
New Developments in Environment Machines

Maribel Fernández1 and Nikolaos Siafakas2

Department of Computer Science, King’s College London, Strand, London WC2R 2LS, U.K.

Abstract

In this paper we discuss and compare abstract machines for the lambda-calculus, implementing various
evaluation strategies. Starting from the well-known Categorical abstract machine (CAM) and Krivine’s
abstract machine (KAM), we develop two families of machines that differ in the way they treat environments.
The first family is inspired by the work on closed reduction strategies, whereas the second is built in the
spirit of the jumping machines based on the work done on Linear Logic
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1 Introduction

The λ-calculus is regarded as the theoretical foundation of functional programming
languages. It can be thought of as a simple, statically scoped programming lan-
guage. Abstract machines are one of the tools one can use to provide a formal
operational semantics to a programming language. Abstract machines are transi-
tion systems that bridge the gap between the specification of a dynamic semantics
of a language and a concrete implementation. They may be considered as rewriting
systems, where the rewriting rules have no superpositions.

There is no measure of the abstractness of an abstract machine, however, we will
adopt some terminology: following [2] we refer to abstract machines as transition
systems that accept abstract syntax-trees (in our case, λ-terms) as source-syntax,
while machines that work with an instruction set will be called virtual machines,
or concrete machines if there exists a hardware implementation that offers the
particular instruction set.

We are interested in a particular kind of abstract machine, called environment
machine. The components that are common to all environment machines are: the
expression being evaluated, a control stack and the environment which provides
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the bindings for the free variables in the expression. Functions are represented via
closures, that is, a piece of syntax coupled with an environment containing the
mappings that provide values for the free variables. The underlying λ-calculi that
help to specify and understand environment machines are calculi of explicit sub-
stitutions [1,30,27], which internalise syntactically and semantically the otherwise
external substitution operation.

Many of the environment machines that we encounter in the literature are re-
source unconscious: the memory model is often unspecified, yet referential trans-
parency is guaranteed; some external machinery is always assumed (a garbage col-
lector, a cloning device) or is given if the memory-layout is more concrete. This level
of abstraction, although convenient when analyzing properties of the machines, is
not sufficiently detailed from an implementation point of view. Linear Logic [21]
addresses resource management issues in proofs, and the same techniques can be
applied to the λ-calculus. Several abstract machines for the λ-calculus have been
developed following this approach (see for example [3,19,11,29,13]), and also, at a
more abstract level, several reduction strategies have been defined to take into ac-
count the management of resources in the β-reduction process (or more specifically,
in the propagation of substitutions), see for instance work on the λxgc-calculus in
[30], or work motivated by Linear Logic in [14,15,20,19].

In this paper, starting from (variants of) two well-known abstract machines —
Krivine’s call-by-name machine [24], which we will call KAM, and the Categorical
abstract machine [8], called CAM — we develop two families of machines that ex-
ploit recent work on evaluation strategies in the λ-calculus. Our first contribution
is a family of machines, which we call λc-machines, based on the work on closed
reduction [14,15,31]. It includes call-by-value and call-by-name machines that can
be seen as a refinement of the CAM and KAM, respectively. More interestingly, this
family includes machines that perform reductions under abstractions, following the
closed-reduction strategy discussed in [15,31]. The second contribution is a family
of machines that operate on global environments and are designed to facilitate com-
pilation: the motivation is to have memory management included in the definition.
The notion that we want to make significant here is that of a “virtual copy”. The
machines operate without the need for a garbage collector and each step may be
accomplished in amortised O(1) time.

All the machines described in this paper have been implemented; the prototypes
are available from http://www.dcs.kcl.ac.uk/pg/siafakas/.

2 Background

The first environment machine, the SECD-machine [25], dates back to the 1960s.
It is a call-by-value machine, where arguments are evaluated from right-to-left. The
Categorical Abstract Machine [8], also a call-by-value machine, is equipped with an
instruction set and may be regarded as a virtual machine.

