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In this paper we mainly consider triangles inscribed in a semicircle of a normed
space; in two-dimensional spaces, their perimeter has connections with the perime-
ter of the sphere. Moreover, by using the largest values the perimeter of such
triangles can have, we define two new, simple parameters in real normed spaces:
one of these parameters is strictly connected with the modulus of convexity of the
space, while the study of the other one seems to be more complicated. We
calculate the value of our two parameters and we bring out a few connections
among their values and the geometry of real normed spaces. � 2000 Academic Press

1. INTRODUCTION

Ž � �.Let X, . be a normed space, of dimension at least 2, over the field
R. In this paper we define two new, simple parameters in normed spaces;
then we want to bring out a few connections among their values and some
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geometrical properties of the space. These parameters measure how big
the sum of the distances from a point of the unit sphere to two antipodal
points can be; in other terms, their value depends on the perimeter of
triangles with the diameter as one side and the third vertex on the sphere.

Ž .One of the two parameters which we call A has a two-dimensional2
character and depends on the modulus of convexity of the unit sphere; the
other one, which we denote by A , has a different character and the1
description we give for it is not complete. In any case, these constants give
information on the geometry of the space, both in the finite- and in the
infinite-dimensional case.

We list the notation we shall use.

� �� 4S � x � X ; x � 1 ,X

� �� 4B � x � X ; x � 1 ;X

Ž . Ž .we shall simply write S B instead of S resp.; B when no confusionX X
can arise.

X � will denote the dual of X.
Ž 2 . Ž 2 .We shall denote by R and R the two-dimensional plane endowed� 1

with the max norm and the sum norm, respectively.
Ž . � �Given X, its modulus of convexity, � � , for � � 0, 2 , is defined as

� �x � y
� �� � � inf 1 	 ; x , y � S ; x 	 y 
 � . 1.1Ž . Ž .½ 52

We recall that � is nondecreasing and continuous for � � 2. Moreover, if
Ž . Ž � �.� � � 0, we always have see e.g. 6, p. 56

�
1 	 � � 2 	 2� � . 1.2Ž . Ž .Ž .

2

A space is said to be uniformly nonsquare when

lim � � � 0. 1.3Ž . Ž .
	��2

Ž � �.Recall that uniformly nonsquare spaces are reflexive see e.g. 6, p. 57 .
We shall denote by � � the modulus of convexity of X �.
We make some use of the modulus of smoothness of X, as defined in

� �8 . For our purposes it will be enough to recall that, given X, its modulus
Ž . Ž .of smoothness � t , t � 0, 2 , is defined so thatX

� � � �x � y � x 	 y
� 1 � sup 	 1; x , y � S . 1.4Ž . Ž .X X½ 52
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Ž � �.By a well-known result of Lindenstrauss see 8 , for every space X the
modulus of smoothness satisfies:

�
�� 1 � sup 	 � � ; 0 � � � 2 . 1.5Ž . Ž . Ž .X ½ 52

If X is a two-dimensional space, then we can define the perimeter as
the ‘‘self length’’ of the unit sphere S,

p X � 2� 	x , x , 1.6Ž . Ž . Ž .
where

� 	x , x � the length of the curve joining 	x and x along SŽ .
x an arbitrary point of S .Ž .
Ž . � �We recall that p X � 6, 8 : the extreme values characterize, respec-
Ž Ž . . Ž Ž . . Žtively, the hexagon p X � 6 and the parallelogram p X � 8 see e.g.

� �.10, Section 4 .

2. STUDYING TWO NEW CONSTANTS

We define the following numbers:
1 � � � �A X � inf sup x 	 y � x � y ; 2.1Ž . Ž .Ž .1 2

x�SX y�SX

1 � � � �A X � sup sup x 	 y � x � y . 2.2Ž . Ž .Ž .2 2
x�S y�SX X

� �The second constant had already been considered in 2 , where the
Ž � �. Ž .following fact was proved see 2, Section 3 : A X � 2 characterizes2

spaces which are not uniformly nonsquare.
'Ž . Ž . Ž . Ž .Note that 1 � A X � A X � 2 always; that A X � A X � 21 2 1 2

Ž . Ž .in inner product spaces; and that A X � 2 � 3�2 � A X for X �2 1
Ž 2 . Ž 2 .R and X � R .� 1

Ž .According to 1.4 , we have

A X � � 1 � 1. 2.3Ž . Ž . Ž .2 X

Ž .Therefore, according to 1.5 , we have
�

�A X 	 1 � sup 	 � � ; 0 � � � 2 . 2.4Ž . Ž . Ž .2 ½ 52

LEMMA 2.1. For e�ery space X, we ha�e

�
A X 	 1 � sup 	 � � ; 0 � � � 2 . 2.5Ž . Ž . Ž .2 ½ 52
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� � � �Proof. Take x � S; if y � S and x 	 y � � , then x � y �2 � 1 	
Ž .� � . So we obtain, for any y � S,

� � � �x 	 y � x 	 y � � � 2 1 	 � � .Ž .Ž .

By taking the supremum for x, y � S, we obtain

� �2 � A X � sup � � 2 1 	 � � ; � � 0, 2� 4Ž . Ž .Ž .2

� �� 2 � sup � 	 2� � ; � � 0, 2 ,� 4Ž .

so we have the thesis.

