
Theoretical Computer Science 398 (2008) 82–94
www.elsevier.com/locate/tcs

The heart of intersection type assignment: Normalisation proofs
revisited

Steffen van Bakel1

Department of Computing, Imperial College London, 180 Queen’s Gate London SW7 2BZ, UK

To Mariangiola, Mario, and Simona

Abstract

This paper gives a new proof for the approximation theorem and the characterisation of normalisability using intersection
types for a system with ω and a ≤-relation that is contra-variant over arrow types. The technique applied is to define reduction on
derivations and to show a strong normalisation result for this reduction. From this result, the characterisation of strong normalisation
and the approximation result will follow easily; the latter, in its turn, will lead to the characterisation of (head) normalisability.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Intersection types; Cut-elimination; Strong normalisation; Approximants

0. Introduction

The main result in this paper will be to show that all the famous characterisation properties for the Intersection Type
Discipline [7] are all in fact the consequences of a single result: cut-elimination is terminating. This result was already
shown to hold for the strict system in [3]; the contribution of this paper is to show these results for a notion of type
assignment that is closed for η-reduction, i.e. has an inclusion relation on types that is contra-variant on arrow types.

The Intersection Type Discipline as presented in [8] (a more enhanced system was presented in [7]; for an overview
of the various existing systems, see [2]), is an extension of Curry’s system [9], that consists mainly of allowing for
term variables (and terms) to have more than one type, or an empty type. Intersection types are constructed by adding,
next to the type constructor ‘→’ of Curry’s system, the type constructor ‘∩’ and the type constant ‘ω’.

This slight generalisation causes a great change in complexity; in fact, now type assignment is closed for β-equality:
M =β N ⇒ (B � M :σ ⇐⇒ B � N :σ) and (head / strong) normalisation can be characterised by assignable types:

M has a head-normal form ⇐⇒ B � M :σ & σ 	= ω

M has a normal form ⇐⇒ B � M :σ & ω does not occur in B, σ
M is strongly normalisable ⇐⇒ B � M :σ , where ω is not used at all

E-mail address: svb@doc.ic.ac.uk.
1 On sabbatical leave at Inria Sophia Antipolis, 2004 route des Lucioles, BP 93, 06902 Sophia Antipolis, France.

0304-3975/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.01.020

http://www.elsevier.com/locate/tcs
mailto:svb@doc.ic.ac.uk
http://dx.doi.org/10.1016/j.tcs.2008.01.020

S. van Bakel / Theoretical Computer Science 398 (2008) 82–94 83

(see, for example, [7,1,2]). These properties immediately show that type assignment (even in the system that does not
contain ω, see [1]) is undecidable.

As in [13,6], the set of terms can be extended by adding the term constant ⊥. Adding also the reduction rules
⊥N →β⊥ ⊥, and λx .⊥ →β⊥ ⊥ to the notion of reduction gives rise to the notion of approximate normal forms
that are in essence finite rooted segments of Böhm-trees. It is well known that interpreting a term by the set of
approximants that can be associated to it gives a model for the Lambda Calculus. From the Approximation Theorem,
i.e. the observation that there exists a very precise relation between types assignable to a term M and those assignable
to its approximants, A(M) (see [11,1,2], and Definition 24), it is clear that the set of intersection types assignable to
a term can be used to define a model for the Lambda Calculus (see [7,1,2]).

Of the above-mentioned results, all but the first will be proved again in this paper; in fact, we will show that these
can all be obtained from one more fundamental result, being the strong normalisation of cut-elimination.

In previous papers, the Approximation Theorem and Strong Normalisation Theorem were proved independently
(see, respectively, [2] and [1]), though both using the same technique of Computability Predicates [12,10]. In this
paper, we will show that both are special cases of strong normalisation of cut-elimination, using a variant of the
technique developed in [5], that has also found its application in other fields [4]. We will define a notion of reduction
on derivations in ‘�’ that generalises cut-elimination, and prove that this kind of reduction is strongly normalisable.
It might seem surprising, but this result does not come easy at all. The reason for this is that, unlike for ordinary
systems of type assignment, for the intersection system there is a significant difference between derivation reduction
and ordinary reduction (see the beginning of Section 2); unlike ‘normal’ typed or type assignment system, in ‘�’ not
every term redex occurs with types in a derivation. Moreover, especially the use of a relation ‘≤’ on types, together
with a derivation rule (≤), greatly disturbs the smoothness of proofs (see again Section 2).

From this strong normalisation result for derivation reduction, the Approximation Theorem and Strong
Normalisation Theorem follow easily. The first of these implies the Head-Normalisation Theorem and (indirectly)
the Normalisation Theorem, as was already demonstrated in [2].

The kind of intersection type assignment considered in this paper is that of [2], i.e. the essential intersection type
assignment system, a restricted version of the BCD-system of [7], that is equally powerful in terms of typeability and
expressiveness. The major feature of this restricted system is, compared to the BCD-system, a restricted version of
the derivation rules and the use of strict types (first introduced in [1]).

In [3] similar results were shown for the strict intersection type assignment system. This differs from the one
considered here in that the ≤ relation on types used there is not contra-variant over arrow types, but only allows for
the selection of one of the types in an intersection. The contribution of this paper is to generalise that result to the
essential intersection type assignment system, a notion of type assignment that is also closed for η-reduction.

As shown in [2], the essential system is the nucleus of the BCD-system, in the sense that
B �BCD M :σ ⇐⇒ ∃ B ′ ∼ B, σ ′ ∼ σ [B � M :σ]. This implies that all normalisation results for that system are also
consequences of the main result of this paper. It will be feasible to give a direct proof for the BCD system as well,
albeit that the notion of reduction on derivations will be slightly different, as then also (∩I)−(∩E) cuts will have to
contract. Although in the BCD-system the ≤-relation is more complex, the derivation rule (≤) is a normal rule, and
extending the proof that the computability predicate is closed for (≤) will be easy. It feels safe to conjecture that the
main result of this paper (strong normalisation of derivation reduction) will hold in all other intersection type systems
with a contra-variant ≤-relation on (non-recursive) types.

The outline of this paper is as follows. In Section 1, we will recall the definition of the essential type assignment
system of [2], together with some of its main properties. In Section 2, a notion of reduction on derivations in ‘�’ is
defined, for which we will show a strong normalisation result in Section 3. In Section 4 we will focus on the head
normalisation and approximation results, and show that they are consequences of the result of Section 3. We will finish
this paper in Section 5 by extending the result of Section 3 to the characterisations of normalisation and termination.

