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a b s t r a c t

This paper studies a nonlinear three-point boundary value problem of sequential fractional
differential equations of order α + 1 with 1 < α ≤ 2. The expression for Green’s function
of the associated problem involving the classical gamma function and the generalized
incomplete gamma function is obtained. Some existence results are obtained by means
of Banach’s contraction mapping principle and Krasnoselskii’s fixed point theorem. An
illustrative example is also presented. Existence results for a three-point third-order
nonlocal boundary value problem of nonlinear ordinary differential equations follow as
a special case of our results.
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1. Introduction

In this paper, we study the following boundary value problem of sequential fractional differential equations:
cDα(D + λ)x(t) = f (t, x(t)), 0 < t < 1, 1 < α ≤ 2, (1)

x(0) = 0, x′(0) = 0, x(1) = βx(η), 0 < η < 1, (2)

where cD is the Caputo fractional derivative, D is the ordinary derivative, f : [0, 1] × R → R, λ is a positive real number
and β is a real number such that

β ≠
λ + e−λ

− 1
λη + e−λη − 1

.

Initial and boundary value problems of fractional order have extensively been studied by several researchers in recent
years. A variety of results ranging from the theoretical aspects of existence and uniqueness of solutions to the analytic and
numericalmethods for finding solutions have appeared in the literature. Fractional differential equations appear naturally in
a number of fields such as physics, biophysics, blood flowphenomena, aerodynamics, electro-dynamics of complexmedium,
viscoelasticity, electrical circuits, electron-analytical chemistry, biology, control theory, fitting of experimental data, etc.
An excellent account in the study of fractional differential equations can be found in [1–4]. For more details and examples,
see [5–20] and references therein.

The concept of sequential fractional derivative is given, for example, on page 209 of the monograph [21]. There is a close
connection between the sequential fractional derivatives and the non sequential Riemann–Liouville derivatives [22,23].
For some recent work on sequential fractional differential equations, we refer the reader to the papers [24–26].
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Third-order equations arise in a variety of problems ranging from the study of regularization of the Cauchy problem for
one-dimensional hyperbolic conservation laws [27] to nano boundary layer fluid flows [28] or to describe the evolution of
physical phenomena in fluctuating environments [29]. Examples include many famous equations in mathematical physics,
such as the Korteweg–de Vries equation [30].

2. Preliminaries

Relative to the problem (1)–(2), for σ ∈ C[0, 1], we now introduce the linear equation:
cDα(D + λ)x(t) = σ(t), 0 < t < 1, 1 < α ≤ 2. (3)

Lemma 2.1. The unique solution of the Eq. (3) subject to the boundary conditions (2) is given by

x(t) =

 t

0
e−λ(t−s)

 s

0

(s − u)α−1

0(α)
σ (u)du


ds + A(t)


β

 η

0
e−λ(η−s)

 s

0

(s − u)α−1

0(α)
σ (u)du


ds

−

 1

0
e−λ(1−s)

 s

0

(s − u)α−1

0(α)
σ (u)du


ds


, (4)

where

A(t) =
1
∆


λt + e−λt

− 1


, ∆ = λ + e−λ

− 1 − β(λη + e−λη
− 1). (5)

Proof. Applying the operator Iα on both sides of (3), we get

(D + λ)x(t) = c0 + c1t + Iασ(t),

which can be rewritten as

D(eλtx(t)) = [c0 + c1t + Iασ(t)]eλt .

Integrating from 0 to t , we get

x(t) =
c0
λ

(1 − e−λt) +
c1
λ2

(λt − 1 + e−λt) + c2 +

 t

0
e−λ(t−s)

 s

0

(s − u)α−1

0(α)
σ (u)du


ds. (6)

Using the boundary conditions (2), we find that c0 = 0, c2 = 0, and

c1 =
λ2

∆


β

 η

0
e−λ(η−s)

 s

0

(s − u)α−1

0(α)
σ (u)du


ds −

 1

0
e−λ(1−s)

 s

0

(s − u)α−1

0(α)
σ (u)du


ds


. (7)

Substituting these values of c0, c1, c2 in (6), we get (4). This completes the proof. �

3. Construction of Green’s function

In this subsection, we obtain Green’s function corresponding to the fractional differential equations (3) of order α + 1
with 1 < α ≤ 2 subject to three-point boundary conditions (2). The expression for Green’s function involves the classical
gamma function and the generalized incomplete gamma function. For some recent applications of the gamma function and
its generalizations, see [31,32].