PROPOSITION 2.2. For e�ery space X, we ha�e

� �
�sup 	 � � ; 0 � � � 2 � sup 	 � � ; 0 � � � 2 ; 2.6Ž . Ž . Ž .½ 5 ½ 52 2

�
�A X � A X � 1 � sup 	 � � ; 0 � � � 2 . 2.7Ž . Ž . Ž . Ž .2 2 ½ 52

Proof. If X is not uniformly nonsquare, then also X � is not uniformly
Ž � �. Ž . Ž . Žnonsquare see e.g. 11, p. 12 , and then 2.6 and 2.7 are trivial in this

Ž . Ž � . .case A X � A X � 2 . Now let X be uniformly nonsquare, and so2 2
Ž . Ž .also reflexive. Then, according to 2.4 and 2.5 , we have

�
�sup 	 � � ; 0 � � � 2Ž .½ 52

�
� A X 	 1 � sup 	 � � ; 0 � � � 2Ž . Ž .2 ½ 52

�
�� �� sup 	 � � ; 0 � � � 2 � A X 	 1Ž . Ž .2½ 52

�
�� sup 	 � � ; 0 � � � 2 ,Ž .½ 52

so we have the thesis.

ŽRemark. According to Proposition 2.2 and its proof, we obtain see
Ž .. Ž � �.2.3 that in any space X the following is true cf. 11, p. 63 :

�
� �

�� 1 � A X 	 1 � sup 	 � � ; 0 � � � 2 .Ž . Ž . Ž .X 2 ½ 52

PROPOSITION 2.3. In any space X, we ha�e

A X � A X 
 2. 2.8Ž . Ž . Ž .1 2
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In particular, in any space X, we ha�e

'A X 
 2 . 2.9Ž . Ž .2

Ž .Proof. We shall prove that for every space X, we have A X 
2
Ž .2�A X . Our definition implies that, for every � � 0, there exists x � S1

Ž� � � �. Ž Ž . .such that sup x 	 y � x � y � 2 A X � � . Take y � S suchy � S 1 0
� � � � Ž .that x 	 y � x � y are equal, say � � : Clearly 1 � � � A X � � .0 0 1

Ž . Ž . Ž . � �Now set u � x � y �� ; � � x 	 y �� u, � � S ; then u � �0 0
� � � � � � Ž .� 2 x �� � 2�� � 2 y �� � u 	 � . This means that 2 A X0 2

Ž� � � �. � � � � Ž Ž .
 sup u 	 y � u � y 
 u 	 � � u � � � 4�� � 4� A Xy � S 1
.�� .

Ž . Ž .Since � � 0 can be arbitrarily small, this implies that A X 
 2�A X ,2 1
so we have the thesis.

Ž .Remarks. The inequality 2.9 , which we have proved directly here, will
also follow from results in Section 3.

'Ž .The inequality A X 
 2 , together with the fact that the modulus of2
convexity � is nondecreasing, implies that

�
�'A X � 1 � sup 	 � � ; 2 2 	 1 � � � 2 . 2.7Ž . Ž . Ž .Ž .2 ½ 52

But a better result can be indicated.

PROPOSITION 2.4. For any space X, we ha�e

� 'A X � 1 � sup 	 � � ; 2 � � � 2 . 2.10Ž . Ž . Ž .2 ½ 52

� � �Proof. Given 	 � 0, we can find pairs x, y in S such that x 	 y � x
� Ž . � � � �� y � 2 � A X 	 	 ; if x 	 y � � for such a pair, then x � y �2 �2
Ž . Ž Ž .. Ž . Ž Ž ..1 	 � � , so � � 2 1 	 � � � 2 � A X 	 	 
 2 1 � ��2 	 � � 	2

� � � �	 . By interchanging the role of x 	 y and x � y , since 	 � 0 is
arbitrary, this means that to obtain the value of A it is enough to2

Ž . Ž .consider only � � A X , or only � 
 A X :2 2

� �
1 � sup 	 � � ; A � � � 2 � 1 � sup 	 � � ; 0 � � � AŽ . Ž .2 2½ 5 ½ 52 2

� A X . 2.10�Ž . Ž .Ž .2

Ž .In particular, this proves 2.10 .
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It is easy to see that if we have two spaces X, Y with Y � X, then
Ž . Ž .A Y � A X . Moreover,2 2

A X � sup A Y ; Y is a two-dimensional subspace of X 2.11� 4Ž . Ž . Ž .2 2

Ž Ž . .the sup being also a maximum if dim X � � .
Also, according to Dvoretzki’s theorem, given � � 0, if the dimension of

Ž Ž . .X is large enough in particular, if dim X � � , then there exists a
'Ž . � Ž . � Žsubspace Y of X, with dim X � 2, such that A X 	 2 � � this2'Ž . Ž . .again implies that A X 
 2 if dim X � � .2

Concerning A , set1

U X � A Y ; Y is a two-dimensional subspace of X . 2.11�� 4Ž . Ž . Ž .1 1

Ž .Note that if dim X � �, then according to Dvoretzki’s theorem we have

�'inf U X � 2 � sup U X . 2.11Ž . Ž . Ž .Ž . Ž .1 1

Propositions 2.5 and 2.8 below will give general lower and upper bounds
Ž .for U X .1

Given X, there exists x � S such that

� � � �sup x � y � x 	 y � 2 a � 2 � A X .Ž .Ž . 1
y�SX

� � � � Ž . ŽThus x � y � x 	 y � 2 � A X for some y � S in finite-dimen-1 X
.sional spaces, there are also x, y � S for which equality holds . There-X

fore, if Y is the two-dimensional subspace of X generated by x and y,
Ž� � � �. Ž . Ž .sup x � y � x 	 y � 2 a, and A Y � A X , theny � S 1 1Y

A X 
 inf U X . 2.11�Ž . Ž . Ž .Ž .1 1

Ž Ž . .Strict inequality holds in many cases e.g., in l , where A X � 2 .1 1
Ž . Ž Ž .. Ž .No relation exists between A X and sup U X : In fact, if dim X �1 1

