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SUMMARY

Death-associated protein 5 (DAP5/p97) is a homolog
of the eukaryotic initiation factor 4G (eIF4G) that
promotes the IRES-driven translation of multiple
cellular mRNAs. Central to its function is the middle
domain (MIF4G), which recruits the RNA helicase
eIF4A. The middle domain of eIF4G consists of
tandem HEAT repeats that coalesce to form a sole-
noid-type structure. Here, we report the crystal
structure of the DAP5 MIF4G domain. Its overall
fold is very similar to that of eIF4G; however, signifi-
cant conformational variations impart distinct
surface properties that could explain the observed
differences in IRES binding between the two
proteins. Interestingly, quantitative analysis of the
DAP5-eIF4A interaction using isothermal titration
calorimetry reveals a 10-fold lower affinity than with
the eIF4G-eIF4A interaction that appears to affect
their ability to stimulate eIF4A RNA unwinding
activity in vitro. This difference in stability of the
complex may have functional implications in select-
ing the mode of translation initiation.

INTRODUCTION

Translation initiation is the rate-limiting step of protein synthesis

and involves assembly of the ribosome on themRNA followed by

recognition of the start codon. Initiation can be carried out in two

different ways: the canonical mode of translation initiation is cap-

dependent and proceeds by assembly of the eIF4F complex on

the mRNA 50 m7GpppX cap (where X is any nucleotide) structure

and subsequent formation of the preinitiation complex contain-

ing the 40S ribosomal subunit (Sonenberg and Hinnebusch,

2009). An alternative mode of translation initiation is cap-inde-

pendent and involves access of the ribosome to the mRNA via

an internal ribosomal entry site (IRES) typically found in the

50 untranslated region (50 UTR) (Holcik and Sonenberg, 2005).

The IRES recruits the ribosome directly without the need for

the mRNA cap or eIF4E.
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The eIF4F complex consists of the cap-binding protein eIF4E,

the scaffolding protein eIF4G, and an ATP-dependent RNA heli-

case eIF4A, whose RNA duplex unwinding and ATP hydrolysis

activities are coupled and stimulated by eIF4B and eIF4G (Özesx
et al., 2011). eIF4G is a large 175 kDa protein with interaction

sites for its binding partners spread over multiple domains

(Figure 1A). There are two isoforms of eIF4G, eIF4GI and eIF4GII,

that share 46% sequence identity; in this paper, we refer to

both isoforms as ‘‘eIF4G’’ unless indicated otherwise. In addition

to recruiting eIF4E and eIF4A, eIF4G interacts with a number

of other factors required for efficient translation, including

the 40S ribosome-associated eIF3, the poly(A)-binding protein

(PABP), and the Ser/Thr kinase Mnk-1 (Prévôt et al., 2003)

(Figure 1A). PABP connects eIF4F with the poly(A) tail and thus

circularizes the mRNA for increased translational efficiency.

Mnk-1 phosphorylates eIF4E, which stimulates translation (Furic

et al., 2010).

The middle domain of eIF4G, termed the MIF4G domain,

carries out a number of important functions. This segment of

approximately 30 kDa mediates protein-protein interactions

with eIF4A and eIF3 and also displays RNA and DNA binding

capabilities (Ponting, 2000). It has been shown to interact directly

with the IRES element of the encephalomyocarditis virus (EMCV)

RNA (Pestova et al., 1996; Lomakin et al., 2000) and allows eIF4G

to recruit the ribosome to the EMCV RNA in a cap-independent

manner by interacting with eIF3 and the RNA at the same time.

EMCV is a member of the picornavirus family of viruses, which

have the ability to shut down cap-dependent translation initiation

in the host. One example of such a mechanism commonly

employed by picornaviruses is proteolytic cleavage of eIF4G, re-

sulting in the separation of the eIF4E and PABP binding sites

from the rest of the protein and concomitant blockage of cap-

dependent translation (Figure 1A). This permits the virus to hijack

the translational machinery to efficiently translate its own RNA

via IRES-interacting elements in the MIF4G domain.

Cleavage of eIF4G can also occur in noninfected cells during

the process of apoptosis, where two caspase cleavage sites

in eIF4GI break it into three fragments, thereby impairing cap-

dependent translation (Bushell et al., 2000) (Figure 1A). Despite

this, it has been observed that the translation of a few spe-

cific mRNAs is maintained during apoptosis. The translation

of these mRNAs occurs via cap-independent mechanisms

that are at least to some extent modulated by the protein
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Figure 1. Domain Structure and Sequence

Alignment of DAP5 and eIF4G

(A) DAP5 and eIF4GI domain organization high-

lighting their similarities. Approximate protease

cleavage locations are indicated with arrows.

(B) Structure-based sequence alignment of MIF4G

domains of human DAP5, human eIF4GII, and

TIF4631 (S. cerevisiae eIF4G). Residues inter-

acting with eIF4A are highlighted in red. The

remainder of the sequence is colored based on

conservation using BLOSUM62 scores (Eddy,

2004). Secondary structure elements are shown

over the sequence aligned and identified using the

same color code as in Figure 2A.
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DAP5/p97/NAT1/eIF4G2 (Henis-Korenblit et al., 2000; Lewis

et al., 2008; Nevins et al., 2003; Warnakulasuriyarachchi et al.,

2004) (DAP5 [Levy-Strumpf et al., 1997]; p97 [Imataka et al.,

1997]; NAT1 [Yamanaka et al., 1997]; eIF4G2 [Shaughnessy

et al., 1997]). In this paper, we refer to this protein using the

‘‘DAP5’’ nomenclature. DAP5 is homologous to the C-terminal

two-thirds of eIF4G and is similar in length to the fragment gener-

ated by picornaviral proteolysis (Figure 1A). It is abundantly

expressed in proliferating cells (Lee and McCormick, 2006) and

contains the important MIF4G domain as well as the MA3

domain. Consistent with its homology to eIF4G, DAP5 interacts

with eIF4A and eIF3 but not eIF4E (Imataka et al., 1997; Imataka

and Sonenberg, 1997; Yamanaka et al., 1997). However, in con-

trast to eIF4G, the MA3 domain of DAP5 does not support eIF4A

binding (Imataka and Sonenberg, 1997), leaving DAP5 with a

single interaction domain for eIF4A as compared to eIF4G’s

two binding domains.

