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A conventional gift-wrapping algorithm for constructing the three-dimensional convex hull 
is revised into a numerically robust one. The proposed algorithm places the highest priority 
on the topological condition that the boundary of the convex hull should be isomorphic to 
a sphere, and uses numerical values as lower-priority information for choosing one among the 
combinatorially consistent branches. No matter how poor the arithmetic precision may be, the 
algorithm carries out its task and gives as the output a topologically consistent approximation 
to the true convex hull. © 1994 Academic Press, Inc. 

1. INTRODUCTION 

The convex hull of a finite number  of points is one of the most  fundamental 
concepts in computational  geometry, and many  efficient algorithms have been 
proposed for two dimensions [4, 6, 9, 14] and higher dimensions [-1,2, 3, 13, 
15, 20]. However, these algorithms are designed in the implicit assumption that 
numerical computat ion can be carried out in exact arithmetic. Actual computation,  
on the other hand, is done in finite precision, and hence straightforward translation 
of these algorithms into computer language does not necessarily give practically 
valid computer  programs; they may fail due to inconsistency caused by numerical 
errors. 

In order to overcome this difficulty several approaches have been studied recently 
for the construction of the two-dimensional convex hull. Guibas et aL proposed a 
scheme for three-value logic, called epsilon geometry, and applied it for con- 
structing an approximation to the convex hull in the plane [7].  Fortune used 
approximate geometric predicates in ordinary two-value logic and constructed a 
similar algorithm [5].  

It seems, however, that their ideas cannot be extended to three dimensions 
directly because maintaining the topological consistency in three dimensions is non- 
trivial. Indeed, in two-dimensional space, any cyclic sequence of three or more 
points chosen from a finite set P of points can be an approximation of the convex 
hull of P in the sense that the cyclic sequence becomes the correct convex hull if the 
points in P are perturbed appropriately. In three dimensions, on the other hand, an 
arbitrary collection of triangles with vertices in P does not necessarily give the 
convex hull of P even if the points in P are perturbed. 
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The convex hull of n points in three-dimensional space can be constructed in 
O(n log n) time by the divide-and-conquer algorithm, and this time complexity is 
known to be optimal [-14]. Another famous algorithm is "gift wrapping," which 
runs in O(kn) time, where k is the number of vertices on the boundary of the con- 
vex hull [2, 14, 20]. This algorithm is not optimal because k can be as large as n 
in the worst case, but it is still practically important because its time complexity is 
much smaller if k is small (e.g., linear in the case where k is a constant). 

In this paper, we revise the conventional gift-wrapping algorithm into a numeri- 
cally robust one. The idea here is the combinatorial abstraction proposed by 
Sugihara and Iri [18, 19]; the basic part of the algorithm is described in terms of 
combinatorial computation, and numerical values are used only to choose branches 
in the algorithm. The resultant algorithm is robust and topologically consistent; in 
any imprecise arithmetic the algorithm carries out its task to give some output, and 
the output can be the correct answer of the convex hull problem if the input points 
are perturbed appropriately. 

After reviewing numerical problems in the conventional algorithm in Section 2, 
we extract the combinatorial structure of the algorithm in Section 3 and construct 
the new algorithm in Section 4. We also discuss the distance between the correct 
convex hull and the output of the proposed algorithm in Section 5. 

2. NUMERICAL PROBLEMS IN THE CONVENTIONAL METHOD 

Here we will review the conventional gift-wrapping method constructing the con- 
vex hull of a finite number of points in three-dimensional space, and we will see 
how numerical error causes the method to fail. For  this purpose, let us start with 
the definition of the convex hull. 

Let R be the set of real numbers, and let us denote by R 3 the set of all the points 
in three-dimensional space to which a right-handed (x, y, z) coordinate system is 
fixed. Let P = {Pl, P2 . . . . .  Pn} be a finite set of points in R 3. The intersection of all 
the convex subsets of R 3 containing P is called the convex hull of P and is denoted 
by CH(P).  We assume that P contains at least three points and they are not 
collinear. P is said to be coplanar if all the points in P are on a common plane, and 
noncoplanar otherwise. If P is coplanar, CH(P)  is a convex polygon, whereas if P 
is noncoplanar, CH(P)  is a convex polyhedron. 