Changing the order of integration, we note that t

0
e−λ(t−s)

 s

0
(s − u)α−1σ(u)du


ds =

 t

0

 t

u
eλs(s − u)α−1ds


e−λtσ(u)du. (8)

Recall that t

u
eλs(s − u)α−1ds = (−1)α−1λ−αeλu


0(α, −λ(t − u)) − 0(α, 0)


= (−1)α−1λ−αeλu0(α, −λ(t − u), 0), (9)
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where

0(α, x0, x1) = 0(α, x0) − 0(α, x1) =

 x1

x0
rα−1e−rdr

is the generalized incomplete Gamma function. Using (9) in (8), we get t

0
e−λ(t−s)

 s

0
(s − u)α−1σ(u)du


ds =

 t

0
(−1)α−1λ−αeλ(u−t)0(α, −λ(t − u), 0)σ (u)du

=

 1

0
k∗(t, s)σ (s)ds, (10)

where

k∗(t, s) =


0, if 0 ≤ t < s ≤ 1,
(−1)α−1λ−αeλ(s−t)0(α, −λ(t − s), 0), if 0 ≤ s. (11)

Define k(t, s) = k∗(t, s)/0(α) and note that k(t, s) = 0 for s > t . Hence, the solution (6) with c0 = 0, c2 = 0, takes the
form

x(t) =
c1
λ2

(λt − 1 + e−λt) +

 1

0
k(t, s)σ (s)ds. (12)

Now, using the boundary condition x(1) = βx(η), we get

c1 =
λ2β

λ + e−λ − 1 − β(λη + e−λη − 1)

 1

0
k(η, s)σ (s)ds, (13)

provided λ + e−λ
− 1 − β(λη + e−λη

− 1) ≠ 0. Inserting the value of c1, in (12), we obtain

x(t) =
β(λt − 1 + e−λt)

λ + e−λ − 1 − β(λη + e−λη − 1)

 1

0
k(η, s)σ (s)ds +

 1

0
k(t, s)σ (s)ds. (14)

Letting

φ(t) =
β(λt − 1 + e−λt)

λ + e−λ − 1 − β(λη + e−λη − 1)
,

(14) becomes

x(t) =

 1

0
g(t, s)σ (s)ds, (15)

where

g(t, s) =


0, if 0 ≤ max{ηt} < s ≤ 1,
k(t, s), if 0 ≤ η < s < t ≤ 1,
φ(t)k(t, s), if 0 ≤ t < s < η ≤ 1,
φ(t)k(t, s) + k(t, s), if 0 ≤ s < min{ηt} ≤ 1.

(16)

We point out that the expression is also valid for the integer case α = 2. In this case,

0(2, −λ(t − s), 0) =

 0

−λ(t−s)
re−rdr.

Hence we obtain a new expression for the solutions of a third-order differential equation.

4. Existence of solutions

Let C = C([0, 1], R) denotes the Banach space of all continuous functions from [0, 1] → R endowed with the norm
defined by ∥x∥ = sup{|x(t)|, t ∈ [0, 1]}.

For the sake of convenience, we set

A1 = max
t∈[0,1]

|A(t)|, B =

 (1 + A1)(1 − e−λ) + A1βηα

λ0(α + 1)

 , (17)

where A(t) is given by (5).
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In view of Lemma 2.1, we transform problem (1)–(2) as

x = z(x), (18)

where z : C → C is defined by

(zx)(t) =

 t

0
e−λ(t−s)

 s

0

(s − u)α−1

0(α)
f (u, x(u))du


ds + A(t)


β

 η

0
e−λ(η−s)

 s

0

(s − u)α−1

0(α)
f (u, x(u))du


ds

−

 1

0
e−λ(1−s)

 s

0

(s − u)α−1

0(α)
f (u, x(u))du


ds


.

Observe that problem (1)–(2) has solutions if the operator Eq. (18) has fixed points.