Because of the lack of an eIF4E binding site, DAP5 is

not involved in cap-dependent translation and was reported to

be an inhibitor of translation based on overexpression studies

(Imataka et al., 1997; Yamanaka et al., 1997). Later it was

demonstrated that DAP5 mediates the IRES-driven transla-

tion of a number of cellular mRNAs. For example, during apo-

ptosis and other stress conditions, DAP5 specifically enhances
518 Structure 21, 517–527, April 2, 2013 ª2013 Elsevier Ltd All rights reserved
the IRES-driven translation of several

mRNAs, including those coding for the

proteins c-IAP1/HIAP2, XIAP, Apaf-1,

c-myc, and DAP5 itself (Henis-Korenblit

et al., 2000, 2002; Hundsdoerfer et al.,

2005; Lewis et al., 2008; Nevins

et al., 2003; Warnakulasuriyarachchi

et al., 2004).

During apoptosis, DAP5 is cleaved

close to the C terminus near its Mnk-1

binding site, generating an 86 kDa frag-

ment that is more active (Figure 1A)

(Henis-Korenblit et al., 2000). In addition

to its role in apoptosis and stress, DAP5

has also been shown to promote cap-

independent translation of cell survival

factors during mitosis in unstressed cells

(Liberman et al., 2009; Marash et al.,

2008). Its reported targets include

CDK1 and members of the Bcl family
of proteins. The involvement of DAP5 in processes aiding

apoptosis, and in cell survival during mitosis, renders it an inter-

esting target for therapy of aberrant cellular states characterized

by the dysregulation of apoptosis, such as cancer and autoim-

mune diseases.

The MIF4G domain of eIF4G and DAP5 is central to their

function because it provides a platform for the interaction with

eIF4A and eIF3, which are critical for translation initiation. The

MIF4G domain of eIF4G was reported to be sufficient to medi-

ate IRES-driven translation initiation (De Gregorio et al., 1998,

1999; Hundsdoerfer et al., 2005; Lomakin et al., 2000), suggest-

ing that the IRES binding determinants of DAP5 may also lie

within its MIF4G domain. Surprisingly, however, in spite of their

homology and shared functionality, eIF4G and DAP5 can act

upon different sets of IRES elements, as in the case of EMCV

(Nevins et al., 2003). The MIF4G domain of DAP5 share 39%

and 43%sequence identity with eIF4GI and eIF4GII, respectively

(Figure 1A). The crystal structure of the MIF4G domain from

human eIF4GII revealed a HEAT domain consisting of five pairs

of HEAT repeats of antiparallel a helices forming a crescent-

shaped right-handed solenoid (Marcotrigiano et al., 2001). Muta-

tional analyses mapped the sites of interaction with eIF4A and

potential contacts with IRES RNA to adjacent surfaces on the

molecule (Marcotrigiano et al., 2001). There is as yet no structural



Table 1. DiffractionDataCollection andRefinement Statistics for

DAP5M

Data Collection

X-ray source CHESS Beamline A1

Wavelength (Å) 0.9785

Resolution (Å) 30–2.3 (2.38–2.3)

Space group C2

Cell parameters (Å, �) a = 167.630, b = 56.573, c = 74.339,

a = 90.00, b = 112.05, g = 90.00

Molecules per ASU 2

Mosaicity (�) 0.9

Unique reflections 28,017

Redundancy 13.2 (10.5)

I/s(I) 23.4 (4.8)

Completeness (%) 99.8 (87.5)

Rsym 0.107 (0.35)

Refinement

Rwork/Rfree 22.2/25.6

Number of atoms 4,038

Protein 3,837

Ligand/ion 25

Water 176

Rmsd

Bond lengths (Å) 0.002

Bond angles (�) 0.620

Ramachandran, favored 99.1%

Ramachandran, outliers 0.2%

Rmsd, root-mean-square deviation.
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information onMIF4G’s binding to IRESs. The crystal structure of

the yeast eIF4G-eIF4A complex showed that the convex surface

of MIF4G makes contact with eIF4A at both its N-terminal and

C-terminal regions (Schütz et al., 2008). As in human, yeast

also possesses two isoforms of eIF4G. The crystal structure

contains isoform I but is referred to as eIF4G throughout the

text for simplicity. This structure also revealed a third site of inter-

action: a conserved tryptophan residue (Trp 579 in yeast eIF4GI

also known as TIF4631; Trp 734 in human eIF4GI; Trp 733 in

human eIF4GII) at the N terminus of theMIF4G domain anchored

to the eIF4A C-terminal domain. Mutation of this residue in yeast

eIF4G weakens its interaction with eIF4A and results in the loss

of the ability to stimulate eIF4A ATPase activity in vitro and

a temperature-sensitive phenotype in vivo (Schütz et al., 2008).

This tryptophan residue and most of the residues in the MIF4G

domain that make direct contact with eIF4A are conserved

in DAP5.

To elucidate the similarities and differences responsible for the

crucial functional interactions of the MIF4G domains of DAP5

and eIF4G, we solved the crystal structure of the DAP5 MIF4G

domain (hereafter referred to as DAP5M) (Frank et al., 2010).