�' Ž Ž .. Ž .�, the last number is always at least 2 see 2.11 , while A X can be1
Ž .smaller. Similarly, A X can be 2 while Proposition 2.8 will give a smaller1

Ž .upper bound for U X .1
Ž .The next proposition gives a general lower bound for A X .1

PROPOSITION 2.5. In any space X, we ha�e

'3 � 21
A X 
 � 1.264 . 2.12Ž . Ž . Ž .1 6

'Ž . Ž .Proof. We shall prove that A X 
 3 � 21 �6 for every two-di-1
mensional space X.
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Ž . � � � �Take h � A X . Choose x � S such that x 	 � � x � � � 2h for1
� � � � Ževery � � S, then take y � S so that x 	 y � x � y , say � k 1 � k

� 4. Ž . � � Ž .� min h, 2 . Now consider the function f t � x � ty : we have f 1 �
Ž . Ž .f 	1 � k; f 0 � 1; the slope of f is always not larger than 1. Set

Ž . Ž . � � � �� � x � y �k � � S ; if k � 1, then x 	 � � y � 1. Let k � 1; we
then obtain

1 y 1 y k
� �x � � � x � 1 � � � 1 � x � � .ž / ž /k k k k k � 1

� � ŽIt is not a restriction to assume that x � ty 
 1 for all t � 0 otherwise
. � �we may exchange y and 	y , so that x � � 
 1 � 1�k.

� � � Ž . � Ž . � ŽNow consider x 	 � � x 1 	 1�k 	 y�k � 1 	 1�k � x 	 y� k
.� � Ž .� Ž Ž . .	 1 . We can estimate x 	 y� k 	 1 being 1� 1 	 k � 	1 in the

following way.
We have

� �y y 2 y
x 	 � x � 
 ;

k 	 1 k 	 1 k 	 1

but

y 1 2 	 k
� � � �x � � x � y � 	 1 � y � k �ž /k 	 1 k 	 1 k 	 1

k 2 	 2k � 2
� ,

k 	 1
so

2 2y 2 k 	 2k � 2 2k 	 k
x 	 
 	 � .

k 	 1 k 	 1 k 	 1 k 	 1

Thus, both for k � 1 and for k � 1,

1 2k 	 k 2

� �x 	 � 
 1 	 � � 2 	 k .ž /k k 	 1

Therefore, in any case

1 1
� � � �2h 
 x � � � x 	 � 
 1 � � 2 	 k � 3 	 k � ,

k k

so also

1
2h 
 3 	 h � .

h
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Ž .Since we can take h arbitrarily near to A X , we also obtain from here1
that

23 A X 	 3 A X 	 1 
 0,Ž . Ž .1 1

which implies that

'3 � 21
A X 
 ,Ž .1 6

and then the proof is complete.

Ž .Remark. We do not know if the estimate 2.12 is sharp; in Section 5
we shall see that in some of the spaces l , p � 2, the value of A is notp 1'Ž .much larger than 3 � 21 �6.

ŽLet X be a space where James’ orthogonality is symmetric. See, e.g.,
� �2 : this is interesting only for two-dimensional spaces; otherwise, under

.such an assumption, X is necessarily an inner product space. In that case,
'Ž . Ž . Ž .it is possible to prove that A X 
 1 � 17 �4 � 1.28 . In fact, given x1

as in the preceding proof, we can choose x and y orthogonal and such that
� � � � Ž � � Ž .. Žx 	 y 
 x � y so x � y � h, h � A X . Then if we take � � x �1
. � � Ž .y � x � y � � S , we obtain

1 1 2
� � � �2h 
 x � � � x 	 � 
 1 � � 
 1 � ,

� � � �x � y x � y h

so

22 A X 
 A X � 2,Ž . Ž .1 1

and then

'1 � 17
A X 
 .Ž .1 4

By using the perimeter, we shall give a general upper bound concerning
Ž . Ž Ž � ..U X see 2.11 . But we prove first another simple result concerning1

two-dimensional spaces.

Ž .PROPOSITION 2.6. If dim X � 2, then

2 � A X � p X �2. 2.13Ž . Ž . Ž .2

Ž . Ž .Also; A X � 2 � p X � 8 � the unit sphere is a parallelogram.2
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Proof. Take any pair x, y in S. One of the two arcs joining points x
Ž . � � � �and 	x must contain y, and then � 	x, x 
 x 	 y � x � y , which

Ž . Ž . Ž .implies 2.13 . Also, A X � 2 � p X � 8 � the unit sphere is a paral-2
Ž .lelogram � A X � 2, so we have the thesis.2

The next lemma indicates a simple result, which will be needed to prove
Proposition 2.8.

LEMMA 2.7. Let x, u, � be three different points on the unit sphere in a
two-dimensional normed space, and let � belong to the shortest arc joining x
and u. Then we ha�e

� �x � u 	 � � 1. 2.14Ž .

Proof. By assumption, there are two positive numbers a, b such that
� � ax � bu. We can assume, without loss of generality, that a � b. Also,

Ž � � � � � �.we have a � b 
 1. Moreover, b � a � 1 1 � � 
 bu 	 ax . We
then obtain

� �x � u 	 � � 1 	 a x � 1 	 b u � 1 	 a � 1 	 b .Ž . Ž . Ž . Ž .

� �If 0 � a � b � 1, we obtain x � u 	 � � 2 	 a 	 b � 1 and we are
done.

� �If 0 � a � 1 � b, we obtain x � u 	 � � 1 	 a � b 	 1 � b 	 a � 1
and again we are done.

� �Now let 1 � a � b, so we obtain x � u 	 � � a 	 1 � b 	 1 � a � b
	 2; thus we are done if a � b � 3.