Theorem 4.1. Let f : [0, 1] × R → R be a jointly continuous function satisfying the condition

|f (t, x) − f (t, y)| ≤ L|x − y|, ∀t ∈ [0, 1], x, y ∈ R,

where L is the Lipschitz constant. Then the boundary value problem (1)–(2) has a unique solution if B < 1/L, where B is given
by (17).

Proof. As a first step, for z defined by (18), we show that zBr ⊂ Br , where Br = {x ∈ C : ∥x∥ ≤ r}. For that, set
supt∈[0,1] |f (t, 0)| = M and choose

r ≥
MB

1 − LB
,

where B is given by (17). For x ∈ Br , we have

∥(zx)(t)∥ = sup
t∈[0,1]


 t

0
e−λ(t−s)

 s

0

(s − u)α−1

0(α)
f (u, x(u))du


ds

+ A(t)


β

 η

0
e−λ(η−s)

 s

0

(s − u)α−1

0(α)
f (u, x(u))du


ds

+

 1

0
e−λ(1−s)

 s

0

(s − u)α−1

0(α)
f (u, x(u))du


ds


≤ sup

t∈[0,1]

 t

0
e−λ(t−s)

 s

0

(s − u)α−1

0(α)
(|f (u, x(u)) − f (u, 0)| + |f (u, 0)|)du


ds



+ sup
t∈[0,1]

|A(t)|


β

 η

0
e−λ(η−s)

 s

0

(s − u)α−1

0(α)
(|f (u, x(u)) − f (u, 0)| + |f (u, 0)|)du


ds

+

 1

0
e−λ(1−s)

 s

0

(s − u)α−1

0(α)
(|f (u, x(u)) − f (u, 0)| + |f (u, 0)|)du


ds



≤ sup
t∈[0,1]

 t

0
e−λ(t−s)

 s

0

(s − u)α−1

0(α)
(L|x(u)| + |f (u, 0)|)du


ds



+ sup
t∈[0,1]

|A(t)|


β

 η

0
e−λ(η−s)

 s

0

(s − u)α−1

0(α)
(L|x(u)| + |f (u, 0)|)du


ds

+

 1

0
e−λ(1−s)

 s

0

(s − u)α−1

0(α)
(L|x(u)| + |f (u, 0)|)du


ds



≤ (Lr + M)


sup

t∈[0,1]

 t

0
e−λ(t−s)

 s

0

(s − u)α−1

0(α)
du


ds



+ sup
t∈[0,1]

|A(t)|


β

 η

0
e−λ(η−s)

 s

0

(s − u)α−1

0(α)
du


ds +

 1

0
e−λ(1−s)

 s

0

(s − u)α−1

0(α)
du


ds


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≤ (Lr + M)


(1 + A1)(1 − e−λ) + A1βηα

λ0(α + 1)


= (Lr + M)B ≤ r.

Now, for x, y ∈ C and for each t ∈ [0, 1], we obtain

∥(zx)(t) − (zy)(t)∥ = sup
t∈[0,1]

|(zx)(t) − (zy)(t)|

≤ sup
t∈[0,1]

 t

0
e−λ(t−s)

 s

0

(s − u)α−1

0(α)
|f (u, x(u)) − f (u, y(u))|du


ds

+ A(t)


β

 η

0
e−λ(η−s)

 s

0

(s − u)α−1

0(α)
|f (u, x(u)) − f (u, y(u))|du


ds

+

 1

0
e−λ(1−s)

 s

0

(s − u)α−1

0(α)
|f (u, x(u)) − f (u, y(u))|du


ds



≤ L∥x − y∥


sup

t∈[0,1]

 t

0
e−λ(t−s)

 s

0

(s − u)α−1

0(α)
du


ds



+ sup
t∈[0,1]

|A(t)|


β

 η

0
e−λ(η−s)

 s

0

(s − u)α−1

0(α)
du


ds

+

 1

0
e−λ(1−s)

 s

0

(s − u)α−1

0(α)
du


ds



≤ L|
(1 + A1)(1 − e−λ) + A1βηα

λ0(α + 1)
|∥x − y∥

= BL∥x − y∥,

where B is given by (17). As B < 1/L, therefore, z is a contraction. Thus, the conclusion of the theorem follows by the
contraction mapping principle. This completes the proof. �

Now, we state a known result due to Krasnoselskii [33] which is needed to prove the existence of at least one solution of
(1)–(2).

