DISCRETE MATHEMATICS

Discrete Mathematics 199 (1999) 285-289

Note On mixed Ramsey numbers¹

Baogen Xu^{a,*}, Zhongfu Zhang^b

^a Department of Mathematics, East China Jiaotong University, Nanchang 330013, China ^b Institute of Applied Mathematics, Lanzhou Railway College, Lanzhou 730070, China

Received 26 March 1997; revised 20 January 1998; accepted 11 May 1998

Abstract

For a graph theoretic parameter f, an integer m and a graph H, the mixed Ramsey number v(f;m;H) is defined as the least positive integer p such that if G is any graph of order p, then either $f(G) \ge m$ or \overline{G} contains a subgraph isomorphic to H. Let ρ denote vertex linear arboricity and let H be any connected graph of order n. In this note we show that $v(\rho;m;H) = 1 + (n + n_{\rho}(\overline{H}) - 2)(m - 1)$, where $n_{\rho}(\overline{H})$ is the path partition number of \overline{H} . \bigcirc 1999 Elsevier Science B.V. All rights reserved

Keywords: Mixed Ramsey number; Vertex linear arboricity, Linear forest; Linear forest partition; Path partition number; Classical Ramsey number

We use Bondy and Murty [2] and Achuthan et al. [1] for terminology and notation not defined here and consider simple graphs only.

Let G be a graph, where V(G) and E(G) denote vertex set and edge set of G, respectively. \overline{G} denotes the complement of G. K_n , C_n and P_n denote the complete graph, cycle and path of order n, respectively. For $X \subseteq V(G)$, G[X] denotes the subgraph of G induced by X. For two graphs H and K, The join HVK is the graph formed from $H \cup K$ by joining every vertex of H to every vertex of K. We write $V_{i=1}^t F_i$ for the join of the graphs F_1, F_2, \ldots, F_t .

A linear forest is a graph whose every component is a path. A partition of V(G) into t subsets such that each subset induces a linear forest is called a *t*-linear forest partition. The vertex linear arboricity of G, denoted by $\rho(G)$, is the least positive integer t for which V(G) has a t-linear forest partition.

^{*} Corresponding author.

¹ Project supported by National Natural Foundation of China.

⁰⁰¹²⁻³⁶⁵X/99/\$-see front matter O 1999 Elsevier Science B.V. All rights reserved PII: S0012-365X(98)00303-3

 $H \not\subseteq (m-1)\overline{P}_{P(H)-1} = \overline{G}_1$. This implies $v(\rho; m; H) \ge (P(H) - 1)(m-1) + 1$. Thus, Claim 1 holds.

Claim 2. $P(H) = |V(H)| + n_P(\overline{H}) - 1.$

Let $n_p(\overline{H}) = n$ and $V(\overline{H}) = \bigcup_{i=1}^n V_i$ be an *n*-path partition of \overline{H} . Thus, $\overline{H}[V_i]$ has a spanning path $P_{|V_i|}$ for each $i(1 \le i \le n)$. Let $F = \bigcup_{i=1}^n P_{|V_i|}$. Clearly, F is a linear forest of order |V(H)| and $\overline{K}_{n-1} = \{u_i | 1 \le i \le n-1\}$. A new path of order |V(H)| + n - 1 can be formed by adding 2(n-1) edges to the graph $F \cup \overline{K}_{n-1}$, which is written as follows:

$$P_{|V(H)|+n-1} = (P_{|V_1|} - u_1 - P_{|V_2|} - u_2 - \dots - P_{|V_{n-1}|} - u_{n-1} - P_{|V_n|}).$$

Since $F \subseteq \overline{H}$ and $|V(F)| = |V(\overline{H})|$, we have $H \subseteq \overline{F} \subseteq \overline{P}_{|V(H)|+n-1}$. This establishes the inequality $P(H) \leq |V(H)| + n_P(\overline{H}) - 1$.

We next prove $P(H) \ge |V(H)| + n_P(\overline{H}) - 1$. Let P(H) = t and $n_P(\overline{H}) = n$. Thus $H \subseteq \overline{P}_t$ and $V(H) \subseteq V(P_t)$. Let $F_1 = P_t - V(H)$ be the subgraph of P_t induced by $V(P_t) \setminus V(H)$. Obviously, F_1 is a linear forset, and $F_2 = P_t[V(H)]$ is also a linear forest.

If K is a graph, then $\omega(K)$ denotes the number of components of the graph K. From the definitions of F_1 and F_2 , we have $|\omega(F_1) - \omega(F_2)| \le 1$.

To prove $\omega(F_1) \ge n-1$, assume to the contrary that $\omega(F_1) \le n-2$, and hence $\omega(F_2) \le n-1$.