From the algorithmic point of view, CH(P)  can be obtained as the intersection 
of a finite number of half spaces in the following manner. For  any four reals a, b, c, 
and d, where at least one of a, b, and c is nonzero, the set H of points defined by 

H =  {(x, y , z ) [ a x + b y + c z + d > ~ O }  (2.1) 

is called a half space, and the set of point dH defined by 

OH= {(x, y,z) lax+by+cz+d=O} (2.2) 
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FIG. 1. One step of the gift wrapping. 

is called the boundary of H. Half space H is said to be critical with respect to P if 
(i) P ___ H and (ii) ~H contains at least three noncollinear points in P. Then the next 
fact is well known. 

Fact 1. Let P be noncoplanar. The convex hull of P is the intersection of all the 
critical half spaces with respect to P. 

For any critical half space H with respect to P, ~?Hn CH(P) is called a face of 
CH(P). Hence, there is a one-to-one correspondence between the critical half spaces 
with respect to P and the faces of CH(P). If no four points in P are coplanar (this 
situation is said to be nondegenerate), all the faces of CH(P) are triangular. If the 
intersection of two faces contains two or more points, the intersection is called the 
edge shared by the two faces. If the intersection of three or more faces is nonempty, 
the intersection is called the vertex shared with those faces. Every vertex of CH(P) 
is an element of P. 

For two points Pi and pj, let ~ denote the undirected line segment connecting 
Pi to pj, and let PiPj denote the directed line segment with the initial point p~ and 
the terminal point pj. L e t f b e  a triangular face of CH(P), and let Pc, Pj, and Pk be 
the three vertices o f f  The face f has an orientation in the sense that CH(P) lies in 
one side of f and the other side is completely empty. We denote the face f by 
face(pi, P/, Pk) if the three directed line segments PiPj, PiPk, and PkPl surround f 
counterclockwise when we see it from the empty side and by face(pc, Pk, Pj) if they 
surround f clockwise. Since the order is cyclic, we obtain 

face(pi, pj, Pk)= face(pj, pg, Pi) = face(pk, pi, pj). 
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In what follows, we mean by a face an oriented face having one of the two possible 
orientations in the above sense. The three directed line segments PlPi, PjPk, and 
PkPi are called directed edges induced by face(&, pj, Pk). 

In what follows, we assume that P is nondegenerate so that no four points are 
coplanar (for our purpose it is enough to consider only the nondegenerate case; we 
will discuss this in Section 3). Fact 1 directly gives us an algorithm for constructing 
the convex hull. Starting with one face, we find adjacent faces step by step, just as 
we wrap P using an ideally elastic membrane. 

One step of wrapping is depicted in Fig. 1. Let f =  face(p,, p:, p~) be a face that 
has already been found. We now want to find the other face that shares the edge 
p~pj. Let n be the unit vector crossingf orthogonally from inside CH(P) toward the 
outside, as shown in Fig. 1. Let a be the unit vector defined by 

a -  n × P i P ~  (2.3) 
In x PiPjI" 

The vector a is perpendicular to both n and PiPi; the three vectors n, PiPj, and 
a form the right-handed mutually orthogonal system just as the thumb, the index 
finger, and the middle finger of the right hand can form. Let P' be the set of points 
in P that are not on f We find the point, say pl, in P' that attains the minimum 
of 

g(f, Pl) = a "PIP, (2.4) 
[ a" PiPll 

over all points in P'. The value g(f  p~) being minimum means that the angle 0l 
between the face f and the triangle formed by p;, pj, and p~ is maximum, where the 
angle 0l is measured through the interior of the convex hull (note that all the 
points in P' are below the plane containing f, and g(f, p l )=cos 01). The face 
f ' =  face(p:, p;, p~) is the face that we want to find. 

Let E1 and E 2 be two sets of directed edges. We define E~ • E2 by 

E~ • E2 = {PlPi [ PlPi ~ E1 ~ E2,  PjPi ~ E1 u E2}. (2.5) 

That is, directed edge p~pj is an element of E1 G E2 if and only if p~pj is contained 
in E1 w E2 but the reversal PjPl is not contained in either E1 or E2. Hence, for 
example, if E1 = {PIP2, P2P3, P3P4, P4Pl} and E2 = {P2Pl, PiPs, PsP2} as shown in 
Fig. 2a, we obtain E1GE2= {P2P3, P3P4, P4Pl, PiPs, PsP2} as shown in Fig. 2b. 
Thus, for two sets Fx and /72 of faces, if Ex and E2 are the sets of the boundary 
edges of the surfaces composed of the faces in F1 and F2, respectively, E1 • E2 is 
the set of the boundary edges of the surface composed of the faces in F~ w F2. 