The technique applied in this paper is similar to that of [3], but for the subtle differences caused by the presence of
≤, like the first part of Definition 12, Lemma 18, and Theorem 21. Since the systems differ, of course all properties
had to be checked again; only those that do not depend on which notion is used – but are of use here – are quoted
without proof.

We assume the reader to be familiar with the λ-calculus [6].

84 S. van Bakel / Theoretical Computer Science 398 (2008) 82–94

1. Intersection type assignment

In this section, the essential type assignment system of [2] is presented, a restricted version of the system
presented in [7], together with some of its properties. The major feature of this restricted system is, compared to the
BCD-system, a restricted version of the derivation rules and the use of strict types. It also forms a slight extension of
the strict type assignment system that was presented in [1]; the main difference is that the strict system is not closed
for η-reduction, whereas the essential system is.

Definition 1. (1) Let Φ be a countable (infinite) set of type variables, ranged over by ϕ. TS, the set of strict types,
ranged over by φ,ψ, . . . , and T , the set of strict intersection types, ranged over by σ, τ, . . . , are defined by:

φ,ψ ::= ϕ | (σ→φ)

σ, τ ::= (φ1 ∩ · · · ∩φn), (n ≥ 0)

(2) A statement is an expression of the form M :σ , with M ∈ Λ (the set of lambda terms), and σ ∈ T . M is the subject
and σ the predicate of M :σ .

(3) A basis is a set of statements with only distinct variables as subjects.
(4) For a collection of bases B1, . . . , Bn , the basis ∩{B1, . . . , Bn} is defined by: x :φ1 ∩ · · · ∩ φm ∈ ∩{B1, . . . , Bn} if

and only if {x :φ1, . . . , x :φm} is the set of all statements about x that occurs in B1∪ · · · ∪Bn .

Notice that TS is a proper subset of T . Often B, x :σ will be written for the basis ∩{B, {x :σ }}, when x does not
occur in B .

We will write n for the set {1, . . . , n}, and ∩nφi for φ1∩ · · · ∩φn . We define ω as the empty intersection: if n = 0,
then ∩nφi ≡ ω, so ω does not occur in an intersection subtype.

Notice that intersection type schemes (so also ω) occur in strict types only as subtypes at the left-hand side of an
arrow type scheme. Unless stated otherwise, if ∩nφi is used to denote a type, then all φi (i ∈ n) are assumed to be
strict.

Definition 2 (Relations on Types). (1) The relation ≤ is defined as the least pre-order (i.e. reflexive and transitive
relation) on T such that:

∀ i ∈ n [∩nφi ≤ φi], (n ≥ 1)
∀ i ∈ n [σ ≤ φi] ⇒ σ ≤ ∩nφi , (n ≥ 0)
ρ ≤ σ & φ ≤ ψ ⇒ σ→φ ≤ ρ→ψ :

(2) The equivalence relation ∼ on types is defined by: σ ∼ τ ⇐⇒ σ ≤ τ ≤ σ .
(3) We write B ≤ B ′ if and only if for every x :σ ′ ∈ B ′ there is an x :σ ∈ B such that σ ≤ σ ′, and

B ∼ B ′ ⇐⇒ B ≤ B ′ ≤ B .

Notice that T may be considered modulo ∼; then ≤ becomes a partial order. In this paper, however, in order to get
a strong relation between the structure of types and derivations, types will not be considered modulo ∼ .

Moreover, since intersections are not allowed to appear on the right-hand side of arrows, σ→(τ∩ρ) is not a type;
therefore, clause (σ→τ)∩(σ→ρ) ≤ σ→τ∩ρ is not part of the above definition.

For the relation ≤, the following properties hold:

Lemma 3. (1) ϕ ≤ σ ⇐⇒ σ ≡ ϕ. So {σ | σ ∼ ϕ } = {ϕ }.
(2) ω ≤ σ ⇐⇒ σ ≡ ω. So {σ | σ ∼ ω } = {ω }.
(3) σ→φ ≤ ρ ∈ TS ⇐⇒ ∃α ∈ T , ψ ∈ TS [ρ ≡ α→ψ & α ≤ σ & φ ≤ ψ].
(4) ∩nφi ≤ τ ∈ TS ⇒ ∃ i ∈ n [φi ≤ τ].
(5) σ ≤ τ ⇒ ∃φi (i ∈ n), ψ j (j ∈ m) [σ = ∩nφi & τ = ∩mψ j & ∀ j ∈ m ∃ i ∈ n [φi ≤ ψ j]].
Proof. Easy.

The (essential) intersection type assignment system is constructed from the set of strict types and the following
derivation rules. In this way a syntax directed system is obtained, that satisfies the main properties of the BCD-system
(see [2]; the presentation of the derivation rules in that paper differs from the one used here).

S. van Bakel / Theoretical Computer Science 398 (2008) 82–94 85

Definition 4 (Intersection Type Assignment). (1) Intersection type assignment and intersection derivations are
defined by the following natural deduction system:

(Ax) : (σ ≤ψ)
B, x :σ � x :ψ (∩I) : B � M :φ1 · · · B � M :φn

(n ≥ 0)
B � M : ∩nφi

(→I) : B, x :σ � M :φ
B � λx .M :σ→φ

(→E) : B � M :σ→φ B � N :σ
B � M N :φ .

(2) We write B � M :σ if this statement is derivable using an intersection derivation, and write D :: B � M :σ to
specify that this result was obtained through the derivation D.

Notice that B � M :ω, for all B and M , as a special case of rule (∩I).

We should emphasise the difference between this notion of type assignment and the strict one that was defined in
[3]; instead of the rule (Ax) given above, it contained the rule

(∩E) : (n ≥ 1, i ∈ n)
B, x :∩nφi �S x :φi

.

Notice that this rule is a special case of rule (Ax) in that ∩nφi ≤ φi , for all i ∈ n. This is, in fact, the only difference
between strict and non-strict type assignment. As for the difference in derivable statements, in the essential system it
is possible to derive � λx .x : (α→β)→(α∩γ)→β, which is not possible in ‘�S’.

For this notion of type assignment, the following properties hold:

Lemma 5 (Generation Lemma). (1) B � x :σ ⇐⇒ ∃ρ ∈ T [x :ρ ∈ B & ρ ≤ σ].
(2) B � M N :φ ⇐⇒ ∃ τ ∈ T [B � M : τ→φ & B � N : τ].
(3) B � λx .M :σ ⇐⇒ ∃ρ ∈ T , φ ∈ TS [σ = ρ→φ & B, x :ρ � M :φ].
(4) B � M :σ & σ ∈ T ⇐⇒ ∃φ1, . . . , φn [σ = ∩nφi & ∀ i ∈ n [B � M :φi]].
(5) B � M :σ ⇐⇒ { x :τ ∈ B | x ∈ fv(M) } � M :σ .