Krivine’s call-by-name environment machine [24] is simple and influential. A
lazy (call-by-need) version of the KAM can be found in [16]; the ZINC abstract
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machine [26] may be thought of as a call-by-value version of Krivine’s abstract
machine.

There are indeed many machines available in the literature that can be seen as
variants of the KAM or the CAM (see the discussion in [2]). Most of these machines
aim at reducing programs (i.e., closed λ-terms) to weak head normal form; they do
not perform reductions under abstractions. A strong reduction machine was studied
in [23]. In terms of programming languages, one can think of reduction under an
abstraction as a “specialisation” of a function definition. The standard approach
that is taken to achieve such a specialisation is to define a weak abstract machine
which then calls new instances of itself inside the bodies of abstractions, using the
normalisation by evaluation technique (see e.g. [7,15]).

Thus, environment machines can be classified according to the strategy of eval-
uation they implement (e.g., call-by-name, call-by-value), according to the kind of
reduction performed (e.g., weak reduction, strong reduction), and also according to
the way they associate environments to terms. For instance, in the CAM and the
KAM, environments are associated to sub-terms of the term being evaluated, and
provide information about the terms that should be substituted for the free variables
in the sub-term. Later we will describe machines that will use only one environment
instead of associating environments to sub-terms. To distinguish these two classes
of machines, we say that the first class of machines use local environments whereas
the latter use global environments.

3 Abstract machines with local environments

We start by presenting two weak machines with local environments that use names
for variables, instead of the standard presentation using De Bruijn indices [12]. The
machines are variants of the KAM and the CAM with Lisp-like associative lists to
represent environments; usually the KAM machine is presented using De Bruijn
indices [9], however names and maps have also been used (see for instance [16,3]).
Since we use names, we may have duplicate entries for keys in the list, however,
keys that arise earlier in the list shadow keys that arise later in the list. In this way,
one can implement maps in an non-destructive manner.

After presenting these two machines, we show how the management of resources
(i.e., the environment) can be improved, using techniques inspired by the work on
closed reduction [14,15].

3.1 A call-by-name environment machine with names

We specify the machine as a transition system, with a set of transition rules on
configurations. A configuration consists of a λ-term and an environment (i.e., a
closure), and a stack of closures. Environments are presented as lists of substitu-
tions. We use the infix, right associative (:) operator and the empty list is denoted
by []. Substitutions and closures are represented as pairs, with a tag c (for closure)
or s (for substitution). The machine is loaded with a term, an empty environment
(when no other domain is provided in advance), and an empty stack; a successful
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Term Env Stack Term Env Stack Cond Rule

tu e s → t e (u, e)c :s Push

λx.t e (u, e′)c :s → t ((u, e′)c, x)s :e s Pass

y ((u, e′)c, x)s :e s → y e s x �≡ y EntF

y ((u, e′)c, x)s :e s → u e′ s x ≡ y EntT

λx.t e [] �→ Halt

Table 1
Call-by-name environment machine

run yields nothing but a closure. The transition rules for the machine are given
in Table 1. To prove the correctness of the machine we define, following [9], a cal-
culus of closures with a call-by-name strategy presented as a big-step operational
semantics [17,18]. Terms are written t[s] where t is a pure λ-term and s is a list of
substitutions of the form (u, x) where x is a variable and u a term in the calculus,
that is, each term t[s] is a closure.

We can obtain the pure λ-term represented by a closure t[s] by using s as a
substitution in t; we denote the result as Subst(t, s). If Subst(t, s) is a closed
λ-term, we say that the closure t[s] is closed. The values of closed closures are
abstractions (λx.t)[s]. The relation t[s] →CBN v defines the value v of a closed
closure t[s] in a call-by-name strategy.

v value

v →CBN v

t →CBN v

x[(t, x) :s] →CBN v

x[s] →CBN v

x[(t, y) :s] →CBN v

t[s] →CBN (λx.t′)[s′] t′[(u[s], x) :s′] →CBN v

(tu)[s] →CBN v

Definition 3.1 (Compilation and De-compilation) The de-compilation (or
read-back) of a machine configuration (t, e, [s1 . . . sn]) (n ≥ 0) is a term obtained by

decomp (t, e, [(u1, e
′
1)

c : . . . : (un, e′n)c]) = t[e] u1[e′1] . . . un[e′n]

The function comp compiles terms from the calculus of closures into machine states,
using two auxiliary functions (compc compiles closures and comps compiles substi-
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tutions; they are mutually recursive): comp t[s] = (t, (comps s), []) where

comps [] = []

comps [(u, x) :s] = [(compc u, x)s : (comps s)]

compc u[s] = (u, comps s)c

We say that a configuration in the abstract machine is closed when decomp(t, e, s)
is a closed term.