Now let a � b � 3: then we can write

1 � a 	 b b 	 a � 1 a � b 	 3
� � , 
 � , � � ,

a � b 	 1 a � b 	 1 a � b 	 1

with � , 
 , � nonnegative and such that � � 
 � � � 1; also, � 	 x 	 u �
Ž . Ž . � �a 	 1 x � b 	 1 u � � x � 
 u � � � . This implies that � 	 x 	 u �
� � 
 � � � 1, thus concluding the proof.

PROPOSITION 2.8. In any two-dimensional space X, we ha�e

'1 � 1 � 4 p
A X � , 2.15Ž . Ž .1 4

p denoting the perimeter of X.
Thus, since p � 8 always,

'1 � 33
A X � � 1.686 . 2.16Ž . Ž . Ž .1 4
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Ž� � � �. � �Proof. Take x � S; let sup x � y � x 	 y � 2 a � x � u �y � S
� � � � Žx 	 u for some u � S. We can also assume that x � u 
 a 
 1 if

.necessary, we can exchange the role of u and 	u .
Ž� � � �.Now we want to estimate sup x � u � � � x � u 	 � : the� � S

Ž .points u, x, 	u, and 	x divide S into four arcs � between u and x , � ,1 2
�� , and � . Let � , 	� belong to the arcs � and � : to estimate x � u �3 4 1 3

� � �� � x � u 	 � it is not a restriction to assume that � � � . Then1
according to Lemma 2.7 we obtain

� � � � � � � � � �x � u � � � x � u 	 � � x � u � � � x � u 	 �
� �� x � u � 2.

Now assume that � � � and 	� � � ; then2 4

� � � �x � u 	 � � x � u � �
� � � � � � � �� x � u 	 x � x 	 � � x � u 	 u � u � �

� � � � � �� 2 � x 	 � � u � � � 2 � length � � 2 � p�2 	 x 	 u .Ž .2

� � � �But x � u � p�2 	 x 	 u always, so we have obtained

� � � � � �x � u � � � x � u 	 � � 2 � p�2 	 x 	 u

always. Since the function

f t � t x � u � � � t x � u 	 �Ž . Ž . Ž .�

Ž .is convex and f 0 � 2, we obtain�

1 1 1
f � 1 	 � f 0 � f 1Ž . Ž .� � �ž / ž /� � � � � �x � u x � u x � u

1 1
� �� 1 	 � 2 � 2 � p�2 	 x 	 uŽ .ž /� � � �x � u x � u

� �p�2 	 x 	 u
� 2 �

� �x � u

� �p�2 	 2 a 	 x � u p 	 4aŽ .
� 2 � � 3 � .

� � � �x � u 2 x � u

� �From x � u 
 a we thus obtain

1 p 	 4a p
f � 3 � � 1 � .� ž /� �x � u 2 a 2 a
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Therefore we obtain

x � u x � u 1
2 A X � sup � � � 	 � � sup f .Ž .1 �ž / ž /� � � � � �x � u x � u x � u��S ��S

and then
p

2 A X � inf 2 a, 1 � .Ž .1 ž /2 a

But 2 a � 1 � p�2 a means that 4a2 	 2 a 	 p � 0, and this is true for
Ž . Ž . Ž .' 'a � 1 � 1 � 4 p �4. Thus 2 A X � 2 a � 1 � 1 � 4 p �2, so we1

have the thesis.

Ž .Remark 1. The estimate 2.15 is ‘‘sharp’’ in the sense that in the case
where the unit ball of X is the hexagon, we have p � 6 and it is not

Ž . Ž . Ž .difficult to see that A X � 3�2 see also the next remark . But A X1 1
Ž� 3�2 also when the unit ball is a parallelogram p � 8 and, according

Ž . . Ž .to Proposition 2.6, A X � 2 ; so in this case the inequality in 2.152
is strict.

Remark 2. In proving Proposition 2.8, we could choose x so that

� � � �sup x � y � x 	 y � 2 A X .Ž .Ž . 2
y�S

Ž . Ž . Ž . Ž .So we also obtain 2 A X � 1 � p�2 A X or 4 A X � A X �1 2 1 2
3Ž .2 A X � p � p: this implies2 2

3A X � A X � p � 3. 2.17Ž . Ž . Ž .1 2 8

3Ž . Ž Ž . . Ž .Also, 2 A X � p� 2 A X 	 1 ; since p � 6 implies A X � , in2 1 1 2
3 3Ž . Ž . Žthis case we obtain A X � , so also A X � see also Example2 22 2

.3.2 below .

3. THE CONSTANT A AND THE MODULUS OF CONVEXITY2

Ž .Formula 2.7 implies some estimates for A . For example, let X be2
Ž .given and write simply A instead of A X . Since2 2

�
� � 
 1 � 	 A 3.1Ž . Ž .22

always, we have

A2
� A 
 1 	 . 3.2Ž . Ž .2 2
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Letting � � 2, we obtain

lim � � 
 2 	 A . 3.3Ž . Ž .2	��2

Moreover,

� � � 0 for all � � 2 A 	 2, 3.1�Ž . Ž .2

1 �A 
 1 � � , 3.1Ž .2 02

where

� � sup � 
 0; � � � 0 .� 4Ž .0

Ž .In particular, A � 3�2 implies that � 1 � 0, i.e., � � 1.2 0

Ž � �.Remark. It is known see e.g. 6, p. 59 that for every space we have

2�
� � � 1 	 1 	 . 3.4Ž . Ž .(

4

Ž .So, by using 2.7 , we have

2� �
2 � A X 
 2 � 2 	 � � 
 � � 2 1 	Ž . Ž . (2 ž /2 4

for every � � 0, 2 . 3.5Ž . Ž .

' Ž .By taking � � 2 we again obtain 2.9 .