All components of F_2 are written as $P^{(1)}, P^{(2)}, \dots, P^{(s)}$ $(s = \omega(F_2) \le n - 1)$ where $P^{(i)}$ is a path for every $i(1 \le i \le s)$. Since $H \subseteq \overline{P}_t$ and $V(H) = V(F_2)$, we have $H \subseteq \overline{P}_t[V(H)] = \overline{P}_t[V(F_2)] = \overline{F}_2$ and hence $F_2 \subseteq \overline{H}$. This implies that \overline{H} has an *s*-path partition $V(\overline{H}) = \bigcup_{i=1}^s V(P^{(i)})$, which is impossible because $n_P(\overline{H}) = n > s$.

Hence $\omega(F_1) \ge n-1$. We have $t = |V(P_t)| = |V(H)| + |V(F_1)| \ge |V(H)| + \omega(F_1) \ge |V(H)| + n - 1$. This establishes the inquality $P(H) \ge |V(H)| + n_P(\overline{H}) - 1$. Thus Claim 2 holds.

Combining Claims 1 and 2, we have finished the proof of Theorem 1. \Box

Several remarks. For any connected graph H, we have determined the mixed Ramsey number $v(\rho; m; H)$ in terms of the path partition number $n_P(\overline{H})$ of \overline{H} . Thus, determining $v(\rho; m; H)$ is equivalent to determining the value of $n_P(\overline{H})$.

Using Theorem 1, we see that Theorems A and B follow immediately from the simple facts that $n_P(\overline{K}_I) = t, n_P(\overline{K}_{1,I-1}) = 2$ and $n_P(\overline{T}_I) = 1$ for $T_I \ncong K_{1,I-1}$. More generally, we list without proofs the following corollaries, all of which can easily be checked by observing the value of $n_P(\overline{H})$ and using Theorem 1.

Corollary 2. Let H be any complete t-partite graph of order n, and let $m \ge 1$ be an integer. Then

$$v(\rho; m; H) = 1 + (n + t - 2)(m - 1).$$

Corollary 3. Let H be any connected bipartite graph of order n. Then

 $v(\rho; m; H) = \begin{cases} 1 + n(m-1) & \text{when } H \text{ is a complete bipartite graph}; \\ 1 + (n-1)(m-1) & \text{otherwise.} \end{cases}$

The above two corollaries generalize Theorems A and B, respectively. Furthermore,

Corollary 4. Let C_n denote the cycle of order n and $m \ge 1$ be an integer. Then

$$v(\rho; m; C_n) = \begin{cases} 1 + 4(m-1) & \text{when } n = 3 \text{ or } 4; \\ 1 + (n-1)(m-1) & \text{when } n \ge 5. \end{cases}$$

Corollary 5. Let H be any connected graph of order n with the maximum degree $\Delta(H) \leq \lfloor \frac{1}{2}n \rfloor - 1$. Then $v(\rho; m; H) = 1 + (n-1)(m-1)$, where $\lfloor x \rfloor$ denotes the largest integer not larger than x.

Corollary 6. Let Q_n denote n-cube and $m \ge 1$ be an integer. Then

$$v(\rho; m; Q_n) = \begin{cases} 2m - 1 & \text{when } n = 1; \\ 4m - 3 & \text{when } n = 2; \\ 1 + (2^n - 1)(m - 1) & \text{when } n \ge 3. \end{cases}$$

Although $n_p(\overline{H})$ in general is difficult to determine, Theorem 1 gives the relationship between $n_p(\overline{H})$ and $v(\rho; m; H)$. Of course, we also can obtain some bounds for $v(\rho; m; H)$.

Corollary 7. For any connected graph H of orden n and integer $m \ge 1$, we have

 $v(\rho; m; H) \ge 1 + (n-1)(m-1),$

and equality holds if and only if \overline{H} has a spanning path.

Corollary 8. Let H be any connected graph of order $n(n \ge 2)$, let $\chi(H)$ denote the vertex chromatic number of H, and let $m \ge 1$ be an integer. Then

 $v(\rho; m; H) \leq 1 + (n + \chi(H) - 2)(m - 1),$

and equality holds if and only if H is a complete multipartite graph.

References

- [1] N. Achuthan, N.R. Achuthan, L. Caccetta, On mixed Ramsey numbers, Discrete Math. 151 (1996) 3-13.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1977.
- [3] E.M. Cleves, M.S. Jacobson, On mixed Ramsey numbers: total chromatic number vs. graphs, Congr. Numer. 39 (1983) 193-201.

288

- [4] J.F. Fink, Mixed Ramsey numbers: total chromatic numbers vs. stars (The diagonal case), J. Combin. Inform. System Sci. 5 (1980) 200-204.
- [5] L. Lesniak, A.D. Polimeni, D.W. Vander Jagt, Mixed Ramsey numbers: edge chromatic numbers vs graphs, in: Proc. Internat. Conf. on the Theory and Applications of Graphs, Springer, Berlin, 1976, pp. 330–341.
- [6] L. Lesniak-Foster, Mixed Ramsey numbers: vertex arboricity vs. graphs, Bull. Calcutta Math. Soc. 71 (1979) 23–28.