DAP5M adopts the same overall fold as eIF4G but with signifi-

cant structural differences in some of the helices and their con-

necting loops that have potential implications for the distinct

IRES binding properties of the two proteins. Conserved residues

expected to interact with eIF4A are for the most part in the same

conformation as seen for the yeast eIF4G-eIF4A complex, and

the binding properties of the complex it forms with eIF4AI was

investigated by mutational analysis. Additionally, quantitative

analysis of the affinity of DAP5M to eIF4A indicates that it is

one order of magnitude weaker than that of eIF4GI to eIF4A,

which likely underlies DAP5’s weaker stimulation of the RNA

unwinding activity of eIF4A compared to eIF4GI.

RESULTS

Overall Structure of the DAP5 MIF4G Domain
Based on the crystal structure of the middle domain of eIF4GII,

we crystallized and determined the structure of a construct

encompassing the middle domain of DAP5 (DAP5M; residues

61 to 323) at 2.3 Å resolution using molecular replacement.

Subsequent model building, simulated annealing, energy mini-

mization, and individual B-factor refinement led to final Rfree

and R values of 25.6% and 22.2% (Table 1). DAP5M belongs

to the family of HEAT (Huntingtin, Elongation factor 3, PR65/A,

and TOR) domains, which are characterized by repeated pairs

of antiparallel a helices connected by turns/loops arranged

about a common axis (Figure 2A). Each pair of helices (labeled

a and b) constitutes one HEAT repeat, and in DAP5M, ten helices

form five HEAT repeats (labeled 1 to 5), which are stacked on top

of each other and stabilized by intervening hydrophobic interac-

tions. Small rotations between the packing of successive HEAT

repeats impart a twist to the overall structure, giving rise to

a right-handed superhelical axis perpendicular to the repeat

helical axes. The MIF4G domain can be subdivided into two

smaller subdomains because of the presence of a long 21-

residue loop connecting helices 2b and 3a. Thus, subdomain 1

encompasses HEAT repeats 1 and 2 and subdomain 2 includes

HEAT repeats 3 to 5. A tilt of �48� between these subdomains
Structure 21
gives the molecule an overall crescent-shaped appearance

with two distinctly shaped surfaces, a concave surface and a

convex surface (Figure 2A).

The asymmetric unit of the crystal contains two independent

copies of DAP5M (chains A and B) related by a 2-fold noncrystal-

lographic symmetry axis (Figure S1 available online). Superposi-

tion of the two copies using the Dali server indicates a root-

mean-squared deviation (rmsd) of 1.0 Å for 223 corresponding

Ca atoms (Holm and Rosenström, 2010). The largest deviations

occur at the N terminus, where molecule A is longer by 12 resi-

dues in the electron density, and at the C terminus of helix 3a,

where the paths of the helices diverge considerably between

the two molecules. At approximately residue Val 182, helix 3a

of molecule B bends by a few degrees, leading into the connect-

ing loop to helix 3b. In molecule B, this connecting loop is well

ordered and modeled in the structure, whereas in molecule A it

is completely disordered. Molecule B is better defined in the

electron density with regard to the longer loops in the structure,

although the average overall backbone B-factors for both mole-

cules are comparable (molecule A: 42.9 Å2; molecule B: 45.2 Å2).

The two molecules bury a significant amount of surface area

(�2,500 Å2) at their interface; however, the residues in the inter-

face are for the most part polar in nature, and gel filtration anal-

ysis of DAP5M indicates a monomeric species in solution (data

not shown). Thus, the dimer observed here is likely an artifact

of crystallization and probably not physiologically relevant.
, 517–527, April 2, 2013 ª2013 Elsevier Ltd All rights reserved 519



Figure 2. Structural Overview of DAP5M

(A) Ribbon representation of DAP5M. Each HEAT repeat is colored differently. Helix numbering is given on the right. In the left orientation, the concave surface of

the protein is indicated with a curved line and colored cylinders within the ribbons denote the superhelical axes. The right orientation, rotated by 30�, highlights the
long loop between helices 2b and 3a (colored orange), which causes the molecule to be divided into two subdomains. See Figure S1.

(B) Structural superposition of DAP5M with the MIF4G domains of human eIF4GII (PDB ID code 1HU3) and S. cerevisiae eIF4G (TIF4631; PDB ID code 2VSO). All

molecular figures were generated using the program PyMol (The PyMOL Molecular Graphics System, v.1.2r3pre, Schrödinger).
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Comparison of DAP5M and eIF4G MIF4G Domains
Two crystal structures of the MIF4G domain from eIF4G have

been determined previously: that from human eIF4GII and the

structure of the Saccharomyces cerevisiae eIF4Gmiddle domain

in complex with eIF4A (Marcotrigiano et al., 2001; Schütz et al.,

2008). Human DAP5 shares 43% and 32% sequence identity

(based on structure-based sequence alignments) with human

eIF4GII and S. cerevisiae eIF4G, respectively, in their MIF4G

domains and all of them adopt the same overall fold (Figure 2B).

Superposition of DAP5M on human and yeast eIF4G using the

Dali server indicates rmsd values of 1.7 Å and 2.6 Å, based on

190 and 212 corresponding Ca atoms, respectively (Holm and

Rosenström, 2010). However, there are significant differences

observed in the length and orientation of a number of helices.

Additionally, the loops connecting the helices differ considerably

in length and conformation. In particular, the concave side of the

molecule in the N-terminal region opposite the eIF4A binding site

encompassing the helices of HEAT repeats 1, 2, and 3 and the

loop connecting repeats 2 and 3 display very different conforma-

tions (Figure 2B). The loop connecting repeats 2 and 3 (residues

142 to 161) is 18 residues in length and extends outward from the

otherwise very compact structure of the HEAT domain. In the

eIF4GII structure, this loop is largely disordered and shorter by

six residues. Other notable differences occur in the loop con-

necting helices 3a and 3b (residues 185 to 200), which is well

ordered in DAP5 and disordered in eIF4GII, where it is longer

by 12 residues, and the loop connecting helices 4a and 4b (resi-

dues 236 to 249), which is longer in DAP5 by 7 residues. Large

structural differences such as these impart significant differ-

ences in shape and chemical attributes to their surfaces and

likely contribute to the functional differences observed between

these proteins, such as IRES binding.