The gift-wrapping method is described by the following algorithm, where Q is a 
queue containing faces whose boundary edges have to be checked and E is the 
storage containing the edges, one of whose faces has not yet been found. 
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Fi t .  2. Merging two surface boundaries: (a) before merging; (b) after merging. 

ALGORITHM 1 (Conventional gift wrapping). 
Input: set P =  {Pl, P2, ".., Pn} of points in R 3. 

Output: set F of all the faces on the boundary of CH(P). 

Procedure: 
1. Find one face fo on CH(P), Q+- {fo} and F ~ .  
2. Let E be the set of all the directed edges on the boundary offo. 
3. While Q is not empty do 

begin 
3.1. choose and delete face f from Q, 
3.2. A ~- the set of all the directed edges on the boundary o f f  
3.3. for each edge e = PiPj E A ~ E do 

begin 
3.3.1. find the point Pt that minimizes g(f, Pt), a n d f '  . -  face(pj, Pi, Pt), 
3.3.2. B ~ the set of all the directed edges on the boundary o f f ' ,  
3.3.3. E ~ E @ B, 
3.3.4. add f '  to Q 
end 

3.4. add f to F. 
end 

4. Report F and stop. 

This algorithm constructs the convex hull of P correctly if no error takes place 
in the course of numerical computation [14]. If numerical error takes place, on the 
other hand, the validity of the algorithm is not guaranteed. 

An example of the situation in which the algorithm fails is shown in Fig. 3. We 
denote by triangle(p, pj, Pk) the triangle formed by the three vertices pi, pj, and Pk 
(when we say triangle(p, pj, Pk), we do not care about the orientation). Let 
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P =  {Pl, P2 ..... PS} such that Pl, P2, P3, and P4 form a tetrahedron and Ps is 
almost on triangle(p~, P3, P4). This implies that we may not be able to correctly 
judge the relative position of p5 with respect to triangle(p1, P3, P4) due to numeri- 
cal error. The result of numerical judgement can be any one of the three: (i) P5 and 
P2 are in mutually opposite sides of triangle(p1, P3, P4); (ii) P5 and P2 are in the 
same side of triangle(p~, P3, P4); (iii) P5 is on triangle(p j, P3, P4). Suppose that in 
Step 1 of Algorithm i we find 

fl  = face(p~, P3, P2) 

as the initial face and put it in Q : Q =  {f~}. In Step2, E is set as 
E =  {PlP3, P3Pz, P2Pl}. In Step3.1,, f = f l  is chosen. In the first repetition of 
Step 3.3, we choose edge P2Pl and find the adjacent face f2 = face(p1, P2, P4); hence 
E is changed to {PIP3, P3P2, P2P4, II4P~} • In the second repetition of Step 3.3, we 
choose edge P3P2 and find the adjacent face f3 = face(p2, P3, P4); consequently E is 
changed to {p~p3, P3P4, 114111} • In the third repetition of Step 3.3, we choose edge 
P~ P3 and search for the adjacent face. Suppose that numerical computation tells us 
that the angle between f l  and triangle(p1, P3, P s) is greater than the angle between 
fl  and triangle(pa, P3, P4), and consequently face(p1, Ps, P3) is recognized as the 
adjacent face. Then, E is changed to {PiPs, PsP3, P3P4, P4Pl}. Now in the second 
repetition of Step 3.1, f = f 2  is chosen and in Step 3.3, we choose edge P4Pa and 
search for the adjacent face. Suppose that numerical computation judges that the 
angle between fa and triangle(p 1, P3, P4) is greater than the angle between f2 and 
triangle(p1, P4, Ps)- This judgement is not consistent with the previous judgement 
that the angle between fl  and triangle(p~, P3, P s) is greater than the angle between 
fl  and triangle(p~, P3, P4). However, this can happen because of numerical error in 
the computation of (2.4). Then, face(p1, P4, P3) is recognized as the adjacent face. 
At this stage, E is changed to {PiPs, PsP3, P3Pl}. Now we have a topological 

P4 ~ Pl 

P2 

FIG. 3. Topological inconsistency due to numerical errors. 
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inconsistency because the undirected edge p ,  P3 is shared by the three faces f l ,  f4, 
and fs ,  which should not happen on the boundary of CH(P).  