Proof. Easy.

Some of the properties of this system, proved in [2], are:

Property 6 ([2]). (1) If M →η N and B � M :σ , then B � N :σ .
(2) If M =β N, then B � M :σ if and only if B � N :σ .

Although the rule (Ax) is defined only for term variables, � is closed for ≤ and weakening; the proof first appeared
in [2], and is repeated here for completeness and its importance for this paper.

Lemma 7 ([2]). If B � M :σ and B ′ ≤ B, σ ≤ τ , then B ′ � M : τ , so the following is an admissible rule in �:

(≤) : B � M :σ
(B ′ ≤ B, σ ≤ τ)

B ′ � M : τ .

Proof. By induction on �.

(Ax) : Then M ≡ x , and there is x :ρ ∈ B such that ρ ≤ σ . Since B ′ ≤ B , there is x :μ ∈ B ′ such that μ≤ ρ. Notice
that μ ≤ ρ ≤ σ ≤ τ , so, by Lemma 5(1), B ′ � x : τ .

(→I) : Then M ≡ λx .M ′, and there are ρ, φ such that σ = ρ→φ and B, x :ρ � M ′ :φ. By Lemma 3(5) and (3)
there are ρi , φi (i ∈ n) such that τ = ∩n(ρi→φi), and for i ∈ n, ρi ≤ ρ and φ ≤ φi . Since B ′ ≤ B and ρi ≤ ρ, also
B ′, x :ρi ≤ B, x :ρ, and by induction B, x :ρi � M ′ :φi . So, by (→I), for every i ∈ n, B � λx .M ′ :ρi→φi , so, by
(∩I), B � λx .M ′ : τ .

(→E) : Then M ≡ M1 M2 and there is an μ such that B � M1 :μ→σ and B � M2 :μ. Since σ ≤ τ , also
μ→σ ≤ μ→τ and, by induction, B � M1 :μ→τ . Then, by (→E), B � M1 M2 : τ .

(∩I) : Then σ = ∩nφi , and, for every i ∈ n, B � M :φi . By Lemma 3(5), there are ψ j (j ∈ m) such that τ = ∩mψ j

and, for every j ∈ m, there is an i ∈ n such that φi ≤ ψ j . By induction, for j ∈ m, B ′ � M :ψ j . But then B ′ � M : τ ,
by (∩I).

86 S. van Bakel / Theoretical Computer Science 398 (2008) 82–94

Notice that, although the proof above is constructive, it is not sufficient to show the result of this paper. We need not
just a derivation for the desired result, but all; see also the example after Definition 9.

We will use the following short-hand notation for derivations.

Definition 8. (1) D = 〈Ax〉 :: B � x :σ if D consists of nothing but an application of rule (Ax).

(2) D = 〈D1, . . . ,Dn,∩I〉, if and only if there are φi (i ∈ n) such that, for all i ∈ n, Di :: B � M :φi , D is obtained
from D1, . . . ,Dn by applying rule (∩I), and D :: B � M : ∩nφi .

(3) D = 〈D1,→I〉, if and only if there are M1, σ, φ such that D1 :: B, x :σ � M1 :φ, D is obtained from D1 by
applying rule (→I), and D :: B � λx .M1 :σ→φ.

(4) D = 〈D1,D2,→E〉, if and only if there are P, Q, σ , and φ such that D1 :: B � P :σ→φ and D2 :: B � Q :σ ,
D is obtained from D1 and D2 by applying rule (→E), and D :: B � P Q :φ.

We now extend the relation ≤ to derivations in �; this notion is pivotal in the proof of strong normalisation of
derivation reduction.

Definition 9. (1) 〈Ax〉 :: B � x :σ ≤ 〈Ax〉 :: B ′ � x :σ ′ for all B ′ ≤ B , and σ ≤ σ ′.
(2) 〈D1, . . . ,Dn,∩I〉 :: B � M : ∩nφi ≤ 〈D′

1, . . . ,D′
m ,∩I〉 :: B ′ � M : ∩mψ j , if and only if for every j ∈ m there

exists an i ∈ n such that Di ≤ D′
j .

(3) 〈D1 :: B, x :σ � M :φ,→I〉 :: B � λx .M :σ→φ ≤ 〈D′
1 :: B ′, x :τ � M :ψ,→I〉 :: B ′ � λx .M ′ : τ→ψ if and

only if D1 ≤ D′
1.

(4) 〈D1 :: B � P :σ→φ,D2 :: B � Q :σ,→E〉 :: B � P Q :φ ≤ 〈D′
1 :: B � P : τ→ψ,D′

2 :: B � Q : τ,→E〉 ::
B � P Q :ψ if and only if D′

1 ≤ D1, and D′
2 ≥ D2.

Notice that ‘≤’ is contra-variant in (→E); this is especially important in the proof of Lemma 18.

Example 10. Let B = x :α→ω→γ, y:ω, z:α; take the derivation

B � x :α→ω→γ B � z :α
B � xz :ω→γ

(∩I)
B � yz :ω

B � xz(yz) :γ
B\z � λz.xz(yz) :α→γ

B\y, z � λyz.xz(yz):ω→α→γ

∅ � λxyz.xz(yz): (α→ω→γ)→ω→α→γ

As (α→ω→γ)→ω→α→γ ≤ (α→ω→γ)→(δ→β)→α∩δ→γ , the following derivation is larger in the sense of
≤ on derivations (where B ′ = x :α→ω→γ, y:δ→β, z:α∩δ).

(α→ω→γ ≤ α→β→γ)
B ′ � x :α→β→γ B ′ � z :α

B ′ � xz :β→γ

B ′ � y : δ→β B ′ � z : δ
B ′ � yz :β

B ′ � xz(yz) :γ
B ′\z � λz.xz(yz):α∩δ→γ

B ′\y, z � λyz.xz(yz): (δ→β)→α∩δ→γ

∅ � λxyz.xz(yz): (α→ω→γ)→(δ→β)→α∩δ→γ

S. van Bakel / Theoretical Computer Science 398 (2008) 82–94 87

On the other hand, the derivation ‘generated’ by Lemma 7 is:

B ′ � x :α→ω→γ B ′ � z :α
B ′ � xz :ω→γ

(∩I)
B ′ � yz :ω

B ′ � xz(yz) :γ
B ′\z � λz.xz(yz) :α∩δ→γ

B ′\y, z � λyz.xz(yz): (δ→β)→α∩δ→γ

∅ � λxyz.xz(yz): (α→ω→γ)→(δ→β)→α∩δ→γ

This derivation is also larger, but limiting the relation to just this choice would not give sufficient expressive power
in the proof of the main result of this paper; we need there to include all those derivations that are larger in the more
general sense, as is the first derivation.