Identification of a Potential IRES Binding Site in DAP5M
Although eIF4G and DAP5 have common protein binding part-

ners in eIF4A and eIF3, their interactions with nucleic acids are

distinct. In vitro studies of human eIF4GI have demonstrated
520 Structure 21, 517–527, April 2, 2013 ª2013 Elsevier Ltd All rights
that its MIF4G domain is able to interact with different RNAs,

namely, the EMCV IRES RNA and b-globin mRNA (Pestova

et al., 1996; Lomakin et al., 2000), and one study even reported

interactionwith DNA (Kim et al., 1999). TheDAP5MIF4Gdomain,

on the other hand, does not interact with the EMCV IRES RNA or

b-globin mRNA in vitro (Lomakin et al., 2000). Several studies

have suggested that DAP5 can initiate translation via IRES

elements found in a number of cellular mRNAs (Henis-Korenblit

et al., 2000, 2002; Hundsdoerfer et al., 2005; Lewis et al.,

2008; Nevins et al., 2003; Warnakulasuriyarachchi et al., 2004).

This raises the question as to whether DAP5M interacts with

these IRES elements in a manner similar to how eIF4G associ-

ates with the EMCV IRES for cap-independent translational

initiation.

To identify potential sites of IRES interaction, we show the

solvent-accessible surface of DAP5M colored according to its

electrostatic potential in Figure 3A. In the N-terminal region of

the molecule, there exists a large area of positively charged

surface, which could potentially interact with nucleic acid. Inter-

estingly, we found a sulfate ion from the crystallization buffer

bound to a cluster of positively charged residues (Lys 108, Lys

112, and Arg 165) in this region (Figure 3A). This interaction could

potentially mimic electrostatic interactions of the phospho-

diester backbone of IRES RNA with DAP5M. The positively

charged area corresponds to a highly conserved region among

various orthologs of DAP5 (Figures 3B and S2). Comparison of

the equivalent surface in human eIF4GII also reveals large

patches of positive potential but with significantly different distri-

bution of the charges, perhaps owing to the distinct IRES tar-

geted by these two proteins (Figure 3C).

The positively charged region in DAP5M is adjacent to the

eIF4A-binding site (see below), suggesting that IRES binding

may be coupled to the interaction with eIF4A. In support of

this, a previous analysis of the MIF4G domain from eIF4GII iden-

tified mutants that affect binding of both eIF4A and the EMCV

IRES (Marcotrigiano et al., 2001). Furthermore, the IRES interac-

tion is enhanced in the presence of eIF4A (Lomakin et al., 2000).
reserved



Figure 3. Surface Properties of DAP5M and MIF4G Domain from eIF4GII

(A) Electrostatic potential surface representation of DAP5M. The surface was calculated using APBS (Baker et al., 2001): red <�3kBT/e and blue >+3kBT/e, where

kB denotes Boltzmann constant and T denotes temperature. Inset: Enlargement of electrostatic surface surrounding the observed sulfate ion found onmolecule B

of DAP5M.

(B) Mapping of the surface conservation using selected eukaryotic DAP5 orthologs (see Figure S2).

(C) Electrostatic potential surface representation of the MIF4G domain from eIF4GII (PDB ID code 1HU3).
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These observations indicate that there is cooperativity in binding

of eIF4A and RNA to eIF4G and that the sites of interaction are

probably in close proximity to one another. Considering the func-

tional and structural homology between eIF4G and DAP5, it is

likely that DAP5M utilizes a similar mode of cooperative binding

to eIF4A and IRES RNA. Based on our crystal structure of

DAP5M, it will be possible to carry out a mutational analysis of

the residues in this region to confirm its role in DAP5-mediated

IRES-driven translation initiation.

The Sites of Interaction with eIF4A Are Structurally
Conserved in theMiddleDomains of eIF4GandDAP5but
Have Different Binding Affinities
It was previously shown that DAP5M, like eIF4G, recruits eIF4A,

a member of the DEAD box RNA helicase family (Imataka et al.,

1997). eIF4A is a 46 kDa bilobal protein with its N- and C-terminal

domains connected by a flexible linker. Given the conservation

of the overall folds of the MIF4G domains of DAP5 and eIF4G,

it is likely that they interact with eIF4A in the same manner. To

analyze the potential site of eIF4A interaction on DAP5M, we

constructed a model of the complex by superposition of the

DAP5M structure onto the crystal structure of the S. cerevisiae

eIF4G-eIF4A complex (Schütz et al., 2008) (Figure 4). As with

the yeast eIF4G-eIF4A complex, the DAP5M-eIF4A model

reveals that there are two main sites of interaction between the

two proteins. The C-terminal domain of eIF4A interacts with

the N-terminal region of DAP5M encompassing heat repeats 1

and 2 (Site 1), whereas the N-terminal domain of eIF4A makes

contact with the C-terminal part of DAP5M on helix 5b (Site 2).

Together, the two sites of interaction bury �2,100 Å2 of surface

area at the interface. Additionally, a third site of interaction in

the yeast eIF4G-eIF4A complex was identified, which is contrib-

uted by a tryptophan residue connected to the MIF4G domain
Structure 21
through a flexible, N-terminal linker that buries it in the C-terminal

domain of eIF4A (Schütz et al., 2008). This conserved tryptophan

residue, although present in DAP5 (Trp 50), could not be

modeled as it was not included in our crystallization construct

due to its likely flexible attachment. However, the contribution

of Trp 50 to the interaction of DAP5 with eIF4A in humans

is marginal, as observed in our binding and activity assays

in vitro (data not shown). This suggests that, unlike what is

observed in yeast, Trp 50 may not be as essential for DAP5’s

interaction with eIF4A or its effect may be more subtle in humans

and will require other assays to fully characterize its role.