Some of the readers might think that inconsistency could be avoided if we are 
careful in such a way that we do not generate an edge shared by three faces. 
However, the problem is not so simple. Another example of inconsistency is shown 
in Fig. 4, where P consists of six points p , ,  P2 ..... P6 such that P2, P3, ..., P6 are 
almost coplanar, forming a convex pentagon, as in (a). Suppose that we start 

P6 P5 P6 f3 P~ 

P2 P2 

Pl  Pl 

(~) (b) 

P2 

p6 f6 P5 

Pl 

(c) 

FrG. 4. Another  example of topological inconsistency: (a) correct convex hull; (b) midway of the gift 
wrapping with numerical errors; (c) inconsistency. 

571/49/2-18 
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with the initial face f l  = face(p1, P3, P2), in the first repetition of Steps 3.1-3.3 
we find three adjacent faces f2 = face(pl, P4, P3), f3 = face(p2, P3, Ps), and 
f4 = face(p1, P2, P6), as shown in (b), and that in the second repetition we choose 
f2 and find two adjacent faces f s = f a c e ( p l ,  Ps, P4) and f 6 = f a c e ( p 3 ,  P4, P6), as 
shown in (c). This can happen due to numerical error because P2, P3 . . . . .  P6 are 
almost coplanar. The set of faces generated so far has the property that no three 
faces share a common (undirected) edge. However, we cannot augment the set of 
faces in such a way that the resultant set of faces forms a surface homeomorphic 
to a sphere. Thus, we have inconsistency. 

3. COMBINATORIAL ABSTRACTION OF GIFT WRAPPING 

In this and the next sections we construct a numerically robust gift-wrapping 
method, i.e., a method that does not fail even if numerical error takes place. For 
this purpose we employ the combinatorial abstraction approach proposed by 
Sugihara and Iri [18, 19], in which the basic part of the algorithm is described in 
terms of combinatorial computation and numerical computation is used only to 
select an appropriate branch of the processing. By this approach we can construct 
an algorithm that is free from topological inconsistency in any finite-precision 
arithmetic. 

In imprecise arithmetic it is impossible to construct the convex hull CH(P) 
always correctly. Hence, we change our goal; instead of constructing the true 
convex hull, we aim at constructing an approximation to the convex hull. In this 
context we can assume that P is nondegenerate so that any four points in P are 
noncoplanar. This assumption does not lose generality because of the following 
reason. Suppose that P is degenerate. We perturb the points in P slightly to obtain 
a nondegenerate point set, say P', and construct an approximation to CH(P').  
Then, we can expect that this approximation is also an approximation to CH(P), 
because the perturbation is small. Moreover, it is impossible to discern degeneracy 
in imprecise arithmetic. Hence, it is not at all a restriction to assume that P is 
nondegenerate. Consequently, we consider only the case where all the faces of 
CH(P) are triangular. 

Suppose that P has four or more points. Since P is nondegenerate, CH(P) has 
a nonzero volume and hence the boundary OCH(P) is isomorphic to a sphere, 
implying that the graph composed of the edges and the vertices of CH(P) is planar. 
This observation demands that the gift-wrapping procedure should be carried out 
in such a way that the final graph is planar. Since a subgraph of a planar graph is 
planar, the gift-wrapping procedure should also be carried out in such a way that 
the graph obtained at every step is planar. However, this demand is not sufficient; 
for example, the graph composed of the vertices and the edges of the triangles in 
the structure shown in Fig. 3 is planar but it is topologically inconsistent. In order 
to detect inconsistency without backtracking, we need to consider not only the 
vertices and edges but also the faces. 
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F1G. 5. Consistency of the face orientations: (a) two faces having consistent orientations; (b) two 
faces having inconsistent orientations. 