'Ž . Ž .PROPOSITION 3.1. The condition A X � 2 implies that 3.4 is an2'equality for � � 2 .

2' 'Ž . Ž . 'Proof. By 3.5 , A X � 2 implies that 2 2 
 � � 2 1 	 � �4 for2
'Ž .every � � 0, 2 ; so, for � � 2 , we have equality.

Ž . Ž .Remark. It is known that equality in 3.4 for some � � 0, 2 	 D,
� Ž . 4D � 2 cos k��2n , n � 2, 3, . . . ; k � 1, 2, . . . , n 	 1 , characterizes inner

Ž � �. � �product spaces see 1 . Nevertheless, in 2 the following two-dimensional
example was considered: Let the unit ball be a regular octagon; the norm
is thus defined by

' '� � � � � � � �x , y � max x , y , x � y � 2 , x 	 y � 2 . 3.6� 4Ž . Ž .

Ž .This is a non-hilbertian space, but easy computations show that A X2' 'Ž Ž . Ž . .� 2 this implies also, according to 2.8 , that A X � 2 .1



BARONTI, CASINI, AND PAPINI136

� � �The constant A was also considered in 3 , where it was denoted by � ;2 2
in particular, Proposition 4.2 there gives the inequality

A � 2 	 � A . 3.7Ž . Ž .2 2

Ž Ž �.. Ž .We have proved see 2.10 that given X, in order to calculate A X2
Ž . � Ž .�it is enough to maximize ��2 	 � � over one of the intervals 0, A X2

� Ž . �or A X , 2 .2
Ž .If the function ��2 	 � � attains the maximum for � � A , then we2
Ž .have A � 1 � A �2 	 � A . This happens, for example, if in the right-2 2 2

Ž .hand side of 2.2 the maximum is achieved by pairs x, y satisfying
� � � � Ž .x � y � x 	 y , or when the function ��2 	 � � is first increasing in

Ž .a part of 0, 2 , then decreasing after some point. This does not happen in
� �general: see for example the space described in 5 .

EXAMPLE 3.2. Let X be the space R2 with the norm given by the
Ž .hexagon cf. the remarks to Proposition 2.8 . We then have

� � � max 0, � 	 1 �2 ,� 4Ž . Ž .

so

� 3
� �1 � 	 � � � � A X for all � � 1, 2 .Ž . Ž .22 2

4. OUR TWO CONSTANTS AND ‘‘NEARBY’’ SPACES

The following fact is evident.

Ž . Ž .PROPOSITION 4.1. If Y is a dense subspace of X, then A Y � A X ,i i
i � 1, 2.

Now we want to prove that the constants A , A are continuous with1 2
respect to the Banach�Mazur distance of spaces, in case X and Y are
isomorphic. To this end, we shall state in advance some simple results.

� 4We recall that in general, given x, y in B 	  , we cannot say which of
� � � � � � � �the quantities x 	 y and x� x 	 y� y is larger, but we can prove

Ž � �.the following lemma similar to Lemma 6.3 in 7 .

LEMMA 4.2. Gi�en two points x, y in X, we ha�e

� � � � � � � �x � ty � x 	 ty 
 x � y � x 	 y for all t 
 1. 4.1Ž .

Ž .Moreover, equality in 4.1 for some y 	  and some t 	 
1 implies that
X is not strictly convex.
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Ž . � �Proof. Consider the convex, even function of t � R, f t � x � ty �
� � Ž . � � Ž . Ž . � �x 	 ty ; we have f 0 � 2 x ; f 1 � f 	1 
 2 x . This implies that
Ž . Ž . Ž .f t 
 f 1 for all t 
 1 f attains its minimum at 0 . Moreover, let X be

Ž .strictly convex; assume that we have equality in 4.1 for some y 	  and
Ž .some t 	 
1 so that x 	  . We can assume that t � 1 � � with

� � � � � � �� � 	1, � 	 0; this would imply that 2 x � x � ty � x 	 ty � x �
Ž .� � � Žty � x 	 ty for t � 	1 	 � , 1 � � . Then, since y 	  , x 	 ty � � xt
. Ž� ty for some t 	 
1 and some positive � , � 	 1. But then x � 1 �t t

. Ž .� ty� 1 	 � � 
 y for some 
 	 0; this, together with the equality int t t t
Ž . � � � � � � � �4.1 , implies that 
 � t � 
 	 t � 
 � 1 � 
 	 1 for some t 	t t t t

1, an absurdity which completes the proof.

PROPOSITION 4.3. Gi�en x � B , we ha�eX

� � � � � � � �sup x 	 y � x � y � sup x 	 y � x � y . 4.2Ž .Ž . Ž .
y�S y�BX X

Moreo�er,

� � � �A X � inf sup x 	 y � x � y ; 4.3Ž . Ž .Ž .1
x�SX y�BX

� � � �A X � sup sup x 	 y � x � yŽ . Ž .2
x�S y�SX X

� � � �� sup sup x 	 y � x � y . 4.4Ž .Ž .
x�B y�BX X

Ž . Ž� � �Proof. We prove 4.2 . Let x � B ; clearly 2 � sup x 	 y � xX y � SX
�. Ž� � � �. Ž� � �� y � sup x 	 y � x � y . Now let h � sup x 	 y � xy � B y � BX X

�. Ž .�y . If h � 2 there is nothing to prove. Otherwise, take any k � 2, h ,
� � � � Ž .then take z in B such that x 	 z � x � z � k z 	  ; according toX

z z� � � � � � � �Lemma 4.2 we then have x 	 � x � 
 x 	 z � x � z � k,� � � �z z
Ž� � � �. Ž .so sup x 	 y � x � y � k, which proves 4.2 .y � SX

