Note
On mixed Ramsey numbers

Baogen Xua,\ast, Zhongfu Zhangb

a Department of Mathematics, East China Jiaotong University, Nanchang 330013, China
b Institute of Applied Mathematics, Lanzhou Railway College, Lanzhou 730070, China

Received 26 March 1997; revised 20 January 1998; accepted 11 May 1998

Abstract

For a graph theoretic parameter f, an integer m and a graph H, the mixed Ramsey number $r(f; m; H)$ is defined as the least positive integer p such that if G is any graph of order p, then either $f(G) \geq m$ or \overline{G} contains a subgraph isomorphic to H. Let ρ denote vertex linear arboricity and let H be any connected graph of order n. In this note we show that $r(\rho; m; H) = 1 + (n + n_{\rho}(H) - 2)(m - 1)$, where $n_{\rho}(H)$ is the path partition number of H. © 1999 Elsevier Science B.V. All rights reserved

Keywords: Mixed Ramsey number; Vertex linear arboricity, Linear forest; Linear forest partition; Path partition number; Classical Ramsey number

We use Bondy and Murty [2] and Achuthan et al. [1] for terminology and notation not defined here and consider simple graphs only.

Let G be a graph, where $V(G)$ and $E(G)$ denote vertex set and edge set of G, respectively. \overline{G} denotes the complement of G. K_n, C_n and P_n denote the complete graph, cycle and path of order n, respectively. For $X \subseteq V(G), G[X]$ denotes the subgraph of G induced by X. For two graphs H and K, The join $H \oplus K$ is the graph formed from $H \cup K$ by joining every vertex of H to every vertex of K. We write $V_1 \oplus F_1 \oplus V_2 \oplus F_2 \oplus \ldots \oplus V_t \oplus F_t$ for the join of the graphs F_1, F_2, \ldots, F_t.

A linear forest is a graph whose every component is a path. A partition of $V(G)$ into t subsets such that each subset induces a linear forest is called a t-linear forest partition. The vertex linear arboricity of G, denoted by $\rho(G)$, is the least positive integer t for which $V(G)$ has a t-linear forest partition.

\ast Corresponding author.
1 Project supported by National Natural Foundation of China.

0012-365X/99/$-see front matter © 1999 Elsevier Science B.V. All rights reserved

PII: S0012-365X(98)00303-3
H \subseteq (m - 1)\overline{P}_{p(H);n-1} = \overline{G}_1. This implies \(v(\rho; m; H) \geq (P(H) - 1)(m - 1) + 1 \). Thus, Claim 1 holds.

Claim 2. \(P(H) = |V(H)| + n_p(\overline{H}) - 1 \).

Let \(n_p(\overline{H}) = n \) and \(V(\overline{H}) = \bigcup_{i=1}^{n} V_i \) be an \(n \)-path partition of \(\overline{H} \). Thus, \(\overline{H}[V_i] \) has a spanning path \(P[V_i] \) for each \(i(1 \leq i \leq n) \). Let \(F = \bigcup_{i=1}^{n} P[V_i] \). Clearly, \(F \) is a linear forest of order \(|V(H)| \). Let \(K_{n-1} = \{u_i | 1 \leq i \leq n - 1 \} \). A new path of order \(|V(H)| + n - 1 \) can be formed by adding 2\((n - 1)\) edges to the graph \(F \cup K_{n-1} \), which is written as follows:

\[
P_{|V(H)|+n-1} = (P[V_1] - u_1 - P[V_2] - u_2 - \cdots - P[V_{n-1}] - u_{n-1} - P[V_n]).
\]

Since \(F \subseteq \overline{H} \) and \(|V(F)| = |V(H)| \), we have \(H \subseteq F \subseteq P_{|V(H)|+n-1} \). This establishes the inequality \(P(H) \leq |V(H)| + n_p(\overline{H}) - 1 \).

We next prove \(P(H) \geq |V(H)| + n_p(\overline{H}) - 1 \). Let \(P(H) = t \) and \(n_p(\overline{H}) = n \). Thus \(H \subseteq P_t \) and \(V(H) \subseteq V(P_t) \). Let \(F_1 = P_t \setminus V(H) \) be the subgraph of \(P_t \) induced by \(V(P_t) \setminus V(H) \). Obviously, \(F_1 \) is a linear forest, and \(F_2 = P_t[V(H)] \) is also a linear forest.

If \(K \) is a graph, then \(\omega(K) \) denotes the number of components of the graph \(K \). From the definitions of \(F_1 \) and \(F_2 \), we have \(|\omega(F_1) - \omega(F_2)| \leq 1 \).

