Ω+
z |ε−1 = 1 at εy+ = O(1) [4]. As exemplified by figure 2, this prediction is confirmed by the empirical observation

that |Ω+
z |ε−1 = 1 at εy+ � 2.6.

Thus, as δ+ → ∞ a little more than 50% of the total circulation (per unit length) remains confined to the region

y+ ≤ 2.6ε−1, with the remainder being spread over a layer IV that has a width that asymptotically approaches δ . The
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Fig. 2. Mean vorticity profiles in turbulent boundary layer flow, meso-normalized and plotted on logarithmic axes. Solid lines are from the

experiments of [15]. Dashed lines is from the δ+ = 671,1034, and 1245 simulations of [10]. Dotted lines are from the near-wall DNS, and have

been transformed to correspond to the Reynolds numbers of the experimental profiles.

recognition that slightly more than 1/2 of Γ∞ resides within a domain that is O(ε) provides the first part of the desired

estimate. It also indicates that as δ+ → ∞ the remainder of the circulation resides in the domain where the leading

order mean dynamics are governed by the MI and T I terms in (2).

3.2. Volume occupied by the vortical motions in layer IV (y+ > 2.6ε−1)

It was previously noted that an especially relevant distinction between laminar and turbulent boundary layer struc-

ture is that the laminar flow equation (1) has only two operative mechanisms, while the mean dynamical equation for

turbulent flow (2) has three. From this it is clear that the viscous force must be of leading order everywhere in the

laminar boundary layer, and thus the growth rate of the boundary layer thickness itself is the quantity of interest. As

just described, in an average sense only slightly more than 1/2 of the total vorticity in the turbulent boundary layer

resides in the region where the mean viscous force is of leading order. The rest of the vorticity is, on average, confined

to a subdomain of layer IV.

The aim now is to gain an estimate for the size of this subdomain. To begin we note that with increasing distance

from the wall the amplitude of the vorticity fluctuations rapidly exceeds that of Ωz. For example, by y+ � 40 ω ′
z = |Ωz|,

and by the outer edge of layer III ω ′
z/|Ωz| � 1, and increasingly so at this location as δ+ → ∞ [14, 16]. This

emergent behavior is exemplified (at low δ+) in figure 3. As a result, the layer IV flow increasingly sees the regular

appearance of both positive and negative instantaneous ω̃z motions, with the mean becoming a diminishing residual
of the interactions involving these instantaneous motions, e.g. [17]. An obvious additional consequence of this is that

in layer IV ω̃z is increasingly well-approximated by ωz.

Via comparison it is apparent that the region where the fluctuations dominate the mean in figure 3 identically

coincides with the region of approximately −1 power law dependence in figure 2. As described above, this also

corresponds to layer IV, and thus the region of inertially dominated mean dynamics. Turbulent wall-flow dynamics

are responsible for the outward wall-normal transport of mean vorticity, and simultaneously, the inward wall-normal

transport of mean momentum [18]. Indeed, it can be formally shown that the mechanisms accomplishing this are the

same [19]. From these considerations, and the fact that there are no vorticity sources internal to the present flow, one

can readily surmise that the mean circulation contained in layer IV at any given streamwise position is derived from

ω̃z previously contained interior to y/δ = 2.6ε . Existing evidence, up to δ+ � 1×106, indicates that much if not most

of this vorticity is contained within the vortical fissures [14].

These observations immediately lead to an initial and conservative estimate that the transverse scale of the vortical

fissures in layer IV are, on average, no wider than 2.6ε−1. Two primary factors underlie the further refinement of this
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Fig. 3. Spanwise vorticity intensity profiles from the boundary layer DNS of [10], normalized by |Ωz| and plotted versus y+, δ+ = 359, · · ·;
δ+ = 830, - - -; δ+ = 974, – – –; δ+ = 1145, — — —; and δ+ = 1271, ——. Vertical dashed lines denote the upper and lower boundaries of

layer III at δ+ = 1271. Vertical dotted line denotes y+ = 40, which is nominally where the exchange of mean enstrophy to fluctuating enstrophy

(via vorticity stretching and reorientation) becomes negligible. Curve-fit in Layer II is given by ω ′
z/|Ωz| = 0.027(y+)1.21. Curve-fit in layer IV is

given by ω ′
z/|Ωz|= 0.796(y+)0.34.