Ž . Ž .Equation 4.3 follows immediately from 4.2 .
� � � 4Still, by Lemma 4.2, if x � 1, for any fixed y � B 	  we haveX

x x� � � � � � � �	 y � � y 
 x 	 y � x � y , so� � � �x x

x x
� � � �sup 	 y � � y 
 sup x 	 y � x � y .Ž .ž /� � � �x xy�B y�BX X

Therefore,

� � � � � � � �sup sup x 	 y � x � y 
 sup sup x 	 y � x � y ,Ž . Ž .
x�S y�B x�B y�BX X X X

Ž . Ž .and then we have equality. This, together with 4.2 , implies 4.4 .
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Ž . Ž .Remark. Indeed, formulas 4.2 and 4.4 are a consequence of the
Ž � � � �convexity of the norm for x and y fixed, the functions x � y , x 	 y

. Ž� � � �.are convex . Moreover, given x, to compute sup x 	 y � x � y ity � BX
Žis enough to consider those points y which are extreme for the unit ball a

Ž ..similar remark applies to computing A X .2

Let X, Y be two isomorphic spaces; we set

� � � �	1
� X , Y � inf T � T ; T : X � Y is an isomorphism . 4.5Ž . Ž .� 4

We have the following result.

PROPOSITION 4.4. Let X, X � be isomorphic spaces. Then, for i � 1, 2,
we ha�e

� �A X 	 A X � 4 	 i � � X , X 	 1 , 4.6Ž . Ž . Ž . Ž . Ž .Ž .i i

thus
� � �A X 	 A X � 3 � X , X 	 1 . 4.6Ž . Ž . Ž . Ž .Ž .i i

Proof. Let T be an isomorphism between the spaces X and X �,
� .satisfying the following condition: There exist two numbers � � 0, 1 and


 
 0 such that

� � � � � �1 	 � � x � Tx � 1 � 
 � x for all x � B . 4.7Ž . Ž . Ž .X

Take x�, y� in S �; there exist x, y in X such that x� � Tx, y� � Ty.X
Ž . � � Ž . � � � Ž . �Moreover, 1 	 � � x � 1; 1 	 � � y � 1. Set x � 1 	 � x, y �

Ž . Ž � � .1 	 � y x , y are in B . We then obtainX

1
� � � �� � � �x 
 y � Tx 
 Ty � � T x 
 yŽ .

1 	 �

1
� �� �� � 1 � 
 � x 
 y .Ž .

1 	 �

Thus

1 � 

� � � � � � � �� � � � � � � �x � y � x 	 y � x � y � x 	 yŽ .

1 	 �

1 � 

� �� � � �� sup x � y � x 	 y .Ž .

1 	 � y�BX

This shows that for every x� � S � , there is some element x� in B suchX X
that

� � � � � � � � � � � � � �x 	 y � x � y 1 � 
 x 	 y � x � y
sup � sup ;
� 2 1 	 � 2�y �B y�BX X
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Ž .so, according to 4.4 ,

1 � 

�A X � A X ; 4.8Ž . Ž . Ž .2 21 	 �

thus

� � 

�A X 	 A X � A X . 4.9Ž . Ž . Ž . Ž .2 2 21 	 �

Now we reverse the role of X and X �; we have that T	1 is an isomor-
phism and, for x � T	1 x� with x� � B � ,X

1 1
� � �	1� � � � � �x � T x � x . 4.10Ž .

1 � 
 1 	 �

So we obtain

1 � 

�A X � A X , 4.11Ž . Ž . Ž .2 21 	 �

and then

� � 

� �A X 	 A X � A X . 4.12Ž . Ž . Ž . Ž .2 2 21 	 �

Ž . Ž .Finally, 4.9 and 4.12 together imply

� � 

� �A X 	 A X � 2 . 4.12Ž . Ž . Ž .2 2 1 	 �

Ž� � � �. �Now let x � S such that sup x 	 y � x � y � k; set x �X y � BX

� � Ž� � � . � �
�Tx� Tx x � 1 ; for any element y � S we have y � Ty for someX

� � Ž .y � X with y � 1� 1 	 � , so

Tx
� �� �x 	 y � 	 Ty

� �Tx

1
� �� Tx 	 T 1 	 � y � T 1 	 � y 	 y TxŽ . Ž .Ž .

� �Tx

1
� � � �� 1 � 
 x 	 1 	 � y � Ty � 1 	 � 	 Tx .Ž . Ž . Ž .

1 	 �

� � �Ž . � � � � � Ž .Since Ty � 1, 1 	 � 	 Tx � Tx 	 1 	 � � � � 
 , we obtain

1 � 
 � � 

� �� �x 	 y � x 	 1 	 � y � .Ž .

1 	 � 1 	 �
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� � � � Ž�Ž . � .A similar estimate holds for x � y , so we obtain 1 	 � y � 1

� � � � � � � �x 	 y � x � y 1 � 
 � � 

sup � � k � .ž /2 1 	 � 1 	 ��y�BX

Ž .Since we can take x so that k is arbitrarily near to A X , we obtain1

1 � 
 � � 

�A X � A X � ,Ž . Ž .1 11 	 � 1 	 �

Ž Ž . .and then A X � 2 ,1

3 � � 
Ž .
�A X 	 A X � . 4.13Ž . Ž . Ž .1 1 1 	 �

� ŽBy reversing the role of X and X , we can also obtain in this case,

 � .replacing � , 
 with and , respectively1 � 
 1 	 �

1 � 
 
 � �
�A X � A X � , 4.14Ž . Ž . Ž .1 11 	 � 1 	 �

and then

3 � � 
Ž .
�A X 	 A X � . 4.15Ž . Ž . Ž .1 1 1 	 �

Ž . Ž .Equations 4.13 and 4.15 together give

� � 

� �A X 	 A X � 3 . 4.15Ž . Ž . Ž .1 1 1 	 �

Ž . ŽWe have thus proved the following: given T satisfying 4.7 , we have see
Ž �. Ž �..4.12 and 4.15