The following is easy to show, and establishes the relation between ‘≤’ on types and ‘≤’ on derivations:

Lemma 11. (1) If D :: B � M :σ and B ′ ≤ B, σ ≤ σ ′, then there exists D′ ≥ D such that D′ :: B ′ � M ′ :σ ′.
(2) If D :: B � M :σ ≤ D′ :: B ′ � M ′ :σ ′, then B ′ ≤ B, σ ≤ σ ′.

Proof. (1) We separate two cases:
(σ ′ ∈ TS) : By induction on the structure of derivations.
(Ax) : Then D = 〈Ax〉 :: B, x :ρ � x :σ , with ρ ≤ σ . Since B ′ ≤ B, x :ρ, there exists x :μ ∈ B ′ such that
μ≤ ρ ≤ σ ≤ σ ′. Take D′ = 〈Ax〉 :: B ′ � x :σ ′, then D ≤ D′.

(∩I) : Then D = 〈D1, . . . ,Dn,∩I〉 :: B � M :∩nφi , with Di :: B � M :φi , for i ∈ n; notice that D ≤ Di .
Then, by Lemma 3, there exists j ∈ n such that φ j ≤ σ ′, and, by induction, there exists D′

j :: B ′ � M :σ ′,
with D j ≤ D′

j . Take D′ = D′
j , then D ≤ D′.

(→I) : Then D = 〈D1 :: B, x :τ � M ′ :φ,→I〉 :: B � λx .M ′ : τ→φ, and σ = τ→φ. Then σ ′ = ρ→ψ

such that ρ ≤ τ and φ ≤ ψ , and B ′, x :ρ ≤ B, x :σ . Then, by induction, there exists D′
1 ≥ D1, such that

D′
1 :: B ′, x :ρ � M ′ :ψ . Take D′ = 〈D′

1 :: B ′, x :ρ � M ′ :ψ,→I〉 :: B ′ � λx .M ′ :ρ→φ, then D ≤ D′.
(→E) : Then σ ∈ TS, and D = 〈D1 :: B � M1 :γ→σ,D2 :: B � M2 :γ,→E〉 :: B � M1 M2 :σ . Notice that
γ→σ ≤ γ→σ ′; so, by induction, there exists D′

1 ≥ D1 such that D′
1 :: B ′ � M ′

1 :γ→σ ′; notice that
D2 ≤ D2. Take D′ = 〈D′

1,D2,→E〉 :: B ′ � M1 M2 :σ ′, then D ≤ D′.
(σ ′ = ∩nφ′

i) : By Lemma 3, for i ∈ n, σ ≤ φ′
i ∈ TS; by part 2, there existsD′

i ≥ Di such that D′
i :: B ′ � M :φ′

i .
Take D′ = 〈D′

i , . . . ,D′
n,∩I〉 :: B ′ � M :σ ′, then D ≤ D′.

(2) Easy, from Definition 9.

2. Derivation reduction

In this section, we will define a notion of reduction on derivations and show this notion to be strongly normalisable
in the next section.

We start by defining a notion of reduction on derivations D :: B � M :σ that will follow ordinary reduction, by
contracting typed redexes that occur in D, i.e. redexes for subterms of M of the shape (λx .P)Q, for which the
following is a subderivation of D:

(σ ≤ ρ)
x :σ � x :ρ

D1

B, x :σ � P :φ
(→I)

B � λx .P :σ→φ

D2

B � Q :σ
(→E)

B � (λx .P)Q :φ

88 S. van Bakel / Theoretical Computer Science 398 (2008) 82–94

(a derivation of this shape, where an introduction rule is followed by the corresponding elimination rule, is called a
cut). As can be expected, the effect of this reduction will be that this derivation will be replaced by a derivation for the
contractum P[Q/x]; this can be regarded as a generalisation of cut-elimination, but, because the system at hand uses
intersection types together with the relation ‘≤’, has to be defined with care. So, when contracting D it is in general
not the case that the derivation D2 will just be inserted in the positions of D1 where a type for the variable x is derived,
since that would give an illegal derivation. The (≤)-step ‘to be applied at the end of D2’ has to be pushed upwards. We
have shown that this is possible in Lemma 11(1); this procedure, in general, changes the structure of the derivation D2.

Before formally defining reduction on derivations, we will first define a notion of substitution on derivations. It is
this operation that deals adequately with the occurrences of derivation rule (≤) in the leaves of a derivation.

Definition 12 (Derivation Substitution). For D :: B, x :σ � M : τ , and D0 :: B � N :σ , the result D′ of substituting
D0 in D, D [D0/x :σ] :: B � M[N/x] : τ is inductively defined by:

(1) D = 〈Ax〉 :: B, x :σ � x : τ , with σ ≤ τ . Let D′
0 be such that D0 ≤ D′

0 :: B � N : τ , then D [D0/x :σ] = D′
0.

(2) D = 〈D1, . . . ,Dn,∩I〉 :: B, x :σ � M : ∩nψ j , so Di :: B, x :σ � M :ψi for i ∈ n.
Let D′

i = Di [D0/x :σ] :: B � M[N/x] :ψi , then

D′ = 〈D′
1, . . . , D′

n,∩I〉 :: B � M[N/x] :∩nψ j = 〈D1, . . . ,Dn,∩I〉[D0/x :σ].
(3) D = 〈D1 :: B, x :σ, y:τ � M1 :ψ,→I〉 :: B, x :σ � λy.M1 : τ→ψ .

Let D′
1 = D1 [D0/x :σ] :: B, y:τ � M1[N/x] :ψ, then

D′ = 〈D′
1,→I〉 :: B � (λy.M1)[N/x] : τ→ψ = 〈D′

1,→I〉[D0/x :σ]
(4) D = 〈D1 :: B, x :σ � P : τ→ψ,D2 :: B, x :σ � Q : τ,→E〉 :: B, x :σ � P Q :ψ .

Let D′
1 = D1 [D0/x :σ] :: B � P[N/x] : τ→ψ,D′

2 = D2 [D0/x :σ] :: B � Q[N/x] : τ,
then D′ = 〈D′

1,D′
2,→E〉 :: B � (P Q)[N/x] :ψ = 〈D1,D2,→E〉[D0/x :σ].