Theorem 4.2. Let M be a closed convex and nonempty subset of a Banach space X. Let G1, G2 be the operators such that:
(i) G1x + G2y ∈ M whenever x, y ∈ M; (ii) G1 is compact and continuous; (iii) G2 is a contraction mapping. Then there
exists z ∈ M such that z = G1z + G2z.

Theorem 4.3. Assume that f : [0, 1] × R → R is a jointly continuous function and the following assumptions hold:
(H1) |f (t, x) − f (t, y)| ≤ L|x − y|, ∀t ∈ [0, 1], x, y ∈ R;
(H2) |f (t, x)| ≤ µ(t), ∀(t, x) ∈ [0, 1] × R with µ ∈ C([0, 1], R).

Then the boundary value problem (1)–(2) has at least one solution on [0, 1] ifA1(1 − e−λ
+ βηα)

λ0(α + 1)

 < 1. (19)

Proof. Letting supt∈[0,1] |µ(t)| = ∥µ∥, we fix

r ≥

 (1 + A1)(1 − e−λ) + A1βηα

λ0(α + 1)

 ∥µ∥, (20)

and consider Br = {x ∈ C : ∥x∥ ≤ r}. Define the operators z1 and z2 on Br as

(z1 x)(t) =

 t

0
e−λ(t−s)

 s

0

(s − u)α−1

0(α)
f (u, x(u))du


ds,

(z2 x)(t) = A(t)


β

 η

0
e−λ(η−s)

 s

0

(s − u)α−1

0(α)
f (u, x(u))du


ds −

 1

0
e−λ(1−s)

 s

0

(s − u)α−1

0(α)
f (u, x(u))du


ds


.
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For x, y ∈ Br , it follows from (20) that

∥ z1 x + z2 y∥ ≤

 (1 + A1)(1 − e−λ) + A1βηα

λ0(α + 1)

 ∥µ∥ ≤ r.

Thus, z1 x+z2 y ∈ Br . In view of the condition (19), it can easily be shown that z2 is a contraction mapping. The continuity
of f implies that the operator z1 is continuous. Also, z1 is uniformly bounded on Br as

∥ z1 x∥ ≤
|1 − e−λ

|∥µ∥

λ0(α + 1)
.

Now we prove the compactness of the operator z1. Setting Ω = [0, 1] × Br , we define sup(t,x)∈Ω |f (t, x)| = Mr , and
consequently we have

∥(z1 x)(t1) − (z1 x)(t2)∥ =


 t1

0
e−λ(t1−s)

 s

0

(s − u)α−1

0(α)
f (u, x(u))du


ds

−

 t2

0
e−λ(t2−s)

 s

0

(s − u)α−1

0(α)
f (u, x(u))du


ds


≤

Mr

λ0(α + 1)


|tα1 − tα2 | + |tα1 e

−λt1 − tα2 e
−λt2 |


,

which is independent of x and tends to zero as t2 → t1. Thus, z1 is relatively compact on Br . Hence, by the Arzelá–Ascoli
Theorem, z1 is compact on Br . Thus all the assumptions of Theorem 4.2 are satisfied and the conclusion of Theorem 4.2
implies that the boundary value problem (1)–(2) has at least one solution on [0, 1]. This completes the proof. �

Example 4.1. Consider the problem
cD3/2(D + 4)x(t) = L


t2 + cos t + 1 + tan−1 x(t)


, 0 ≤ t ≤ 1,

x(0) = 0, x′(0) = 0, x(1) = x(1/2).
(21)

Here, f (t, x(t)) = L

t2 + cos t + 1 + tan−1 x(t)


, λ = 4, β = 1, η = 1/2. Clearly

|f (t, x) − f (t, y)| ≤ L| tan−1 x − tan−1 y| ≤ L|x − y|

and

A1 = 4/(2 + e−4
− e−2), B =

(1 + A1)(1 − e−4) + 2−3/2A1

3
√

π
.

For L <
3
√

π

(1+A1)(1−e−4)+2−3/2A1
= 1.379430821, it follows by Theorem 4.1 that problem (21) has a unique solution.
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