4 	 i � � � 
Ž . Ž .
�A X 	 A X � , i � 1, 2. 4.16Ž . Ž . Ž .i i 1 	 �

� � � � �	1But we can take an isomorphism T : X � X so that T � T 	
Ž � . Ž . Ž .� X, X is arbitrarily small, and so 1 � 
 � 1 	 � is very near to
Ž � . Ž . Ž . Ž �.� X, X ; i.e., � � 
 � 1 	 � is very near to � X, X 	 1. Therefore

Ž . Ž .4.6 follows from 4.16 , and this concludes the proof.

Remark. In a sense, the above estimates are sharp; for example,
Ž . 2concerning 4.8 , if we consider as X the space R , endowed with the

2'� � � � � � � � � � ŽŽ . .norms � , � , then we have � � � � 2 � , while A R1 2 2 1 2 2 1
2' ŽŽ . .� 2 � 2 A R .2 2
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5. THE VALUES OF A : AN EXAMPLE2

� � � � � �If X is one of the spaces L 0, 1 , C 0, 1 , C 0, 1 , c , c, l , then we have1 0 0 �

Ž .A X � 2 since they are not uniformly nonsquare. Now we shall consider2
another class of classical Banach spaces.

PROPOSITION 5.1. If X � l , 1 � p � �, thenp

A l � max 21� p ; 21	1� p . 5.1Ž . Ž .Ž .2 p

Ž .Proof. According to 2.7 , it is enough to consider the case p � 2.
Recall that in this case we have

1�pp�
� l � 1 	 1 	 . 5.2Ž .Ž .p ž /2

Set

1�pp� �
f � � 	 1 	 1 	 .Ž . ž /ž /2 2

Ž . Ž . Ž � �.Note that f 0 � f 2 � 0, so its maximum for � � 0, 2 is attained for
Ž .some � � 0, 2 .

We have

Ž .1�p 	1p p	11 1 � � 1
�f � � � 1 	 � 	p � �Ž . Ž .ž / ž /2 p 2 2 2

Ž .1�p 	1p p	11 � �
� 1 	 1 	 � .ž / ž /2 2 2

�Ž .Therefore, f � � 0 when

1	pŽ . 1�p1	p �pp p p pp	12 	 � � 2 	 � 2
1 � � � �p pž /ž / ž /2 2 2 �

1	p1�pp p2 	 �Ž .
� ,ž /�
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1p p p pŽ . Ž .so also when 2 	 � � � : i.e., when ��2 � . Thus, by using 5.2 ,2
Ž .2.7 gives

1�p1 1 2
1	1� pA l 	 1 � f 2 � 	 1 	 � 	 1,Ž .Ž .2 p 1� p 1� pž /22 2

so we have the thesis.

Ž . � 4Remark. The estimate 5.1 holds also for p � 1, 2, � . Moreover, it is
� � Žn.valid also for L 0, 1 , as well as for l spaces, since it depends on thep p

Ž .modulus of convexity which is a two-dimensional modulus .

6. THE VALUES OF A ; SOME EXAMPLES AND THE1
CASE A � 21

Ž .Estimating A X is not always simple.1
We indicate a relation between the constant A and the following one:1

n1
� �� X � inf sup a 	 y ,Ž . Ý2 inF�S y�S i�1

� 4F � a , a , . . . , a is any finite subset of S. 6.1Ž .1 2 n

� �This constant has been considered e.g. in 3, 4, 9, 12 . Note that also for
Ž� , by considering the sup over all points y � B or also, by only consider-2

.ing extreme points of B we obtain an equivalent definition.

PROPOSITION 6.1. In any space we ha�e

� X � A X . 6.2Ž . Ž . Ž .2 1

Proof. It is enough to note that for any x � S we have

� � � �2 A X � inf sup x 	 y � x � y 
 2� X .Ž . Ž .Ž .1 2
x�S y�S

Ž .Concerning 6.2 , note that we have inequality e.g. in finite-dimensional
Ž � �.euclidean spaces see 3 .

We have seen that A is the same for X and for its dual. For A the2 1
situation is different: for example, both for c and l the value of A is0 � 1

Ž . Ž3�2, while see below it is 2 for l so, when we pass to the dual of X, the1
.value of A can both increase and decrease .1
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Ž . Ž . Ž Ž� �The condition A X � A X in this case we have sup x 	 y �1 2 y � S
� �. .x � y constant with respect to x does not force a space to be an inner
product space: consider, for example, l or the two-dimensional hexagon1
Ž .see the remarks to Proposition 2.8 .

Also, the example of the regular octagon, indicated in Section 3, shows
'Ž . Ž .that in two-dimensional spaces the condition A X � A X � 2 does1 2

not imply that X is Euclidean. We do not know what happens when the
'Ž Ž .dimension is larger concerning A X � 2 , or at least under the as-1'Ž . Ž . .sumption A X � A X � 2 . In fact, it has been conjectured long1 2

Ž � �. Ž . Ž .ago see e.g. 11, pp. 70 and 83 that equality in 3.4 for some � � 0, 2
Ž .forces X to be an inner product space if dim X 
 3. If this conjecture is

true, this would also have implications concerning our constants.