Yeast eIF4GI middle domain and DAP5M have only 32% iden-

tity, yet the majority of eIF4A-interacting residues in eIF4G (19 of

24 total interface residues), as identified in the crystal structure of

the complex, are conserved in DAP5 (Figure 1B). Importantly, the

model of the DAP5M-eIF4A complex indicates that, in addition to

the sequence, the conformations of most of the residues at the

interface are also conserved, even in the absence of eIF4A. Of

the 24 residues that make contact at Site 1 and Site 2, approxi-

mately three-quarters are in very similar conformations (Figure 4).

This suggests that the binding mode between DAP5 and eIF4A

mirrors that of eIF4G and that the interaction occurs through,

for the most part, a preformed binding site on DAP5. Thus, we

expected the binding affinities of eIF4A for the MIF4G domains

of eIF4G and DAP5 to be comparable.

To ascertain whether this is indeed the case, we carried out

isothermal titration calorimetry (ITC) experiments to compare

dissociation constants for the interaction of human eIF4A (iso-

form I) with the MIF4G domains of human eIF4G (isoform I:

81% identical to eIF4GII in their MIF4G domains) and DAP5.

Both constructs included the conserved tryptophan residue

(Trp 50 in DAP5; Trp 734 in eIF4GI) as described in yeast. We

measured a dissociation constant of 0.136 mM for the binding
, 517–527, April 2, 2013 ª2013 Elsevier Ltd All rights reserved 521



Figure 4. Model of the DAP5M-eIF4A Complex

Center: Shown is the crystal structure of the yeast eIF4G-eIF4A complex (purple-gray) with DAP5M (red) superimposed on eIF4G. W579 (W50 in DAP5M), which

comprises the third interaction site in the eIF4G-eIF4A complex, is represented as orange sticks. Left: Detailed view of Site 1 interaction residues. Top: Residues

on the surface of eIF4G andDAPM that interact with eIF4A are shown as sticks. The view is rotated relative to the orientation in the center panel. Nitrogen, oxygen,

sulfur, and carbon atoms are colored blue, red, yellow, and pink (DAP5M)/light blue (eIF4G), respectively. Themajority of residues are conserved in sequence and

conformation. Labels for residue numbers are shown for DAP5M only. Bottom: Selected residues from the yeast eIF4G structure (light-blue carbon atoms) that

interact with yeast eIF4A (white carbon atoms) for which the corresponding residues in DAP5M were mutated. Labels for residue numbers from both yeast

eIF4G/eIF4A and human DAP5/eIF4AI are indicated. Right: Detailed view of Site 2 interaction residues with similar coloring and labeling scheme as above.
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of eIF4A to eIF4Gwith a stoichiometry of 1:1 (Figure 5A). This is in

agreement with the crystal structure of the yeast eIF4G-eIF4A

complex and our gel filtration analysis (Figure S3), which both

show one molecule of eIF4A bound to a single MIF4G domain.

Surprisingly, we found that the affinity of DAP5M for eIF4A is

only 1.1 mM—about 10-fold lower than that of eIF4G, also with

a stoichiometry of 1:1 (Figure 5B). This suggests that despite

the conservation of the binding site in both sequence and struc-

ture, other residues outside of the binding site modulate the

affinity of MIF4G domains for eIF4A binding. Alternatively, it

may be possible that the few nonconserved residues in the inter-

face reduce the binding affinity or that the model of DAP5M-

eIF4A based on the yeast complex does not accurately reflect

the actual mode of binding altogether.

Mutational Analysis of Site 1 and Site 2 Residues in the
DAP5-eIF4A Complex
To examine whether residues predicted by the model of the

DAP5M-eIF4A complex are indeed important in the interaction,

we mutated conserved residues in DAP5M at the Site 1 and

Site 2 interfaces and carried out in vitro binding studies. At Site

1 we chose to mutate two key interactions: Asn 86 to alanine

(N86A) and Glu 125 to lysine (E125K). Asn 86 forms several

hydrogen bonds with backbone atoms from a loop in the

C-terminal lobe of eIF4A and Glu 125 makes a salt bridge with

Arg 312 of yeast eIF4A (Arg 324 in human eIFAI), also located
522 Structure 21, 517–527, April 2, 2013 ª2013 Elsevier Ltd All rights
on a loop in the C-terminal lobe (Figure 4, lower left panel). At

Site 2, Phe 296, which makes interactions with a hydrophobic

pocket on the N-terminal lobe of eIF4A, was mutated to alanine

(F296A) (Figure 4, lower right panel). These mutant proteins were

soluble as exhibited by their well-behaved gel filtration profiles

(Figure S3). Mutation of single residues at either the Site 1 or

Site 2 interfaces resulted in complete loss of binding in in vitro

pull-down assays (Figure 6A). The same results were obtained

using gel filtration chromatography (Figure S3). Our results agree

with those obtained by Morino et al. (2000), who showed that the

mutation of Phe 977 (equivalent to Phe 296 in DAP5) to Ala

(F977A) in eIF4GI resulted in loss of binding to eIF4A in cell

extracts. This confirms that DAP5M interacts with eIF4A in the

same manner as was observed for eIF4G, albeit with a lower

affinity, which may impact its ability to stimulate eIF4A activity.

Effect of DAP5M on the Helicase Activity
To assess the effect of the lower affinity DAP5M-eIF4A interac-

tion on helicase activity, we used a fluorescence-based activity

assay to monitor RNA unwinding by full-length human eIF4A

in vitro (Özesx et al., 2011). The stimulation of eIF4A helicase

activity through interaction with eIF4G is well established

in vitro using either protein purified from cell extracts or recombi-

nant protein, although the extent of stimulation depends on the

particular construct used (Abramson et al., 1988; Rogers et al.,

2001). Full-length eIF4G, however, is intrinsically unstable, and
reserved



Figure 5. ITC Titration Binding Curves
(A) eIF4AI with eIF4GI(MIF4G) (residues 732–1003), where KD is the dissociation constant and N is the number of binding sites.