Let f t  and f2 be two faces sharing two vertices pj and Pk. We say that f l  and f2 
have consistent orientations if PiPk is a directed edge induced by one face and PkPj 
is a directed edge induced by the other. Hence, f~=face(&, Ps, Pk) and f2=  
face(pt, Pk, &) have consistent orientations (Fig. 5a), whereas f l  = face(pi, pj, Pk) 
and f ;  = face(p1,&,pk) do not (Fig. 5b). Note that face(&,pj, pk) and 
face(pi, Pk, &) (they have the same vertex set) have consistent orientations. A set 
F of faces is said to have consistent orientations if for any f,., f j  E F, f~. and fs have 
consistent orientations or they share no edge. If F has consistent orientations, any 
undirected edge can be shared by at most two faces in F. 

If P has four or more points, the set of the faces of CH(P) has consistent orienta- 
tions. If P has exactly three points, say P =  {p~, P2, P3}, then we consider 
{face(p1, P2, P3), face(p2, p l ,  P3)} as the set of the faces of CH(P). Hence for any 
point set P having three or more points, the set of the faces of CH(P) has consistent 
orientations. 

The vertices and the edges of CH(P) form a planar graph. Let us draw this graph 
in such a way that the edges do not intersect except at their endpoints. An example 
of such a drawing is shown in Fig. 6a. There are exactly three outermost edges, 
forming the largest triangle, and the interior of this triangle is decomposed into 
mutually nonoverlapping triangles. The outermost triangle and the nonoverlapping 
triangles correspond to the faces of CH(P). As the outermost triangle we choose the 
initial face for gift wrapping, i.e., the face found in Step 1 of Algorithm 1. We con- 
sider that this face is drawn from a viewpoint lying in the same side as the convex 
hull; hence the orientation of this face is clockwise as shown in the figure. The gift- 
wrapping algorithm starts with this outermost triangle and add other triangles in 
the interior. These triangles correspond to the faces seen from the empty side, and 
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FIG. 6. Representation of the topological structure of the convex hull: (a) convex hull; (b) partial 
structure of the convex hull having one unfilled region; (c) partial structure of the convex hull having 
two unfilled regions. 

consequently their orientations are all counterclockwise. Typical examples of the 
structures obtained by gift wrapping are shown Figs. 6b and c, where the shaded 
regions represent the areas that have not yet been filled with the faces. Let us call 
these regions unfilled regions. In earlier stages of gift wrapping, there is only one 
unfilled region as shown in b, but in general this region is partitioned into two or 
more regions as shown in c. The edges on the boundary of the unfilled regions are 
the edges at which the next face is searched for. 

Suppose that at some of the gift wrapping we have found k faces f l ,  f2, .-, fk. Let 
F be the set of these faces: F -  {f l ,  f2, -.., fk}. Let E(fi) be the set of directed edges 
that are on the boundary of f i  and let us define 

E(F) = E(fD • E(f2) • ... • E(fk). 
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The edges in E(F) form the boundaries of the unfilled regions. For  each e ~ E(F), 
let S(e) be the set of vertices on the boundary of the unfilled region that contains 
e. Let, furthermore, I(F) be the set of points in P that are not the vertices of any 
face in E(F). Elements of I(F) are called isolated points. 

Suppose that Algorithm 1 chooses edge e--PlPj in E(F) in Step 3.3 and finds the 
new face, say f ' ,  incident to e. Let Pk be the third vertex of f ' ,  that is, 
f ' =  face(pj, Pl, Pk). The new face f '  should satisfy the next two conditions: 

(C1) pk6S(e)uI(F). 
(C2) Each of undirected edges PiPk and PjPk is incident to at most one face 

in F. 

Condition (C1) says that the third vertex Pk of the new face should either be on 
the boundary of the same unfilled region as e or an isolated vertex. This condition 
should be satisfied because otherwise the surface that is composed of the faces 
constructed by gift wrapping is not homeomorphic to the sphere. For  example, if 
we search for the new face incident to edge e in Fig. 6c, the vertex Pk cannot be the 
third vertex of the new face because e and Pk belong to different unfilled regions. 
The situation shown in Fig. 4c also violates (C1). 