PROPOSITION 6.2. If 1 � p � 2, then we ha�e

A l � 21� p . 6.3Ž .Ž .1 p

For 2 � p � �,

1�pp p11� p � � � �2 � A l � sup 1 � t � 1 	 tŽ .Ž . �1 p 2
0�t�1

1�pp p� � � �� 1 	 t � 1 	 t . 6.4Ž . Ž .4

Ž .Proof. Let p � 1, � ; we shall prove that

A X 
 21� p . 6.5Ž . Ž .1

Ž . � �Take any � � 0; given x � x , x , . . . , x . . . � S, take k so that x � � .1 2 n k
Let e be the kth element of the natural basis of l . Elementary computa-k p

� � � � ptions show that for any p 
 1, since x � 1, we have 1 
 x 
 1 	 p �k k
� � � � Ž � � p � � p.1� p Ž � �x . Then we obtain x 
 e � 1 	 x � 1 
 x 
 2 	 p � xk k k k k

� � p.1� p Ž p.1� p	 x � 2 	 p� 	 � .k
Ž .Since x � S and � � 0 are arbitrary, this implies 6.5 .

Ž . 1� p Ž .If 1 � p � 2, then�according to 5.3 �we have 2 � A X �1
Ž . 1� p Ž . Ž . Ž .A X � 2 , so we obtain 6.3 . Concerning 6.4 , its left part is 6.5 ,2

which has already been proved.
Ž . Ž .Now let x � 1, 0, . . . , 0 . . . ; take y � y , y , . . . , y . . . � S. Then we1 2 n

obtain

�
p p p p p� � � � � � � � � �x 
 y � 1 
 y � y � 1 
 y � 1 	 y . 6.6Ž .Ý1 k 1 1

k�2
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�Ž � � p � � p.1� p Ž � � pTherefore, 2 A � sup 1 � t � 1 	 t � 1 	 t � 1 	1 0 � t �1
p 1� p� � . 4 Ž .t , which is the right part of 6.4 .

Ž .Remarks. Numerical computations on the right-hand side of 6.4 show
Ž .that for p � 3 we obtain A X � 1.327; also, for p around 2.8 we obtain1

Ž . 1�3A X � 1.325. Note that 2 � 1.26, which is slightly below the general1 'Ž . Ž .estimate A X 
 3 � 21 �6.1

Ž .It is not difficult to see that A X � 3�2 in the cases X � c , X � c,1 0
Ž . � �and X � l . We have instead A X � 2 in the cases X � C 0, 1 , X �� 1

� � � �C 0, 1 , and X � L 0, 1 . We only prove the last assertion, the other ones0 1
being simpler.

� � Ž .PROPOSITION 6.3. If X � L 0, 1 , then A X � 2.1 1

� � � �Proof. Let � � 0; take f � L 0, 1 and let A be a subset of 0, 1 such1
� �that H f � � . We can take a function g, with support contained in A andA

� � � � � �such that H g � 1. Then we have H f � g � 2 	 � ; H f 	 g � 2 	A �0 1� �0 1�
� . This proves that

� � � �inf sup f � g � f 	 g 
 4 	 2� ,
f�SX g�SX

Ž . Ž .so � being arbitrary A X � 2.1

Ž .Concerning the ‘‘extreme’’ value 2, taking into account 6.2 , the follow-
ing implications hold:

� X � 2 � A X � 2 � A X � 2.Ž . Ž . Ž .2 1 2

Ž .Spaces satisfying A X � 2 have been characterized as spaces which are2
Ž .not uniformly nonsquare, while the condition � X � 2 character-2

Ž � �.izes ‘‘octahedral’’ norms see 9 . We shall prove some consequences of
Ž .A X � 2.1

Ž .PROPOSITION 6.4. Let a space X satisfy A X � 2; then X is not uni-1
Ž .formly nonsquare; moreo�er, dim X � �.

Ž . Ž .Proof. The first part is a consequence of the inequality A X � A X .1 2
To prove the second part, we prove first the following.

CLAIM. Assume that the following is true in X : for any x � S there exists
� � � �a y � S such that x 	 y � x � y � 2. Then there exists in S an indepen-

� 4dent sequence x such thatn

n

x � n. 6.7Ž .Ý i
i�1
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Proof of the claim. We reason by induction: Take x � S, then x � S1 2
� � � �such that x 	 x � x � x � 2. Of course, x and x are indepen-1 2 1 2 1 2

�dent. In general, once x , . . . , x have been chosen so that x � ��� �x1 n 1 n	1
� �Ž . �
 x � n, choose x � S such that x � ��� �x �n 
 x � 2. Wen n�1 1 n n�1

then have

� �n � 1 
 x � ��� �x 
 x1 n n�1

x � ��� �x x1 n n�1
� �
 x � ��� �x � 
 x 	 
x 
1 n n�1 n�1ž /n n

1
� n 2 	 1 	 � n � 1.ž /ž /n

So we have all equalities; this also implies that

� � � �x � ��� �x 
 tx � n � t for all t � R . 6.8Ž .1 n n�1

� � � � ŽNow assume that x � � x � ��� �� x ; set � � � � ��� � � � 	n�1 1 1 n n 1 n
. Ž . Ž .0 and y � � x � ��� �� x ��. Then, according to 6.8 , we obtainn�1 1 1 n n

1
� �n � � x � ��� �x 
 y1 n n�1�

� �1 n� 1 
 x � ��� � 1 
 x1 nž / ž /� �

� �1 n� 1 
 � ��� � 1 
 ;
� �

this implies

1 � �1 n
n � � n � � ��� � and

� � �

1 � �1 n
n � � n 	 � ��� � ,ž /� � �

a contradiction, proving that � must be 0, so that x is independentn�1
from x , . . . , x . This concludes the proof of the claim.1 n

Ž . Ž .Now, if dim X � �, then S is compact. So A X � 2 implies the1
Ž .assumption of the claim, whose thesis contradicts dim X � �.
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