Also, we need to define the concept of ‘position of a subderivation in a derivation’.

Definition 13. Let D be a derivation, and D′ be a subderivation of D. The position p of D′ in D is defined by:

(1) If D′ = D, then p = ε.
(2) If the position of D′ in D1 is q , and D = 〈D1,→I〉, or D = 〈D1,D2,→E〉, then p = 1q .
(3) If the position of D′ in D2 is q , and D = 〈D1,D2,→E〉, then p = 2q .
(4) If the position of D′ in Di (i ∈ n) is q , and D = 〈D1, . . . ,Dn,∩I〉, then p = q .

We now can give a clear definition of reductions on derivations.

Definition 14 (Derivation Reduction). (1) We say that the derivation D :: B � M :σ reduces to D′ :: B � M ′ :σ
at position p with redex R, if and only if:
(σ ∈ TS) : (a) D = 〈〈D1,→I〉,D2,→E〉 :: B � (λx .M)N :σ . Then D reduces to D1 [D2/x :τ] ::

B � M[N/x] :σ at position ε with redex (λx .M)N .
(b) If D1 reduces to D′

1 at position p with redex R, then
(i) D = 〈D1,→I〉 :: B � λx .P :α→β reduces at position 1 p with redex R to D′ =

〈D′
1,→I〉 :: B � λx .P ′ :α→β.

(ii) D = 〈D1,D2,→E〉 :: B � P Q :σ reduces at position 1 p with redex R to D′ =
〈D′

1,D2,→E〉 :: P ′ Q :σ .
(iii) D = 〈D2,D1,→E〉 :: B � P Q :σ reduces at position 2 p with redex R to D′ =

〈D2,D′
1,→E〉 :: P Q′ :σ .

(σ = ∩nφi) : If D :: B � M :∩nφi , then, for every i ∈ n, there is a Di , such that Di :: B � M :ψi , and
D = 〈D1, . . . ,Dn,∩I〉. If there is an i ∈ n such that Di reduces to D′

i at position p with redex R = (λx .P)Q
(a subterm of M), then, for all 1 ≤ j 	= i ≤ n, either
(a) there is no redex at position p because there is no subderivation at that position, and D′

j = D j , with
P[Q/x] instead of R, or

(b) D j reduces to D′
j at position p with redex R.

Then D reduces to 〈D′
1, . . . ,D′

n,∩I〉 at position p with redex R.

S. van Bakel / Theoretical Computer Science 398 (2008) 82–94 89

(2) We write D →D D′ if there exists a position p and redex R such that D reduces to D′ at position p with redex
R. If D1 →D D2 →D D3, then D1 →D D3.

(3) We abbreviate ‘D is strongly normalisable with respect to →D ’ by ‘SN (D)’, and use SN for the set of strongly
normalisable derivations: SN = {D | SN (D)}.

Notice that this reduction corresponds to contracting a redex in the conclusion of the derivation only if that redex
appears at least once in a subderivation with type different from ω.

The following lemma formulates the relation between derivation reduction and β-reduction, and is easy to show.

Lemma 15 ([3]). Let D :: B � M :σ , and D →D D′ :: B � N :σ , then M →→β N.

The following states some standard properties of strong normalisation.

Lemma 16. (1) SN (〈D1,D2,→E〉) ⇒ SN (D1) & SN (D2).
(2) If SN (D1 :: B � x M1· · ·Mn :σ→φ) and SN (D2 :: B � N :σ), then also SN (〈D1,D2,→E〉).
(3) Let D :: B � M :σ be 〈D1∩ · · · ∩Dn,∩I〉, so σ = ∩nφi . If D →D D′ :: B � M ′ :σ at position p, then there

exists an i ∈ n such that Di reduces to D′
i at position p with redex R.

(4) For all i ∈ n, SN (D1 :: B � M :σi) if and only if SN (〈D1∩ · · · ∩Dn,∩I〉).
(5) If SN (D1 :: B � C[M[N/x]] :σ), and SN (D2 :: B � N :ρ), then there exists a derivation D3 such that

SN (D3 :: B � C[(λy.M)N] :σ).
3. Strong normalisation of derivation reduction

In order to prove that each derivation in ‘�’ is strongly normalisable with respect to →D , a notion of computable
derivations is defined (based on the technique of computability predicates [12,10]). We will show that all computable
derivations are strongly normalisable with respect to derivation reduction, and then that all derivations in ‘�’ are
computable.

Definition 17 (Computable Derivations ([3])). The Computability Predicate Comp (D) is defined inductively on
types by:

Comp (D :: B � M :ϕ) ⇐⇒ SN (D)
Comp (D1 :: B � M :σ→φ) ⇐⇒ Comp (D2 :: B � N :σ) ⇒ Comp (〈D1,D2,→E〉 ::

B � M N :φ)
Comp (〈D1, . . . ,Dn,∩I〉 :: B � M :∩nφi) ⇐⇒ ∀i ∈ n [Comp (Di :: B � M :φi)].

Notice that, as a special case for the third rule, we get Comp (〈∩I〉 :: B � M :ω).
The following lemma formulates the relation between the computability predicate and the relation ≤ on

derivations, and is crucial for the proof of Theorem 21. The main difference between the solution of [3] and the one
presented here lies in the fact that here we need to prove this lemma, whereas in [3], it is not needed at all. In the strict
system, rule (Ax) corresponds to (∩E), and existence of a computable derivation of type ∩nφi immediately implies
the existence of a computable derivation of type φi via the third part of Definition 17: it is a direct subderivation.

Lemma 18. If Comp (D :: B � M :σ), and D ≤ D′, then Comp (D′).

Proof. By induction on the structure of types. Notice that, by Lemma 11(2), D′ = B ′ � M :σ ′, with B ′ ≤ B , σ ≤ σ ′.
We distinguish two cases:

(σ ′ ∈ TS) : (σ = ϕ) : Since ϕ ≤ σ ′, also σ ′ = ϕ, and the result is immediate.
(σ = α→φ) : Then σ ′ = ρ→ψ , with ρ ≤ α, φ ≤ ψ , and let D′ :: B � M :ρ→ψ . To show Comp (D′),

by Definition 17, we assume Comp (D0 :: B � N :ρ), and use this to show 〈D′,D0,→E〉 :: B � M N :ψ .
Since D0 ≤ D′

0 :: B � N :α, we get Comp (D′
0) by induction. Assuming Comp (D :: B � M :α→φ), by

Definition 17, Comp (〈D,D′
0,→E〉 :: B � M N :φ). Since

〈D,D′
0,→E〉 ≤ 〈D′,D0,→E〉 :: B � M N :ψ,

we get, by induction Comp (〈D′,D0,→E〉). So Comp (D :: B � M :ρ→ψ) by Definition 17.