Condition (C2) should be satisfied because otherwise three faces share a common 
edge, which cannot happen for the surface that is homeomorphic to the sphere. For  
example, if we search for the new face that is incident to e in Fig. 6b, Pk in this 
figure cannot be the third vertex of the new face, because the edge PjPk is already 
shared by two faces f / a n d f j .  The inconsistency shown in Fig. 3 can also be avoided 
by (C2). 

4. ROBUST G I F T - W R A P P I N G  ALGORITHM 

Using conditions (C1) and (C2), we can revise Algorithm 1 into the next one. 

ALGORITHM 2 (Robust gift wrapping). 
Input: set P = {Pl, P2 . . . . .  Pn} of points in R 3 (n ~> 3). 
Output: set F of faces that approximates the boundary of CH(P).  

Procedure: the same as the procedure in Algorithm 1 except that Step 3.3.1 is 
replaced by the next one. 

3.3.1. Among all the points in S(e)w I(e), find the one, say Pt, that minimizes 
g(f, p~), and f '  ~- face(pj, Pi, Pt). 

We consider the behavior of Algorithm 2 in the world where the numerical error 
takes place. By numerical computation we mean computation with real numbers 
(typically represented by floating-point numbers). Here we assume that the error 
takes place in the numerical computation, and, moreover, we assume that the 
amount of error cannot be bounded. The latter assumption might seem too 
pessimistic because usually the errors are small. However, our approach is strong 
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enough to be able to construct a robust algorithm even in this pessimistic assump- 
tion. Combinatorial computation, on the other hand, is assumed to be carried out 
without any error. 

A convex-hull algorithm is said to be robust if in any imprecise arithmetic it does 
not come across topological inconsistency and, hence, it carries out the task, ending 
up with some output. A convex-hull algorithm is said to be topologically consistent 
if it is robust and its output is a correct set of faces of the convex hull of some per- 
turbation of the input point set P. A convex-hull algorithm is said to be stable if 
it is topologically consistent and if the maximum displacement to perturb the input 
points to make the output correct is bounded by a constant depending on the 
precision. We can see that Algorithm 2 is robust and topologically consistent but 
not stable. 

THEOREM 1. Algorithm 2 is robust. 

Proof Algorithm2 employs numerical computation only in Step 1 and 
Step 3.3.1. Due to numerical error the algorithm may not find the correct face 
corresponding to the true convex hull. However, some face is obtained in Step 1 
and Step 3.3.1. There are only a finitely many ordered triples of points in P, and the 
same triple is never obtained twice or more in Step 3.3.1. Therefore, Algorithm 2 
terminates in finitely many steps, which implies that Algorithm 2 is robust. I 

Graph G is said to be triply 'connected if the deletion of any two vertices and the 
edges incident to them from G does not make the remaining graph disconnected. 
The next theorem is helpful to prove the topological consistency of Algorithm 2. See 
Steinitz [16] (or Lyusternik [10]) for the proof of this theorem. 

THEOREM 2 (Steinitz' theorem [16]). For any triply connected planar graph G 
with four or more vertices, there exists a convex polyhedron in three-dimensional 
space such that the graph composed of the vertices and the edges of the polyhedron 
is isomorphic to G. 

THEOREM 3. Algorithm 2 is topologically consistent. 

Proof Case 1. Suppose that the output of Algorithm 2 consists of only two 
faces, say, F =  {face(p/, Pi, Pk), face(pi, Pk, Pj)}. Let us move all the other points 
in P to any places in the triangle formed by the vertices pi, p j, and Pk and let the 
resultant set of points be P'. Then, F is the set of the faces of CH(P'). Thus, we 
obtain the perturbation P' of P such that the output is exactly the face set of 
CH(P'). 

Case 2. Suppose that the output F of Algorithm 2 consists of three or more 
faces. In this case the number of vertices in some faces in F is at least four (and, 
moreover, the number of faces in F is also at least four). The face obtained at any 
repetition of Step 3.3.1 satisfies the conditions (C1) and (C2), and consequently the 
set F of faces always has a consistent orientation and the graph G composed of the 



