# Note <br> On mixed Ramsey numbers ${ }^{1}$ 

Baogen $\mathrm{Xu}^{\mathrm{a}, *}$, Zhongfu Zhang ${ }^{\mathrm{b}}$<br>${ }^{\text {a }}$ Department of Mathematics, East China Jiaotong University, Nanchang 330013, China<br>${ }^{\mathrm{b}}$ Institute of Applied Mathematics, Lanzhou Railway College, Lanzhou 730070, China

Received 26 March 1997; revised 20 January 1998; accepted 11 May 1998


#### Abstract

For a graph theoretic parameter $f$, an integer $m$ and a graph $H$, the mixed Ramsey number $v(f ; m ; H)$ is defined as the least positive integer $p$ such that if $G$ is any graph of order $p$, then either $f(G) \geqslant m$ or $\bar{G}$ contains a subgraph isomorphic to $H$. Let $\rho$ denote vertex linear arboricity and let $H$ be any connected graph of order $n$. In this note we show that $v(\rho ; m ; H)=$ $1+\left(n+n_{p}(\bar{H})-2\right)(m-1)$, where $n_{p}(\bar{H})$ is the path partition number of $\bar{H}$. (C) 1999 Elsevier Science B.V. All rights reserved


Keywords: Mixed Ramsey number; Vertex linear arboricity, Linear forest; Linear forest partition; Path partition number; Classical Ramsey number

We use Bondy and Murly [2] and Achuthan et al. [1] for terminology and notation not defined here and consider simple graphs only.

Let $G$ be a graph, where $V(G)$ and $E(G)$ denote vertex set and edge set of $G$, respectively. $\bar{G}$ denotes the complement of $G . K_{n}, C_{n}$ and $P_{n}$ denote the complete graph, cycle and path of order $n$, respectively. For $X \subseteq V(G), G[X]$ denotes the subgraph of $G$ induced by $X$. For two graphs $H$ and $K$, The join $H V K$ is the graph formed from $H \cup K$ by joining every vertex of $H$ to every vertex of $K$. We write $V_{i=1}^{t} F_{i}$ for the join of the graphs $F_{1}, F_{2}, \ldots, F_{t}$.

A linear forest is a graph whose every component is a path. A partition of $V(G)$ into $t$ subsets such that each subset induces a linear forest is called a $t$-linear forest partition. The vertex linear arboricity of $G$, denoted by $\rho(G)$, is the least positive integer $t$ for which $V(G)$ has a $t$-linear forest partition.

[^0]$H \nsubseteq(m-1) \bar{P}_{P(H)-1}=\bar{G}_{1}$. This implies $v(\rho ; m ; H) \geqslant(P(H)-1)(m-1)+1$. Thus, Claim 1 holds.

Claim 2. $P(H)=|V(H)|+n_{P}(\bar{H})-1$.
Let $n_{p}(\bar{H})=n$ and $V(\bar{H})=\bigcup_{i=1}^{n} V_{i}$ be an $n$-path partiton of $\bar{H}$. Thus, $\bar{H}\left[V_{i}\right]$ has a spanning path $P_{\left|V_{i}\right|}$ for each $i(1 \leqslant i \leqslant n)$. Let $F=\bigcup_{i=1}^{\prime \prime} P_{i_{i}}$. Clearly, $F$ is a linear forest of order $|V(H)|$ and $\bar{K}_{n-1}=\left\{u_{i} \mid 1 \leqslant i \leqslant n-1\right\}$. A new path of order $|V(H)|+n-1$ can be formed by adding $2(n-1)$ edges to the graph $F \cup \bar{K}_{n-1}$, which is written as follows:

$$
P_{\left|V^{\prime}(H)\right|-n-1}=\left(P_{\left|V_{1}\right|}-u_{1}-P_{\left|b_{2}\right|}-u_{2}-\cdots-P_{\left|E_{n}\right|}-u_{n-1}-P_{\left|V_{n}\right|}\right) .
$$

Since $F \subseteq \bar{H}$ and $|V(F)|=|V(\bar{H})|$, we have $H \subseteq \bar{F} \subseteq \bar{P}|V(H)|-n-1$. This establishes the inequality $P(H) \leqslant|V(H)|+n_{P}(\bar{H})-1$.

We next prove $P(H) \geqslant|V(H)|+n_{P}(\bar{H})-1$. Let $P(H)=t$ and $n_{P}(\bar{H})=n$. Thus $H \subseteq \bar{P}_{i}$ and $V(H) \subseteq V\left(P_{t}\right)$. Let $F_{1}=P_{t}-V(H)$ be the subgraph of $P_{l}$ induced by $V\left(P_{t}\right) \backslash V(H)$. Obviously, $F_{1}$ is a linear forset, and $F_{2}=P_{t}[V(H)]$ is also a linear forest.

If $K$ is a graph, then $\omega(K)$ denotes the number of components of the graph $K$. From the definitions of $F_{1}$ and $F_{2}$, we have $\left|\omega\left(F_{1}\right)-\omega\left(F_{2}\right)\right| \leqslant 1$.

To prove $\omega\left(F_{1}\right) \geqslant n-1$, assume to the contrary that $\omega\left(F_{1}\right) \leqslant n-2$, and hence $\omega\left(F_{2}\right) \leqslant n-1$.