90 S. van Bakel / Theoretical Computer Science 398 (2008) 82–94

(σ = ∩nφi) : If Comp (D :: B � M :∩nφi), then D = 〈D1, . . . ,Dn,∩I〉, by Definition 17, and Comp(Di ::
B � M :φi) for i ∈ n. Since ∩nφi ≤ σ ′, by Lemma 3, there exists i j ∈ n such that φi j ≤ σ ′. Then
D ≤ Di j :: B � M : τ j and, by induction, Comp (Di j).

(σ ′ = ∩nφi) : If Comp (D :: B � M :∩nφi), then, by Definition 17, for every i ∈ n there exists Di such that
Comp (Di :: B � M :φi), and D = 〈D1, . . . ,Dn,∩I〉. Since ∩nφi ≤ σ ′, by Lemma 3, σ ′ = ∩mψ j , and for all
j ∈ m there exists i j ∈ n such that φi j ≤ ψ j . Since Di ≤ Di j :: B � M :ψ j , by induction, Comp (Di j), and, by
Definition 17, Comp (〈Di1 , . . . ,Dim ,∩I〉 :: B � M :∩mψ j).

The following lemma states that Comp satisfies the standard properties of computability predicates, being that
computability implies strong normalisation, and that, for the so-called neutral objects, also the converse holds; the
proof is the same as that of [3].

Lemma 19 ([3]). (1) Comp (D :: B � M :σ) ⇒ SN (D).
(2) SN (D :: B � x M1· · ·Mm :σ) ⇒ Comp (D).

The following Theorem 21 shows that, if the instances of rule (Ax) are to be replaced by computable derivations,
then the result itself will be computable. Before coming to this result, we show that the predicate is closed for subject-
expansion; we will use an abbreviated notation, and write P for P1 · · · Pn , as well as [Ni/xi] for [N1/x1, . . . , Nn/xn],
etc.

Lemma 20. If Comp (D′ :: B � Q : ν) and Comp (D[D′/y:ν] :: B � M[Q/y]P :σ), then there exists a derivation
D′′ such that Comp (D′′ :: B � (λy.M)Q P :σ).
Proof. By induction on the structure of types.

(σ = ϕ) : Comp (D[D′/y:ν] :: B � M[Q/y]P :ϕ) & Comp (D′ :: B � Q : ν) ⇒ (19(1))
SN (D[D′/y:ν]) & SN (D′) ⇒ (16(5))

∃D′′ [SN (D′′ :: B � (λy.M)Q P :ϕ)] ⇒ (17)
∃D′′ [Comp (D′′ :: B � (λy.M)Q P :ϕ)].

(σ = τ→φ) : Comp (D1 :: B � N : τ) & Comp (D2 :: B � Q : ν) ⇒ (17)
Comp (〈D[D′/y:ν],D2,→E〉 :: B � M[Q/y]P N :φ) ⇒ (IH)
∃D′′[Comp (〈D′′,D2,→E〉 :: B � (λy.M)Q P N :φ) ⇒ (17)
∃D′′[Comp (D′′ :: B � (λy.M)Q P : τ→φ)]

(σ = ∩nφi) : By induction and Definition 17.

We now come to the main result.

Theorem 21 (Replacement Theorem). Let B = x1:μ1, . . . , xn :μn, D :: B � M :σ , and, assume that, for every i ∈ n,
there are Di , Ni such that Comp (Di :: B ′ � Ni :μi). Then Comp (D[Di/xi :μi] :: B ′ � M[Ni/xi] :σ).
Proof. By induction on the structure of derivations.

(Ax) : Then M ≡ x j , for some j ∈ n, with μ j ≤ σ . Since D j ≤ D′ :: B ′ � N j :σ , from Comp (D j), by Lemma 18,
Comp (〈Ax〉 :: B � x j :σ)[Di/xi :μi]).

(→I) : Then σ = τ→ψ , and D = 〈D1 :: B, y:τ � M ′ :ψ,→I〉 :: B � λy.M ′ : τ→ψ .

∀i ∈ n [D j :: B � Ni :μi] & Comp (D2 :: B � P : τ) ⇒ (IH)
Comp (D1[Di/xi :μi ,D2/y:τ] :: B � M[N/x , P/y] :ψ) ⇒ (20)
Comp (〈〈D1[Di/xi :μi],→I〉,D2,→E〉 :: B � (λy.M[Ni/xi])P : τ) ⇒ (17)
Comp (〈D1[Di/xi :μi],→I〉 :: B � λy.M[Ni/xi] : τ→ψ)

and D′ = 〈D1[Di/xi :μi],→I〉 = D[Di/xi :μi].
Cases (∩I) and (→E) follow by induction.

Using this, we prove a strong normalisation result for derivation reduction.

Theorem 22 (Strong Normalisation). If D :: B � M :σ , then SN (D).

S. van Bakel / Theoretical Computer Science 398 (2008) 82–94 91

Proof. By Lemma 19(2), for every xi :τi ∈ B , there exists Dxi = 〈Ax〉 :: xi :τi � xi : τi such that Comp (Dxi), so by
Theorem 21, Comp (D[Dxi /xi :τi] :: B � M[xi/xi] :σ). Notice that M[xi/xi] = M and D[Dxi /xi :τi] = D, and by
Lemma 19(1), SN (D).

4. Approximation and head normalisation

We will now show that the above strong normalisation result leads to the approximation theorem, for which we
will prepare the ground by introducing the necessary concepts.

4.1. Approximants

The notion of approximant for lambda terms was first presented in [13], and is defined using the notion of terms
in λ⊥-normal form (like in [6], ⊥ (called bottom) is used, instead of Ω ; also, the symbol � is used as a relation on
λ⊥-terms, inspired by a similar relation defined on Böhm-trees in [6]).

Definition 23. (1) The set of λ⊥-terms is defined as the set λ of lambda terms, by extending the syntax with ⊥ (called
bottom).

(2) The notion of reduction →β⊥ is defined as →β , extended by:

λx .⊥ →β⊥ ⊥ and ⊥M →β⊥ ⊥ .