ROBUST 3D GIFT WRAPPING 403 

vertices and the edges of the faces in F is always planar. In particular, at the end 
of the algorithm, the graph G is planar and every edge of G is incident to exactly 
two faces, because if there is an undirected edge e incident to only one face f f is 
put in Q in Step 1 or in Step 3.3.4 and some other face incident to e is found when 
f is deleted from Q. Thus, the graph G at the end of the algorithm is a triangular 
planar graph which is triply connected. Let X be a convex polyhedron whose 
vertex-edge graph is isomorphic to G; the existence of such a convex polyhedron is 
guaranteed by Steinitz' theorem. Since G is triangular, all the faces of X are 
triangles. Let us move the vertices of G to the locations of the corresponding 
vertices of X, let us move the remaining points in P to the interior of X, and let the 
resultant set of points be P'. Thus, we obtain the perturbation P'  of P such that the 
output of Algorithm 2 is the set of faces of CH(P'),  which implies that Algorithm 2 
is topologically consistent. | 

As we have seen, Algorithm 2 is robust and topologically consistent, but it is not 
stable as seen in the next example. 

As shown in Fig. 7, suppose that the point set P is almost coplanar, and, hence, 
CH(P) is almost a convex polygon. Assume that Step 1 of Algorithm 2 finds the 
initial face f = face(pi, pj, Pk), such that pi and p: are on the boundary of the con- 
vex polygon but that Pk is in its interior, and assume that in the first execution of 
Step 3.3 the edge PlPi is chosen. Since the points are almost coplanar, any point is 
likely to be chosen as the third vertex of the new face f ' .  Assume that Pk is chosen 
as the third vertex. Note that this choice does not violate condition (C1) or (C2). 
Then, all the edges are shared by two faces, and consequently Algorithm 2 ter- 
minates with the output F =  {face(p~, pj, Pk), face(pc, Pk, Pj)}. In order to make F 
the correct face set of a convex hull, we need to perturb P in such a way that the 
triangle with the vertices Pi, Pj, and Pk contains all the other points. However, there 
exists point set P that requires arbitrarily large perturbation, because the other 
points can be aribtrarily far from the triangle. Thus, Algorithm 2 is not stable. 

J 

/ I  • Pj~ 
" • 

\~a. • face(pi, p j, Pt.) 

FIG. 7. Gift wrapping for almost planar points. 
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THEOREM 4. The time complexity of Algorithm 2 is of O(kn), where k is the 
number of faces in the output F. 

Proof The only difference of Algorithm 2 from the conventional algorithm 
(Algorithm 1) is that conditions (C1) and (C2) are checked in Step 3.3.1. This check 
is done in O(n) time in the following manner. We create list IL of all the isolated 
points. For the sth unfilled region (s = 1, 2, ...), we create cyclic list CL[s] of the 
vertices and the directed edges on its boundary, and to each edge e in CL[s] we 
assign label e[e] representing the unfilled region number to which e belongs. We 
create another list EL storing the edges ever stored in E in Step 2 or Step 3.3.3. 
When edge e = PiPi is chosen in Step 3.3, all the elements in S(e) and in l(e) can 
be retrieved by CL[~[e]]  and IL, and for each pl~ S(e)t_; I(e), condition (C2) can 
be checked by the list EL. Since the graph composed of the vertices in P and the 
boundary edges of the faces constructed in Algorithm 2 is planar, the number of the 
faces and that of the edges are of O(n), and consequently the above check is done 
in O(n) time. Also the modification of IL, CL[s], c~[e], EL at each repetition of 
Step 3.3.1 can be done in O(n) time. Step 3.3.1 of the conventional algorithm also 
requires O(n) time, and, hence, the revision from Algorithm 1 to Algorithm 2 does 
not increase the time complexity. Therefore, as proved in [14], the algorithm runs 
in O(nk) time. | 

5. TOWARD A STABLE GIFT WRAPPING 

It seems that the unstableness of Algorithm 2 is mainly due to the case where P 
is almost coplanar. This problem might be solved by the following heuristic 
modification. 

(~) (b) 

FIG. 8. Heuristic for avoiding unstableness: (a) two-dimensional convex hull for the projected 
points; (b) upper and lower convex hulls of the original points. 
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Modification o f  Algorithm 2. At the beginning of the algorithm we judge 
whether P is almost coplanar. If it is not, Algorithm 2 is done. If P is almost 
coplanar, then: (i) we project P onto a plane that is parallel to the best fitting plane 
to P, as shown in Fig. 8a; (ii) construct the two-dimensional convex hull of the pro- 
jected points; and (iii) use the boundary of this convex hull twice as the initial 
boundary of the unfilled region for three-dimensional gift wrapping in the upper 
side and in the lower side, as shown in Fig. 8b. 