(B) eIF4AI with DAP5M (residues 48–323).
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thus, for our activity assays, we used a construct encompassing

approximately the C-terminal two-thirds of eIF4G, lacking

regions upstream of the MIF4G domain (residues 732–1571),

similar to one previously demonstrated to robustly stimulate

eIF4A ATPase activity in vitro (Korneeva et al., 2005). Analo-

gously for DAP5, we used a near full-length construct beginning

just N-terminal to the middle domain and extending to the

C terminus (residues 48–907). The reaction mix also includes

the accessory factor eIF4B, which enhances eIF4A processivity

(Rogers et al., 2001).

eIF4A and eIF4B display relatively low unwinding activity on

their own (Figure 7, green). Addition of wild-type DAP548–907 to

the reaction almost doubled the basal unwinding rate to 4.5%

per minute (Figure 7, red). The N86A mutant of DAP548–907,

which as demonstrated above abrogates binding of eIF4A

to DAP5M, returned the activity back to basal levels (Figure 7,

lavender), confirming the importance of DAP5-eIF4A binding

for stimulation of RNA unwinding activity. Thus, as with eIF4G,

DAP5 can stimulate eIF4A activity via interaction with its middle

domain. However, carrying out the unwinding reaction with

eIF4G732–1571 in our assay indicates that it is twice as potent as

DAP548–907 in stimulating helicase activity (Figure 7, blue). For

the above-mentioned experiments, all of the proteins in the

reaction mixtures were maintained at concentrations of 1 mM.

According to the dissociation constants determined above for

the middle domains, at 1 mM concentration DAP548–907 would
Structure 21
be less occupied by eIF4A than eIF4G732–1571, which would

be close to saturation, although the precise situation is more

complex because eIF4G732–1571 contains a second binding site

for eIF4A in its C-terminal region that is absent in DAP548–907.

Nonetheless, the 10-fold difference in binding affinity of eIF4A

with the middle domains of the two proteins likely contributes

to the observed differences in their respective stimulation of

unwinding activities. Indeed, increasing the DAP548–907 and

eIF4G732–1571 concentrations to 2 mM in the assay (Figure 7,

gray and gold) substantially reduces the observed difference in

unwinding activities between the two proteins.

DISCUSSION

We have determined the crystal structure of the MIF4G domain

from DAP5. Our structure reveals that the overall fold of

DAP5M is a helical HEAT domain that is very similar to that found

in crystal structures of the MIF4G domain from eIF4G. However,

significant conformational differences in the connecting loop

structures of DAP5M impart distinct shape and surface charac-

teristics to it. We also showed that DAP5M is functionally homol-

ogous to eIF4G in its ability to interact with and stimulate eIF4A

activity.

A precise molecular role for DAP5 is still lacking. The earliest

reports, via overexpression in vitro and in transfected cells,

ascribed an inhibitory role to DAP5 on both cap-dependent
, 517–527, April 2, 2013 ª2013 Elsevier Ltd All rights reserved 523



Figure 7. In Vitro Helicase Assay

The percent unwinding of the RNA substrate over time was monitored by

measuring the increase in fluorescence caused by eIF4A and eIF4B in the

absence (green) or in the presence of wild-typeDAP5 (red and gray) or its N86A

mutant (lavender), or in presence of the C-terminal two-thirds of eIF4G (blue

and gold). Each protein was present at 1 mM in the unwinding reaction unless

specified otherwise. The initial unwinding rates were extracted from the initial

linear portion of the unwinding time course and expressed as percent

unwinding per minute. Error bars represent the standard deviation of three

replicates. Wild-type DAP5 and its eIF4G equivalent stimulate the activity of

the helicase, whereas unwinding in the reaction containing DAP5 N86A is

comparable to that of eIF4A and eIF4B alone. There is an�2-fold difference in

unwinding aided by DAP5 and eIF4G at 1 mM, but their eIF4A-stimulation

capacities are more similar at 2 mM.

Figure 6. In Vitro Pull-Down Experiments

Hexahistidine-tagged constructs of purified DAP5M and its mutants were

used as bait and purified eIF4AI as prey. Shown are Coomassie Brilliant Blue-

stained SDS-PAGE gels. Indicated on the left are protein marker sizes in kDa.

Pull-downs of eIF4Awith DAP5Mcontainmutations at Site 1 or Site 2. Lane 1 is

a control in which eIF4A alone is incubated with empty Ni-NTA beads to

account for nonspecific binding of eIF4A to the resin. Lane 2 is a positive

control with wild-type DAP5M, which shows strong binding to eIF4A. Lanes 3

to 5 are pull-downs with the indicated mutants of DAP5M, all three of which fail

to pull down eIF4A. See Figure S3.
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and EMCV-IRES-driven translation. Based on this, it was postu-

lated that DAP5 could function as a general translation inhibitor

by sequestering eIF4A and eIF3, but not eIF4E, into inactive

complexes. Later studies often produced many conflicting

results with functions of DAP5 ranging from inhibitor of cap-

dependent translation (Henis-Korenblit et al., 2002), stimulator

of DAP5 IRES-dependent translation (Nevins et al., 2003), inert

in DAP5 IRES-dependent translation (Henis-Korenblit et al.,

2002), and even a stimulator of cap-dependent translation (Lee

and McCormick, 2006). All of these studies were based on over-

expression of DAP5 beyond physiological levels, which could

account for the varying results observed, depending on the

precise conditions and cell types used.

