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EDITORIAL COMMENT

Arrhythmias and
Dilated Cardiomyopathy
Common Pathogenetic Pathways?*

Jeffrey A. Towbin, MD, Angela Lorts, MD

Cincinnati, Ohio

Dilated cardiomyopathy (DCM) is the most common cause
of heart failure and cardiac transplantation, and is among
the most common diagnoses requiring hospitalization in
North America. Approximately 4.7 million people in the
United States have heart failure, and approximately 550,000
new cases are diagnosed annually (1). The 5-year mortality
rate among patients with heart failure is close to 50% (2).
Patients with DCM are prone to arrhythmias, and the cause
of mortality in these patients is either end-organ dysfunc-
tion due to pump failure or arrhythmia-related death (3).
The etiology of DCM-associated arrhythmias has been
speculated to be the result of a variety of electrical abnor-
malities, but the primary cause is not well understood. Many
believe that the arrhythmogenic substrate results from
myocardial fibrosis, leading to an “irritable focus” that is
easily triggered. Other hypotheses include high catechol-
amine levels or stretching of myocardial fibers induced by
increased left ventricular end-diastolic volume, leading to an
arrhythmic substrate (4). However, we, and others, have
shown that the causative genes responsible for various
cardiovascular diseases are typically involved in “final com-
mon pathways,” and when these pathways are disrupted, the
clinical phenotype may occur (5–11).

See page 2160

In the case of DCM, the disruption of the link between
the sarcolemma, the cytoskeleton, and the sarcomere has
been shown to be associated with the disease, whereas the
“final common pathway” of rhythm disorders is disturbance

*Editorials published in the Journal of the American College of Cardiology reflect the
views of the authors and do not necessarily represent the views of JACC or the
American College of Cardiology.

From The Heart Institute and Pediatric Cardiology, Cincinnati Children’s Hos-
pital Medical Center, Cincinnati, Ohio. Dr. Towbin is funded by grants from the
National Institutes of Health, National Heart, Lung, and Blood Institute (NIH-
NHLBI), including the Pediatric Cardiomyopathy Registry (RO1 HL53392) and
Pediatric Cardiomyopathy Specimen Repository (RO1 HL08700), the Abby Glaser
Children’s Heart Fund, the Colin’s Angels Foundation, and the Children’s Cardio-

myopathy Foundation. The authors have reported that they have no relationships to
disclose.
of ion channel function (5–8). Therefore, because the
majority of dysfunctional ion channels that have been found
to cause arrhythmias are typically localized to the sarco-
lemma, disruption of the sarcolemma-sarcomere link could
potentially result in ion channel dysfunction, resulting in the
combination of a DCM phenotype and arrhythmias (Fig. 1).
Further, it is possible that the opposite may be true, when
the function of an ion channel is primarily disturbed, in this
case caused by a gene mutation in SCN5A. This distur-
bance may cause dysfunction of cytoskeletal protein binding
partners, resulting in a secondary DCM. Another possibility
is that the electrical dysfunction caused by the ion channel
gene defect leads to mechanical instability, and ultimately to
myocardial dysfunction and ventricular dilation. Further, it
is possible that the opposite may be true: that primary
disruption of an ion channel (through a gene mutation)
leads to DCM.

In this issue of the Journal, McNair et al. (12) report the
screening of the cardiac sodium channel gene SCN5A in a
cohort of patients and families with DCM. Of the 338
subjects from 289 families studied, 15 mutation carriers
were found, including 5 separate mutations (1.7%), 3 being
novel (12). In 14 of 15 subjects with mutations (93%),
arrhythmias were also notable and included supraventricular
arrhythmias (13 of 15), sick sinus syndrome (5 of 15), atrial
fibrillation (9 of 15), ventricular tachycardia (5 of 15), and
conduction disease (9 of 15). The authors have studied the
mechanisms involved in the development of these overlap-
ping phenotypes. In nearly 70% of the SCN5A mutations
thus far reported to cause DCM, the mutations localize to
the highly conserved homologous S3 and S4 transmem-
brane segments, suggesting a shared mechanism of disrup-
tion of the voltage-sensing mechanism of this channel.
Hence, the authors intimate a correlation among DCM,
arrhythmias, and sodium channel mutations. Unlike the
long-QT syndrome subtype (LQT3) caused by SCN5A
mutations, resulting in a gain of function of the cardiac
sodium channel and prolongation of the sodium current
during depolarization, Brugada syndrome, another disease
caused by SCN5A mutations, results from a loss of function
(13). In these disease states, variants in SCN5A lead to a
shift in the voltage dependence of steady-state inactivation
in the direction of more positive potentials, accelerating the
recovery time from inactivation. In addition, SCN5A-
induced atrioventricular conduction disease has been shown
to be caused by impairing fast inactivation without produc-
ing noninactivating currents. Reduction in sodium current
density and an enhancement of slower inactivation compo-
nents resulted in a significant reduction in myocardial
conduction velocity leading to atrioventricular block (14). In
these reported cases of SCN5A-induced DCM, there is a
different mechanism resulting in the dilated phenotype,
which appears to rely on the location of the channel and a
charge change in a critical residue within the channel. The

underlying cause of the reported patient’s DCM remains
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unclear, however. Unfortunately, the authors have not
studied the myocardium of any of the SCN5A mutant cases
for the cellular biological changes within the heart. Inter-
estingly, heterozygous SCN5A-knockout mice have exten-
sive myocardial fibrosis and up-regulation of hypertrophic
markers as they age (15). It may be insightful to look closer
at the myocardium of the patients with SCN5A mutations
that exhibit the dilated phenotype with more advanced
imaging such as magnetic resonance imaging with delayed
enhancement to evaluate for fibrosis. From a molecular
standpoint, studies of binding partners of SCN5A could help
us to understand whether the protein make-up of the heart
is intact and whether functional abnormalities in the sarco-
lemma, cytoskeleton, or sarcomere occur secondarily to the
SCN5A mutations. There is precedence for these consider-
ations. For instance, we have shown that mutations in
caveolin-3 (Cav3) (16) and syntrophin �-1 (SNTA1) (17)

Figure 1 The Cardiomyocyte
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a DCM phenotype and frequently have arrhythmias. The
involvement of dystrophin in the development of the DCM
phenotype has been shown in idiopathic DCM and other
genetic forms of DCM (20), but can only be speculated as
potentially playing a role here, and therefore should be
evaluated. In addition, desmosomal and other intercalated
disk proteins interact with and bind to SCN5A and could
also play a role in these phenotypes that result from SCN5A

utations. Again, cellular biology and proteomic analysis
ould be helpful in distinguishing the mechanisms respon-
ible for the overlapping phenotype.

The study by McNair et al. (12) is an excellent first step
n defining the association of DCM and arrhythmias caused
y SCN5A mutations. Future studies focused on the mech-
nisms responsible for arrhythmias and DCM will better
efine the full extent of these overlapping phenotypes and
erhaps clarify why some patients have DCM alone, ar-
hythmias alone, or the combination of DCM and arrhyth-
ias. We predict that the answers lie in the proteins

unctioning in electrical and mechanical roles and that
isturbance of these overlapping “final common pathways”
ill shed light on this long-standing mystery.
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