To prove \(\omega(F_1) \geq n - 1 \), assume to the contrary that \(\omega(F_1) \leq n - 2 \), and hence \(\omega(F_2) \leq n - 1 \).

All components of \(F_2 \) are written as \(P^{(1)}, P^{(2)}, \ldots, P^{(s)} (s = \omega(F_2) \leq n - 1) \) where \(P^{(i)} \) is a path for every \(i(1 \leq i \leq s) \). Since \(H \subseteq \overline{P}_t \) and \(V(H) = V(F) \), we have \(H \subseteq \overline{P}_t[V(H)] = \overline{P}_t[V(F_2)] = \overline{F}_2 \) and hence \(\overline{F}_2 \subseteq \overline{H} \). This implies that \(\overline{H} \) has an \(s \)-path partition \(V(\overline{H}) = \bigcup_{i=1}^{s} V(P^{(i)}) \), which is impossible because \(n_p(\overline{H}) = n > s \).

Hence \(\omega(F_1) \geq n - 1 \). We have \(t = |V(P_t)| = |V(H)| + |V(F_1)| \geq |V(H)| + \omega(F_1) \geq |V(H)| + n - 1 \). This establishes the inequality \(P(H) \geq |V(H)| + n_p(\overline{H}) - 1 \). Thus Claim 2 holds.

Combining Claims 1 and 2, we have finished the proof of Theorem 1. \(\square \)

Several remarks. For any connected graph \(H \), we have determined the mixed Ramsey number \(v(\rho; m; H) \) in terms of the path partition number \(n_p(\overline{H}) \) of \(\overline{H} \). Thus, determining \(v(\rho; m; H) \) is equivalent to determining the value of \(n_p(\overline{H}) \).

Using Theorem 1, we see that Theorems A and B follow immediately from the simple facts that \(n_p(\overline{K}_t) = t, n_p(\overline{K}_{t-1}) = 2 \) and \(n_p(\overline{T}_r) = 1 \) for \(T_r \not\subseteq K_{t-1} \). More generally, we list without proofs the following corollaries, all of which can easily be checked by observing the value of \(n_p(\overline{H}) \) and using Theorem 1.

Corollary 2. Let \(H \) be any complete \(t \)-partite graph of order \(n \), and let \(m \geq 1 \) be an integer. Then

\[
v(\rho; m; H) = 1 + (n + t - 2)(m - 1).
\]
Corollary 3. Let H be any connected bipartite graph of order n. Then
\[
v(\rho; m; H) = \begin{cases}
1 + n(m - 1) & \text{when } H \text{ is a complete bipartite graph;} \\
1 + (n - 1)(m - 1) & \text{otherwise.}
\end{cases}
\]

The above two corollaries generalize Theorems A and B, respectively. Furthermore,

Corollary 4. Let C_n denote the cycle of order n and $m \geq 1$ be an integer. Then
\[
v(\rho; m; C_n) = \begin{cases}
1 + 4(m - 1) & \text{when } n = 3 \text{ or } 4; \\
1 + (n - 1)(m - 1) & \text{when } n \geq 5.
\end{cases}
\]

Corollary 5. Let H be any connected graph of order n with the maximum degree $\Delta(H) \leq \lfloor \frac{1}{2}n \rfloor - 1$. Then $v(\rho; m; H) = 1 + (n - 1)(m - 1)$, where $[x]$ denotes the largest integer not larger than x.

Corollary 6. Let Q_n denote n-cube and $m \geq 1$ be an integer. Then
\[
v(\rho; m; Q_n) = \begin{cases}
2m - 1 & \text{when } n = 1; \\
4m - 3 & \text{when } n = 2; \\
1 + (2^n - 1)(m - 1) & \text{when } n \geq 3.
\end{cases}
\]

Although $n_p(H)$ in general is difficult to determine, Theorem 1 gives the relationship between $n_p(H)$ and $v(\rho; m; H)$. Of course, we also can obtain some bounds for $v(\rho; m; H)$.

Corollary 7. For any connected graph H of order n and integer $m \geq 1$, we have
\[v(\rho; m; H) \geq 1 + (n - 1)(m - 1),\]
and equality holds if and only if \overline{H} has a spanning path.

Corollary 8. Let H be any connected graph of order $n(n \geq 2)$, let $\chi(H)$ denote the vertex chromatic number of H, and let $m \geq 1$ be an integer. Then
\[v(\rho; m; H) \leq 1 + (n + \chi(H) - 2)(m - 1),\]
and equality holds if and only if H is a complete multipartite graph.

References