Much evidence now points to DAP5 being a scaffolding

protein in IRES-mediated translation. Knockout and knockdown

studies have established that DAP5 is an essential factor for the

translation of specific cellular mRNAs containing IRES elements

in their 50-UTRs, such as c-myc, CDK1 and Bcl family members,

and DAP5 itself (Yamanaka et al., 2000; Marash et al., 2008).

However, the molecular details of how DAP5 partakes in transla-

tion initiation and its relationship to eIF4G have remained elusive.

Our structure of DAP5M supports its role in IRES-mediated

translation in that it possesses a positive surface charge distribu-

tion distinct from that found in MIF4G and is well-suited for inter-

action with nucleic acids, although direct interaction between

DAP5M and IRES RNA remains to be demonstrated.

Our finding of a 10-fold affinity difference between eIF4A and

themiddle domains of eIF4G andDAP5 resulting in variable stim-

ulation eIF4A helicase activity further supports the notion that

DAP5 does not simply function as a general translational in-

hibitor. eI4FA is the most abundant initiation factor present in

the cell, present at concentrations of up to �30 mM, whereas

DAP5/eIF4G levels can be in the range of �2 to 6 mM (Duncan

and Hershey, 1983; Lee and McCormick, 2006). Thus, based

on the dissociation constants determined here, both DAP5 and

eIF4G would for the most part be in complex with eIF4A,

although DAP5 is likely more dynamic in this regard, owing to

its lower affinity for eIF4A. Indeed, the levels of DAP5 are signif-

icantly modulated under cellular stress conditions, particularly

during caspase activation, which causes a shift from cap-depen-
524 Structure 21, 517–527, April 2, 2013 ª2013 Elsevier Ltd All rights
dent to cap-independent translation by the degradation of eIF4G

(Bushell et al., 2000; Svitkin et al., 1999; Henis-Korenblit et al.,

2000), thereby favoring the association of DAP5 with eIF4A.

Finally, the importance of the DAP5-eIF4A interaction was

further validated in recent translation rescue experiments from

rabbit reticulocyte lysate, where the ability of recombinant

DAP5 to rescue the translation of cellular IRESsdepended specif-

ically on the integrity of interactionbetween itsmiddledomain and

eIF4A (V.Gandin, personal communication). Futurestudiesaimed

at deciphering themolecular contribution of DAP5 to IRES-driven

translation will be required to unravel its true biological role.

EXPERIMENTAL PROCEDURES

Expression and Purification of Recombinant Proteins

TheMIF4G domain of human DAP5 (DAP5M; residues 48 to 323 and 61 to 323)

was subcloned into the BamHI and EcoRI restriction sites of the bacterial
reserved
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expression vector pProEx HTb (Invitrogen, Carlsbad, CA, USA). DAP5M

was expressed in Escherichia coli strain BL21 (Rosetta 2) by induction at

OD600 = 0.6 with 1 mM isopropyl-b-D-thiogalactoside (IPTG) for 4 hr at

30�C. The protein was purified by nickel affinity chromatography on a Sephar-

ose 6 Fast Flow nickel affinity resin column (HisTrap FF, GE Healthcare, Little

Chalfont, UK). Following overnight TEV cleavage and dialysis against nickel

binding buffer, TEV protease (hexahistidine-tagged) was removed by applying

samples onto a HisTrap FF column and collecting the flowthrough. Tagged

and cleaved protein was further purified by gel filtration chromatography on

a HiLoad 16/60 Superdex 75 prep grade column (GE Healthcare) eluted with

a buffer containing 25 mM Tris (pH 8.0), 150 mM NaCl, 5% glycerol, 1 mM

phenylmethylsulfonyl fluoride (PMSF), and 1 mM dithiothreitol (DTT).

Human full-length eIF4AI was cloned into the BamHI and EcoRI restriction

sites of the bacterial expression vector pProEx Htb (Invitrogen). The protein

was expressed in E. coli strain BL21 (DE3) by autoinduction at OD600 = 0.6

overnight at 20�C (Studier, 2005). The protein was purified by nickel affinity

chromatography and cleaved as described for DAP5M. The cleaved protein

was further purified by anion exchange chromatography on a Q Sepharose

Fast Flow resin column (HiTrap Q FF, GE Healthcare) before gel filtration, as

described for DAP5M.

The middle domain of human eIF4GI (MIF4G, residues 732 to 1003) was

cloned into pET-28b-SMT3 vector (Mossessova and Lima, 2000), in which

we mutated the EcoRI restriction site originally contained in the SUMO coding

region, enabling the use of EcoRI as forward restriction site together with

XhoI. A longer eIF4G construct encompassing its three HEAT-repeats domains

(732–1571) was cloned into the BamHI and NotI sites of the same vector. The

purification steps for MIF4G and eIF4G732-1571 are the same as for DAP5M

and eIF4A, respectively. Ulp-1 was used to desumoylate the fusion proteins

(Mossessova and Lima, 2000).

Human DAP5 (residues 48 to 907) was cloned into pProEx Htb (Invitrogen)

and expressed as an N-terminal hexahistidine fusion protein in E. coli strain

BL21 (Rosetta 2) by autoinduction overnight at 20�C (Studier, 2005). The

protein was purified by nickel affinity chromatography on Ni-NTA Superflow

resin (QIAGEN, Hilden, Germany) followed by anion exchange chromatog-

raphy on a Q Sepharose Fast Flow resin column (HiTrap Q FF, GE Healthcare).

The protein was further purified by gel filtration chromatography on a Superdex

200 HR 10/300 column (GE Healthcare) eluted with a buffer containing 25 mM

Tris (pH 8.0), 150 mM NaCl, 5% glycerol, 1 mM phenylmethylsulfonyl fluoride

(PMSF), and 3 mM dithiothreitol (DTT).

All DNA sequences were confirmed by sequencing.