All components of $F_{2}$ are written as $P^{(1)}, P^{(2)} \ldots, P^{(s)}\left(s=\omega\left(F_{2}\right) \leqslant n-1\right)$ where $p^{(i)}$ is a path for every $i(1 \leqslant i \leqslant s)$. Since $H \subseteq \bar{P}_{t}$ and $V(H)=V\left(F_{2}\right)$, we have $H \subseteq \bar{P}_{t}[V(H)]=\bar{P}_{t}\left[V\left(F_{2}\right)\right]=\bar{F}_{2}$ and hence $F_{2} \subseteq \bar{H}$. This implies that $\bar{H}$ has an $s$-path partition $V(\bar{H})=\cup_{i=1}^{\lessgtr} V\left(P^{(i)}\right)$, which is impossible because $n_{P}(\bar{H})=n>s$.

Hence $\omega\left(F_{1}\right) \geqslant n-1$. We have $t=\left|V\left(P_{t}\right)\right|=|V(H)|+\left|V\left(F_{1}\right)\right| \geqslant|V(H)|+\omega\left(F_{1}\right) \geqslant$ $|V(H)|+n-1$. This establishes the inquality $P(H) \geqslant|V(H)|+n_{P}(\bar{H})-1$. Thus Claim 2 holds.

Combining Claims 1 and 2, we have finished the proof of Theorem 1.
Several remarks. For any connected graph $H$, we have determined the mixed Ramsey number $v(\rho ; m ; H)$ in terms of the path partition number $n_{P}(\bar{H})$ of $\bar{H}$. Thus, determining $v(\rho ; m ; H)$ is equivalent to determining the value of $n_{P}(\bar{H})$.

Using Theorem 1, we see that Theorems A and B follow immediately from the simple facts that $n_{P}\left(\bar{K}_{t}\right)=t, n_{P}\left(\bar{K}_{1, t-1}\right)=2$ and $n_{P}\left(\bar{T}_{t}\right)=1$ for $T_{t} \neq K_{1, t-!}$. More generally, we list without proofs the following corollaries, all of which can easily be checked by observing the value of $n_{P}(\bar{H})$ and using Theorem 1.

Corollary 2. Let $H$ be any complete $t$-paritite graph of order $n$, and let $m \geqslant 1$ he an integer. Then

$$
v(\rho ; m ; H)=1+(n+t-2)(m-1) .
$$

Corollary 3. Let $H$ be any connected bipartite graph of order $n$. Then

$$
v(\rho ; m ; H)= \begin{cases}1+n(m-1) & \text { when } H \text { is a complete bipartite graph } ; \\ 1+(n-1)(m-1) & \text { otherwise. }\end{cases}
$$

The above two corollaries generalize Theorems A and B, respectively. Furthermore,
Corollary 4. Let $C_{n}$ denote the cycle of order $n$ and $m \geqslant 1$ be an integer. Then

$$
v\left(\rho ; m ; C_{n}\right)= \begin{cases}1+4(m-1) & \text { when } n=3 \text { or } 4 ; \\ 1+(n-1)(m-1) & \text { when } n \geqslant 5 .\end{cases}
$$

Corollary 5. Let $H$ be any connected graph of order $n$ with the maximum degree $\Delta(H) \leqslant\left[\frac{1}{2} n\right]-1$. Then $v(\rho ; m ; H)=1+(n-1)(m-1)$, where $[x]$ denotes the largest integer not larger than $x$.

Corollary 6. Let $Q_{n}$ denote n-cube and $m \geqslant 1$ be an integer. Then

$$
v\left(\rho ; m ; Q_{n}\right)= \begin{cases}2 m-1 & \text { when } n=1 \\ 4 m-3 & \text { when } n=2 \\ 1+\left(2^{n}-1\right)(m-1) & \text { when } n \geqslant 3\end{cases}
$$

Although $n_{p}(\bar{H})$ in general is difficult to determine, Theorem 1 gives the relationship between $n_{p}(\bar{H})$ and $v(\rho ; m ; H)$. Of course, we also can obtain some bounds for $v(\rho ; m ; H)$.

Corollary 7. For any connected graph $H$ of orden $n$ and integer $m \geqslant 1$, we have

$$
v(\rho ; m ; H) \geqslant 1+(n-1)(m-1),
$$

and equality holds if and only if $\bar{H}$ has a spanning path.

Corollary 8. Let $H$ be any connected graph of order $n(n \geqslant 2)$, let $\chi(H)$ denote the vertex chromatic number of $H$, and let $m \geqslant 1$ be an integer. Then

$$
v(\rho ; m ; H) \leqslant 1+(n+\chi(H)-2)(m-1),
$$

and equality holds if and only if $H$ is a complete multipartite graph.

## References

[1] N. Achuthan, N.R. Achuthan, L. Caccetta, On mixed Ramsey numbers, Discrete Math. 151 (1996) 3-13.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1977.
[3] E.M. Cleves, M.S. Jacobson, On mixed Ramsey numbers: total chromatic number vs. graphs, Congr. Numer. 39 (1983) 193-201.
[4] J.F. Fink, Mixed Ramsey numbers: total chromatic numbers vs. stars (Ihe diagonal case), J. Combin. Inform. System Sci. 5 (1980) 200-204.
[5] L. Lesniak, A.D. Polimeni, D.W. Vander Jagt, Mixed Ramsey numbers: edge chromatic numbers vs graphs, in: Proc. Internat. Conf. on the Theory and Applications of Graphs. Springer, Berlin. 1976. pp. $330-341$.
[6] L. Lesniak-Foster, Mixed Ramsey numbers: vertex arboricity vs. graphs, Bull. Calcutta Math. Soc. 71 (1979) 23-28.


[^0]:    * Corresponding author.
    ${ }^{1}$ Project supported by National Natural Foundation of China.