Note that the initial face constructed in Step 1 of Algorithm 2 is used to obtain 
the initial boundary of the unfilled region. Hence, it need not be triangular, and, 
moreover, it need not be planar. What we need is a cyclic list of (not necessarily 
planar) points forming the boundary of the unfilled region. Therefore, the boundary 
of the convex hull of the projected points, when reversely mapped to the original 
three-dimensional space, can be used as the initial boundary from which we 
start gift wrapping. Thus, the above modification of Algorithm 2 is almost 
straightforward. 

However, even if we employ this modification, it is not easy to guarantee the 
stableness mathematically. This is because in general it requires complicated 
analysis to establish the quantitative relations between the triply connected planar 
graph and the convex polyhedron [8], although the qualitative relation is estab- 
lished by Steinitz' theorem. 

For example, let P =  {Pl, P2, ..., P,} be the set of the vertices of a two-dimen- 
sional convex polygon having the edge set E 0 = { p ,  P2, P2 P3 . . . .  , P n -  1 _Pn, Pn P l},  as  

shown in Fig. 9, where n = 8. Let E 1 and E2 be mutually disjoint sets of diagonals 
each giving a triangular partition of the polygon; in Fig. 9 the diagonals belonging 
to one set are represented by solid lines and those belonging to the other, by broken 
lines. Now the edge set E =  Eo u E 1 k..)E 2 gives a planar triangular graph, so that 

P7 

FIG. 9. Two sets of diagonal edges, each giving a triangulation of the convex polygon. 
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there exists a convex polyhedron whose vertex-edge graph is isomorphic to this 
graph. 

However, it is not so obvious that the convex polyhedron can be realized by 
small perturbation of the points. Suppose that at the beginning all the eight points 
Pl,  P2 .... , P8 are coplanar as shown in Fig. 9. If we pull P4 upward slightly and P7 
downward sufficiently, then we obtain the upper convex hull of the eight points as 
indicated by the solid edges in Fig. 9. However, the lower convex hull of these 
points does not necessarily coincide with the triangulation indicated by the broken 
edges. Moreover, it is not trivial to see whether we can move the points to make 
the lower convex hull into the same structure as indicated by the broken edges 
while keeping the upper convex hull unchanged. 

Guibas pointed out that it is open to judge whether the polyhedron can be 
realized by (not necessarily small) perturbation of the points in the direction per- 
pendicular to the plane containing P [12]. Note that Algorithm 2, as well as its 
modification, can generate the output corresponding to E. Hence, in order to argue 
about the stableness of the algorithm, we have to establish the quantitative version 
of Steinitz' theorem. This is a problem for the future. 

6. CONCLUDING REMARKS 

We have proposed a numerically robust and topologically consistent version of 
the gift-wrapping algorithm for constructing the three-dimensional convex hull. On 
the basis of Steinitz' theorem, we add to the conventional gift-wrapping algorithm 
some combinatorial tests for avoiding topological inconsistency. No matter how 
poor the precision in computation may be, the purposed algorithm carries out the 
task and gives an output that is at least topologically consistent. Moreover, the new 
algorithm has the same time complexity as the conventional one; the combinatorial 
tests do not increase the time complexity. On the other hand, we have not yet suc- 
ceeded in proving the stableness of the algorithm, which is a problem for the future. 

Another possible direction to discuss the stableness is to enrich the object world 
from convex polyhedra to "nearly" convex polyhedra, just as the line arrangement 
is enriched to the pseudo-line arrangement [11]. Consider the example in Fig. 9 
again. Indeed, if we can ignore the convexity, we can generate all the triangular 
faces for any perturbation of P. However, it seems difficult to make sure that such 
triangular faces do not intersect one another. Thus, the problem still seems non- 
trivial. More detailed discussion on the stableness in this sense will be presented in 
another paper. 

The approach taken in this paper, i.e., the combinatorial abstraction, can be 
applied for constructing numerically robust algorithms for many other geometric 
problems. For example, other types of algorithms for the three-dimensional convex 
hull, such as a beneath-beyond method and a divide-and-conquer method, can also 
be modified into robust ones [17]. 
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