(3) The set of normal forms for elements of λ⊥ with respect to →β⊥ , is the set N of λ⊥-normal forms or approximate
normal forms, ranged over by A, inductively defined by:

A ::= ⊥ | λx .A (A 	= ⊥) | x A1 · · · An (n ≥ 0).

The rules of the system ‘�’ are generalised to terms containing ⊥ by allowing for the terms to be elements of λ⊥.
Notice that, because type assignment is almost syntax directed, if ⊥ occurs in a term M and D :: B � M :σ , then in
D, ⊥ appears in a position where the rule (∩I) is used with n = 0. Moreover, the terms λx .⊥ and ⊥M1 · · · Mn are
typeable by ω only.

Definition 24. (1) The relation � ⊆ λ⊥2 is defined by:

⊥ � M
x � x

M � M ′ ⇒ λx .M � λx .M ′
M1 � M ′

1 & M2 � M ′
2 ⇒ M1 M2 � M ′

1 M ′
2.

If A ∈ N, M ∈ Λ, and A � M , then A is called a direct approximant of M .
(2) The relation ∼ ⊆ N × λ is defined by: A ∼ M ⇐⇒ ∃ M ′ =β M [A � M ′].
(3) If A ∼ M , then A is called an approximant of M , and A(M) = { A ∈ N | A ∼ M }.

Type assignment is closed for ‘ � ’:

Lemma 25 (Cf. [3]). B � M :σ & M � M ′ ⇒ B � M ′ :σ .

Proof. By easy induction on the definition of � .

The following definition introduces an operation of join on λ⊥-terms.

Definition 26. (1) On λ⊥, the partial mapping � : λ⊥ × λ⊥ → λ⊥ is defined by:

⊥�M ≡ M�⊥ ≡ M
x �x ≡ x

(λx .M)�(λx .N) ≡ λx .(M�N)
(M1 M2)�(N1 N2) ≡ (M1�N1) (M2�N2)

� is pronounced as join.
(2) If M�N is defined, then M and N are called compatible.

From now on, to shorten proofs, ⊥ will be the same as the empty join, i.e. if M ≡ M1� · · · �Mn (= �n Mi), and
n = 0, then M ≡ ⊥.

The last alternative in the definition of � defines the join on applications in a more general way than Scott’s,
that states (M1 M2)�(N1 N2)� (M1�N1)(M2�N2), since it is not always sure if a join of two arbitrary terms exists.
However, we will use our more general definition only on terms that are compatible.

92 S. van Bakel / Theoretical Computer Science 398 (2008) 82–94

The following lemma shows that � acts as least upper bound of compatible terms.

Lemma 27 ([3]). (1) If M1 � M, and M2 � M, then M1�M2 is defined, and:

M1 � M1�M2,M2 � M1�M2, and M1�M2 � M.

(2) If M � Mi , for i ∈ n, then M � �n Mi .
(3) If M � N, and N � P, then M � P.
(4) If M � M1 M2 and M 	= ⊥, then there are M3,M4 such that M = M3 M4, and M3 � M1, M4 � M2.

Lemma 28. If D :: B � M :σ , with D in normal form, then there exists M ′ ∈ N such that M ′ � M, and
D :: B � M ′ :σ .

Proof. By induction on the structure of derivations.

(D = 〈Ax〉) : Immediate.
(D = 〈D1, . . . ,Dn,∩I〉) : Then σ = ∩nφi and, for every i ∈ n, Di :: B � M :φi , and, by induction there exists

Mi ∈ N such that Mi � M1 and Di :: B � Mi :φi . Notice that then these Mi are compatible, so �n Mi exists, and
by Lemma 25, also Di :: B � �n Mi :φi . Then, by rule (∩I), we have B � �n Mi :∩nφi . Notice that, since � acts
as least upper bound, �n Mi � M .

(D = 〈D1,→I〉) : Then M ≡ λx .M1, and σ = α→φ, and B, x :α � M1 :φ. So, by induction, there exists
M ′

1 ∈ N such that M ′
1 � M1 and B, x :α � M ′

1 :φ. Then, by rule (→I) we obtain B � λx .M ′
1 :α→φ. Notice that

λx .M ′
1 � λx .M1, and λx .M ′

1 ∈ N .
(D = 〈D1,D2,→E〉) : Then M ≡ M1 M2, and there is a τ such that B � M1 : τ→φ, and B � M2 : τ . Then, by

induction, there are M ′
1,M ′

2 ∈ N such that M ′
1 � M1, M ′

2 � M2, B � M ′
1 : τ→φ, and B � M ′

2 : τ . Then, by (→E),
B � M ′

1 M ′
2 :φ. Notice that M ′

1 M ′
2 � M1 M2. Since D is in normal form, D1 does not finish with (→I), so M ′

1 is
not an abstraction. Since τ→φ is strict, neither can it be ⊥; then M ′

1 M ′
2 ∈ N .

Notice that the case σ = ω is present in the case (∩I) of the proof. Then n = 0, and �n Mi = ⊥. Moreover, since
M ′ need not be the same as M , the second derivation in Lemma 28 is not exactly the same; however, it has the same
structure in terms of applied derivation rules.

5. Approximation and normalisation results

In this section, we will conclude the main contribution of this paper by showing two main results, that are both
direct consequences of the strong normalisation result proved in Section 3. Both results have been proven, at least
partially, in [1,2].

5.1. Approximation result

First we will prove the approximation result. From this, the well-known characterisation of (head) normalisation
of lambda terms using intersection types follows easily, i.e., all terms having a (head-)normal form are typeable in ‘�’
(with a type without ω-occurrences). The second result is the well-known characterisation of strong normalisation of
typeable lambda terms, i.e. all terms, typeable in ‘�’ without the type constant ω, are strongly normalisable.

Using Theorem 22, as for the BCD-system and the strict system, the relation between types assignable to a lambda
term and those assignable to its approximants can be formulated as follows:

Theorem 29 (Approximation Theorem Cf. [3]).

B � M :σ ⇐⇒ ∃ A ∈ A(M) [B � A :σ].
Proof. (⇒) : Let D :: B � M :σ , then, by Theorem 22, SN (D). Let D0 :: B � N :σ be the normal form of D with

respect to →D , then by Lemma 15, M →→β N , and by Lemma 28, there is N ′ ∈ N such that D0 :: B � N ′ :σ ,
and N ′ � N , so N ′ ∈ A(M).

(⇐) : Since A ∈ A(M), there is an M ′ such that M ′ =β M and A � M ′. Then, by Lemma 25, B � M ′ :σ , and, by
Theorem 6(2), also B � M :σ .