The following standard properties are used in the proof of correctness of the machine
with respect to the call-by-name strategy:

Proposition 3.2 (i) An irreducible, closed configuration in the call-by-name ma-
chine has the form (λx.t, e, []).

(ii) If (t, e, s) → (t′, e′, s′) then (t, e, s ◦ s′′) → (t′, e′, s′ ◦ s′′), where ◦ denotes list
concatenation. Therefore, if (t, e, []) →∗ (t′, e′, []) also (t, e, s) →∗ (t′, e′, s) for
any s.

Theorem 3.3 (Correctness of the Call-by-name Environment Machine)
Let t be a closed λ-term.

(i) If t[] →CBN v using the call-by-name strategy then comp t[] = (t, [], []) →∗

(u, e, []) final, and (u, e, []) = comp v.

(ii) If comp t[] = (t, [], []) →∗ (u, e, s), where (u, e, s) is irreducible, then t →CBN

decomp(u, e, s).

3.2 A call-by-value environment machine with names

We now describe a machine isomorphic to the eager machine given in [13] and closely
related to the Categorical Abstract Machine. The configurations of the machine
consist of a λ-term, the environment (a list of substitutions mapping variables to
closures; closures are terms with environments), and a stack that contains closures
tagged either with Q or P . As before, closures and substitutions are represented as
pairs. We attach a tag s to a pair of a variable and a closure to indicate that we are
using it as a substitution; we attach a tag c to the closure part of the substitution.
In the stack, closures are tagged with Q or P . We use the tag Q for arguments, and
mark with a P functions stored in the stack while their arguments are evaluated.
The transition rules for the abstract machine are given in Table 2.

It is easy to see that this machine is exactly the call-by-value machine defined
in [13], but using names of variables instead of De Bruijn indices. The proof of
correctness can be easily adapted from the one in [13].

3.3 Improving the management of resources: λc-machines

In the machines given above, environments carry a lot of useless information during
computation due to the uncontrolled distribution of substitutions. A good repre-
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Term Env Stack Term Env Stack Cond

tu e s → t e (u, e)Q :s

λx.t e (u, e′)Q :s → u e′ (λx.t, e)P :s

λx.t e (λx′.t′, e′)P :s → t′ ((λx.t, e)c, x′) :e′ s

y ((u, e′)c, x)s :e s → y e s x �≡ y

y ((u, e′)c, x)s :e s → u e′ s x ≡ y

λx.t e [] �→

Table 2
Call-by-value environment machine

sentation of environments is essential in order to get efficient implementations. It
is well known that most of the closures that these machines build are useless and
various approaches have been taken to record in the environments just the relevant
bindings (e.g. environment splitting in [6]). Explicit substitution calculi provide
a theoretical framework to explain how to deal with the environments. Linear
Logic [21] adds explicit control over the assumptions in proofs, and as mentioned
in the introduction explicit substitution calculi exploit these ideas to improve the
management of substitutions. Thus, an explicit substitution calculus that controls
the distribution of substitutions is a good candidate to specify environment ma-
chines in a resource conscious way. We will use a calculus of explicit substitutions
that we call λc, inspired by [14,28].

Definition 3.4 (Terms in the λc-calculus) We use x, y, z to denote variables,
t, u, v to denote terms, and o to denote a sequence of elements o1, . . . , on. Table 3
shows the term constructions, together with the variable constraints that must be
satisfied for each construction, and the associated free variables.