Fig. 4. Vortical fissure thickness estimates normalized by δ versus δ+ (solid symbols). Streamwise Taylor microscale and ωz advected lengths

at εy+ = 2.6 (open symbols). Vortical fissure thicknesses from [12, 21, 22]. Taylor microscale and ωz length scale measurements are from

[14, 23, 24, 25, 26, 27].

upper bound. One comes from the scaling behaviors formally admitted by (2) that underlie the division of the mean

circulation per unit length depicted in figure 2. Namely, from the wall to y+ � 2.6ε−1 the |Ωz| drops from u2
τ/ν to√

u3
τ/νδ . From this point |Ωz| drops to uτ/δ by the upper end of the Lβ hierarchy, and then decays approximately

linearly to zero at y = δ . The latter of these sets constraints on how much circulation can reside in a given number

of fissures. (Note that number of uniform momentum zones and vortical fissures increases with δ+ to account for the

total vorticity content of layer IV. A second factor derives from the scaling behavior of Ωz in the region y+ ≤ 40. The

Ωz profile exhibits a precipitous drop between 7 ≤ y+ ≤ 40. Analysis of the mean enstrophy equation indicates that

this feature is associated with the exchange of mean-to-fluctuating enstrophy, and that this process universally scales

on the inner length scale for all of the canonical wall-flows [14]. These attributes are reflected in figure 3.

From these considerations one can surmise that the widths of the fissures, Δ f , are, on average, no less than the

width of layer III, and no greater than the width of layer II, i.e., 1.0ε ≤ Δ f /δ ≤ 1.6ε . The data of figure 4 support this

assertion. This figure presents direct quantifications of Δ f /δ from boundary layer PIV measurements over the range

103 ≤ δ+ ≤ 106, and shows that Δ f /δ (solid symbols) fall within the expected range. The Taylor microscale and

vorticity length scale data on this figure also provide evidence that as δ+ increases the fissures develop an intermittent

internal structure, while retaining the predicted O(uτ) velocity increment across each fissure [14]. These structural

features are also consistent with other recent observations in high Reynolds number flows, e.g., [20].
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Fig. 5. Schematic depiction of the processes responsible for scale separation between the velocity and vorticity fields in turbulent wall-flows. The

velocity field motions (light grey) are space-filling throughout the flow. The vorticity field motions (hatched regions) are confined to a sub-volume

near the wall by vorticity stretching, and then the resulting fissures are dispersed by advective transport over the volume of layer IV, adapted from

[14].

According to the present theory, the decay rate of |Ωz| in the hierarchy portion of layer IV is predicted (in an order

of magnitude sense) to cause a decrease from |Ωz| � uτ/
√

νδ/uτ to |Ωz| � uτ/δ . When cast in this manner, it is

apparent that the characteristic velocity increment remains uτ , while the characteristic length increases from
√

νδ/uτ
to δ . Thus, the logarithmic behavior of the mean velocity profile stems from the average linear increase of wall-

normal distance between the vortical fissures with distance from the wall, as precisely reflected by linear increase of

W+(y+) in the lower portion of layer IV. As described previously [8, 18], this scaling behavior, and its underlying

construction, has strongly correspondences with Townsend’s attached eddy phenomenology, e.g., [28, 29]. In layer

IV, the spatial dispersion via advective transport scale separation mechanism depicted in figure 5 is operative. The

simplest prescription of this behavior assigns a single increment of uτ to each fissure and uniform momentum zone.