S. van Bakel / Theoretical Computer Science 398 (2008) 82–94 93

Using this result, the following becomes easy; the proof is identical to that in [3], although formally on a different
notion of type assignment.

Theorem 30 (Cf. [3]). ∃ B, σ [B � M :σ] ⇐⇒ M has a head-normal form.

5.2. Intersection type assignment without ω

As in [1] for the strict system, we will prove that the essential intersection type assignment system satisfies the
(strong) normalisation properties of the BCD-system.

We will first prove that the set of all terms typeable by the system without ω is the set of all strongly normalisable
terms. To start, we define ω-free types.

Definition 31. (1) T−ω−, the set of ω-free intersection types, ranged over by σ, τ etc, is inductively defined by:
φ,ψ ::= ϕ | (σ→φ)

σ, τ ::= ∩nφi , (n ≥ 1).
(2) On T−ω− the relation ≤ is as defined in Definition 2, except for the second alternative.

∀ i ∈ n [∩nφi ≤ σi] (n ≥ 1)
∀ i ∈ n [σ ≤ φi] ⇒ σ ≤ ∩nφi (n ≥ 1)

σ ≤ τ ≤ ρ ⇒ σ ≤ ρ.

The relations ≤ and ∼ are extended to bases as before.
(3) If M :σ is derivable from a basis B , using only ω-free types and the derivation rules of ‘�’, we write B �−ω− M :σ .

Notice that the only difference between this definition and Definitions 1 and 2 is that n ≥ 1 rather than n ≥ 0.

The following results were shown in [2].

Theorem 32 ([2]). (1) ∃ B, σ [B � M :σ & B, σ ω-free] ⇐⇒ M has a normal form.
(2) If (the normal form) A is ⊥-free, then there are B, and σ , such that B �−ω− A :σ .
(3) If B �−ω− M[N/x] :σ and B �−ω− N :ρ, then B �−ω− (λx .M)N :σ .

5.3. Strong normalisation for intersection type assignment without ω

To show the strong normalisation result, notice that Theorem 32(3) is also essentially the proof for the statement
that each strongly normalisable term can be typed in the system ‘�−ω−’. A proof for this property in the context of the
strict system appeared in [3]; since the strict system is a subsystem of the essential system, the proof is also valid here.

Theorem 33 ([3]). If M is strongly normalisable, then there are B and σ such that B �−ω− M :σ .

Theorem 34 shows that the set of strongly normalisable terms is exactly the set of terms typeable in the intersection
system without using the type constant ω.

Theorem 34. If B �−ω− M :σ for some B and σ , then M is strongly normalisable with respect to →β .

Proof. If D :: B �−ω− M :σ , then also D :: B � M :σ . Then D is strongly normalisable with respect to →D by
Theorem 22. Since D contains no ω, all redexes in M correspond to redexes in D; since derivation reduction does not
introduce ω, this property is preserved by reduction. So also M is strongly normalisable with respect to →β .

Concluding remarks

This paper presents a result that has eluded me for more than a decade. The quest for it started in 1995, while I
worked in Turin, and many afternoons were spent discussing with Mariangiola, trying to understand the ins and outs
of the bottom system (see [3]), then thought to be the key to the proof of strong normalisation.

But I could not find the proof, and, over the following years, filled many pages with attempts, trying to find the
correct notion of computability. During this initial proof search, I quickly found a solution for the strict system, but
since I considered that solution almost trivial compared to what I was really looking for, I left it ‘on the shelf’ for

94 S. van Bakel / Theoretical Computer Science 398 (2008) 82–94

many years. Only after a casual conversation with Simona did I understand its importance and decided to submit it; it
ended up as [3].

Then, years later, in the quiet, comfortable environment that is Inria in Sophia Antipolis, France, I finally had the
decisive ‘flash’ and found the solution in the definition of the ≤-relation on derivations as defined here. As is not
uncommon, all that was needed was a slight generalisation of the notions already at hand.

And it fills me with pride that I managed to finish this proof on time, to make it in time for my ‘most important’
intersection result to appear in the festschrift for my three generous, inspiring Italian instructors, who have received
me so welcoming every time at il dipartimento in Turin when I started my regular sequence of visits in 1988.

References

[1] S. van Bakel, Complete restrictions of the intersection type discipline, Theoretical Computer Science 102 (1) (1992) 135–163.
[2] S. van Bakel, Intersection type assignment systems, Theoretical Computer Science 151 (2) (1995) 385–435.
[3] S. van Bakel, Cut-elimination in the strict intersection type assignment system is strongly normalising, Notre Dame Journal of Formal Logic

45 (1) (2004) 35–63.
[4] S. van Bakel, M. Fernández, Approximation and normalization results for typeable term rewriting systems, in: HOA’95, in: Lecture Notes in

Computer Science, vol. 1074, Springer-Verlag, 1996, pp. 17–36.
[5] S. van Bakel, M. Fernández, Normalization results for typeable rewrite systems, Information and Computation 2 (133) (1997) 73–116.
[6] H. Barendregt, The Lambda Calculus: its Syntax and Semantics, North-Holland, Amsterdam, 1984 (revised edition).
[7] H. Barendregt, M. Coppo, M. Dezani-Ciancaglini, A filter lambda model and the completeness of type assignment, Journal of Symbolic Logic

48 (4) (1983) 931–940.
[8] M. Coppo, M. Dezani-Ciancaglini, An extension of the basic functionality theory for the λ-calculus, Notre Dame Journal of Formal Logic 21

(4) (1980) 685–693.
[9] H.B. Curry, R Feys, Combinatory Logic, vol. 1, North-Holland, Amsterdam, 1958.

[10] J.-Y. Girard, Y. Lafont, P. Taylor, Proofs and types, in: Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 1989.
[11] S. Ronchi Della Rocca, B. Venneri, Principal type schemes for an extended type theory, Theoretical Computer Science 28 (1984) 151–169.
[12] W.W. Tait, Intensional interpretation of functionals of finite type I, Journal of Symbolic Logic 32 (2) (1967) 198–223.
[13] C.P. Wadsworth, The relation between computational and denotational properties for Scott’s D∞-models of the lambda-calculus, SIAM

Journal on Computing 5 (1976) 488–521.

	The heart of intersection type assignment: Normalisation proofs revisited
	Introduction
	Intersection type assignment
	Derivation reduction
	Strong normalisation of derivation reduction
	Approximation and head normalisation
	Approximants

	Approximation and normalisation results
	Approximation result
	Intersection type assignment without `w
	Strong normalisation for intersection type assignment without `w

	References