Mutagenesis of DAP5M

Mutants of DAP5M (48–323) and DAP5 were generated using the QuikChange

mutagenesis kit (Stratagene, La Jolla, CA, USA). Sequences of the mutants

were confirmed by plasmid DNA sequencing. The mutant proteins were ex-

pressed and purified as described above for the wild-type protein.

Crystallization and Data Collection

Tris(2-carboxyethyl)phosphine (TCEP; 1 mM final concentration) was added to

DAP5M (61–323) samples before use in crystallization trials. Crystals suitable

for structure determination were grown at 291 K using protein concentration of

15–20 mg/ml in drops of 2–4 ml volume (1–2 ml protein solution mixed with

1–2 ml reservoir solution). Crystals were grown in 0.1 M HEPES (pH 7.5),

0.2M ammonium sulfate, and 18%–20% (w/v) polyethylene glycol 5000mono-

methyl ether (PEG 5000 MME). Crystals were flash-cooled in a liquid-nitrogen

cryostream at 100 K, and data were collected in-house on a RigakuMicroMax-

007 HF microfocus X-ray generator fitted with Varimax X-ray optics and a

Saturn 944+ CCD detector.

Structure Determination

Crystallization, data collection, and initial structure solution of DAP5M were

carried out as described previously (Frank et al., 2010). In short, DAP5M

shares�43% sequence identity with its homologous region in eIF4GII. Crystals

belong to thespacegroupC2with twomoleculesofDAP5Mperasymmetric unit

and diffracted to 2.4 Å (Table 1). Maximum likelihood molecular replacement

using the program Phaser (Read, 2001) and the structure of the eIF4GII MIF4G

domain (Protein Data Bank [PDB] ID code 1HU3; Marcotrigiano et al., 2001) re-

sulted in a solution with acceptable Z scores and log-likelihood gain (RFZ = 5.3;
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TFZ = 11.3; LLG = 169). However, initial attempts at refinement did not reduce

the R factors. Therefore, we broke up the Phaser solution into 20 separate rigid

bodies, each corresponding to one helix and carried out rigid body refinement.

This reduced theR factors to47%,andsubsequent simulatedannealing, energy

minimization, and B-factor refinement with the program CNS (Brünger et al.,

1998), as well as density modification, including the application of 2-fold NCS

symmetry averaging using the program DM (Cowtan and Main, 1993), further

reduced the R factors and resulted in reasonable electron density for majority

of the structure allowing us to build a model. During initial refinement against

the home source data set described before (Frank et al., 2010), CNS (Brünger

et al., 1998) was used andNCS restraintswere applied. This refinement resulted

in a final model with an Rfree andR factor of 27.8%and 24.4%, respectively. The

resultingmodel was then further refined against a slightly higher resolution data

set (2.3 Å) fromCHESS beamline A1 (Table 1) usingPhenix (Adams et al., 2002).

NCS restraints were removed for refinement using Phenix, but TLS refinement

was employed. The final model yielded an R factor of 22.2%andRfree of 25.6%.

Gel Filtration Chromatography

Half milliliter samples containing 0.5mgHis-DAP5M (orMIF4G, or eIF4A alone)

with or without 0.5 mg eIF4A were injected over a Superdex 200 10/300 GL

column (GE Healthcare) eluted with a buffer containing 25 mM Tris (pH 8.0),

150 mM NaCl, and 5% glycerol.

In Vitro Pull-Down Assays

Thirty micrograms of His-DAP5Mwere incubated in binding buffer (25 mM Tris

[pH 8.0], 150 mM NaCl, 60 mM imidazole [pH 8.0], and 5% glycerol) together

with 25 ml Ni-NTA Superflow resin (QIAGEN) and 100 mg of eIF4AI (�3-fold

molar excess) for 30 min on ice in 100 ml reaction volume. After washing with

3 3 700 ml of binding buffer, proteins were eluted with 50 ml of elution buffer

(25 mM Tris [pH 8.0], 500 mM NaCl, and 500 mM imidazole [pH 8.0]). SDS-

PAGE was carried out on a 12% polyacrylamide gel and eluted proteins

were visualized with Coomassie Brilliant Blue staining.

Isothermal Titration Calorimetry

Experiments were performed with a VP-ITC instrument (MicroCal, GE Health-

care) at 20�C. His-DAP5M (or desumoylated MIF4G from eIF4GI) and eIF4AI

samples were first dialyzed against a buffer containing 25 mM Tris (pH 8.0),

150 mM NaCl, and 1 mM DTT and then diluted to 0.5–1.0 mM and

0.05–0.1 mM, respectively. MIF4G domain proteins were loaded into the

syringe, whereas eIF4AI was loaded into the calorimetric cell. The heat of

binding was measured over the injection of 37 ml of MIF4G in 2 ml increments

into the cell. Data were fitted to a one binding site model using the Origin soft-

ware package (MicroCal, GE Healthcare).

Helicase Assays

Experiments were performed as described by Özesx et al. (2011). eIF4A, eIF4B,
DAP5, and eIF4Gwere used at a concentration of 1 mMunless specified other-

wise. The substrate is a double-reporter RNA construct with a 20 nt 50

overhang and a 24 bp duplex region. It was used at a concentration of

50 nM. Sequences are as follows, with underlined regions corresponding to

the duplex regions: template: 50-GAACAACAACAACAACAACAGAAAAAA

UUAAAAAAUUAAAAAACUCGGAGGGGCCGGUGGGGCC – 30; Cy3 strand

sequence: 50-Cy3- GUUUUUUAAUUUUUUAAUUUUUUC – 30; BHQ strand

sequence: 50- GGCCCCACCGGCCCCUCCG – BHQ – 30; 24-nt DNA com-

petitor: 50- GAAAAAATTAAAAAATTAAAAAAC – 30.
BHQ and Cy3-labeled RNA oligonucleotides were annealed side-by-side

(one nucleotide apart) to the template RNA. Competitor DNA was present in

10x excess to capture Cy3 RNA upon unwinding.
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