Under this prescription, about 1/2 of the total circulation (per unit length) in layer IV is associated with the fissures.

Existing evidence indicates, however, that while the typical velocity increment across a fissure is O(uτ), the average

value is greater than unity, with the associated increment across the uniform momentum zones being less than unity

[12, 21]. It is physically rational to expect that the fissures will account for an even greater fraction as δ+ → ∞.

4. Conclusions

The present aim is to obtain an estimate for the rate at which the domain containing the bulk of the vorticity in the

turbulent boundary layer diminishes relative to overall size of the boundary layer, δ . The scaling properties associated

with the decay rate of the mean vorticity, |Ωz|, indicate that, independent of the Reynolds number, δ+, slightly more

than half of total circulation per unit length, |Γ∞|, is contained within the domain in which the mean viscous force

term in the mean dynamical equation is of leading order. Relative to δ , this domain has a thickness of approximately

2.6ε = 2.6/
√

δ+.

In layer IV (y+ ≥ 2.6ε−1), the viscous/vortical effects are, at any instant, confined to a subdomain of diminishing

size such that the leading order mean dynamics only involve the terms representing mean and turbulent inertia. Based

upon the analytically determined scaling behaviors of the Ωz profile in layer IV, the apparent self-similarity between

ωz
′ (rms) and Ωz, the dominance of the ωz fluctuations relative to |Ωz| in layer IV, and the empirically confirmed

scaling behaviors for the vortical fissure widths, it can be surmised that the structure of layer IV is as depicted in

figure 5. If a velocity increment of 1uτ is respectively assigned to each fissure and uniform momentum zone in this

figure, then about 50% of the circulation (per unit length) in layer IV is confined to the fissures. Existing empirical

evidence indicates that this is a conservative estimate [12, 21]. Physical considerations lead one to believe that actual

value is in excess of 75% at low Reynolds number, and that this percentage increases with δ+.
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Given that the outer normalized vortical fissure widths also scale like ε = 1/
√

δ+, the above conservative estimate

indicates at least 75% of Γ∞ in the turbulent boundary layer resides within a domain of C(δ+)ε , where C(δ+) is a

Reynolds number dependent coefficient. Again, the actual value is probably more like 90% at low δ+, and increases

from there with further increments in Reynolds number. The value of C is always greater than about 7.8. This

corresponds to a nascent four-layer regime boundary layer that has just two fissures (each having width � 1.3ε , see

figure 4) and two uniform momentum zones in layer IV; i.e., 2.6ε (layer III and below) + 2.6ε (two fissures) +

2.6ε (two uniform momentum zones). More significantly, the approximately logarithmic growth of |Γ+
∞ | = U+

∞ with

increasing δ+ indicates that C also exhibits an approximately logarithmic increase. Thus, the domain containing the

bulk of the net circulation diminishes relative to δ like ∼ εlog(ε−2), or equivalently, log(δ+)/
√

δ+.

The present theoretical formulation predicts that a logarithmic mean profile emerges most rapidly in the domain

2.6
√

δ+ ≤ y+ ≤ δ+/2 [2, 30]. The primary elements of the instantaneous flow in this domain are uniform momentum

zones segregated by narrow vortical fissures [12, 13]. The evidence presented herein indicates that the vortical fissures

are of inner-normalized width � 1.3
√

δ+. A logarithmic mean profile arises because the mean momentum equation

admits the emerging self-similar structure that underlies the similarity solution demonstrated in figure 1 [8]. Recent

analyses of the mean velocity profile and higher order moments of the u fluctuations at high Reynolds number provide

additional support for the existence of a self-similar flow structure in this region [9, 31, 32]. The uniform momentum

zone and vortical fissure description readily accounts for the emerging self-similarity between the mean and rms

spanwise vorticity (figure 3), and is also likely to account for the self-similar behaviors observed in the u fluctuations.
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