The variable constraints imply that each variable occurs free in a term exactly
once. Note that in closures, i.e., λc-terms of the form t[s], s contains substitutions
for variables that must occur free in t; it may contain several pairs (u, x), or none,
in the latter case we write t[id]. In all the pairs (u, x) occurring in s the term u is
closed. Also, unlike in the previous system, t may also contain closures.

A pure λ-term will be compiled into a λc-term by the function defined below.

Definition 3.5 (Compilation) Let t be a λ-term. Its compilation �t� into λc is
defined as: [x1] . . . [xn]〈〈t〉〉 where fv(t) = {x1, . . . , xn}, n ≥ 0, we assume w.l.o.g. that
the variables are processed in lexicographic order, and 〈〈·〉〉 is defined by: 〈〈x〉〉 = x,
〈〈tu〉〉 = 〈〈t〉〉〈〈u〉〉, and 〈〈λx.t〉〉 = λx.[x]〈〈t〉〉 if x ∈ fv(t), otherwise 〈〈λx.t〉〉 = λx.εx.〈〈t〉〉. We
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Name Term Variable Constraint Free Variables

V ariable x − {x}
Abstraction λx.t x ∈ fv(t) fv(t) − {x}
Application tu fv(t) ∩ fv(u) = ∅ fv(t) ∪ fv(u)

Erase εx.t x �∈ fv(t) fv(t) ∪ {x}
Copy δy,z

x .t x �∈ fv(t), y �= z, {y, z} ⊆ fv(t) (fv(t) − {y, z}) ∪ {x}
Closure t[(u, x)] x ∈ fv(t), ∀i �= j, xi �= xj , fv(u) = ∅ fv(t) − x

Table 3
λc-terms and variable constraints

define [·]· below, using t[x := u] to denote the usual (implicit) notion of substitution.

[x]x = x [x](λy.t) = λy.[x]t

[x](εy.t) = εy.[x]t [x](δy′,y′′
y .t) = δy′,y′′

y .[x]t

[x](tu) = δx′,x′′
x .[x′](t[x := x′])[x′′](u[x := x′′]) x ∈ fv(t), x ∈ fv(u), x′, x′′ fresh

= ([x]t)u x ∈ fv(t), x �∈ fv(u)

= t([x]u) x ∈ fv(u), x �∈ fv(t)

For example:

�(xy)(xy)� = [x][y]〈〈(xy)(xy)〉〉 = δy′,y′′
y .δx′,x′′

x .(x′y′)(x′′y′′) �= [y][x]〈〈(xy)(xy)〉〉

The compilation function returns a λc-term without closures. However, to load the
abstract machine below, we assume there is a further step in the compilation which
adds an empty closure [id] to each sub-term. Although the compilation is defined
on open terms, we demand that sufficient substitutions are provided in advance to
obtain a closed term.

We will now investigate how call-by-name and call-by-value versions of λc-calculi
may improve the KAM and CAM respectively. We start with a traditional opera-
tional semantics and derive the corresponding abstract machines. Next, we exploit
the copying and erasing constructs to mix features from call-by-name and call-by-
value. Finally, we discuss a more powerful strategy inspired by [14].

To define the strategies, we use an external function • to extend environments
that we define via concatenation: (t[s′])•[s] = t[s′◦s]. Since substitutions are closed,
and each variable occurs at most once in s, the concatenation is commutative. One
of the main contributions of the paper is the definition abstract machines based on
λc-terms which we present next.

M. Fernández, N. Siafakas / Electronic Notes in Theoretical Computer Science 237 (2009) 57–73 63



t →c
CBN v

x[(t, x)] →c
CBN v

Ax
(λy.t)[id] →c

CBN (λy.t)[id]
(λy.t • [(u, x)])[s] →c

CBN v

(λy.t)[(u, x) :s] →c
CBN v

x ∈ fv(t) ((t • [(u′, x)])u)[s] →c
CBN v

(tu)[(u′, x) :s] →c
CBN v

x ∈ fv(u) (t(u • [(u′, x)]))[s] →c
CBN v

(tu)[(u′, x) :s] →c
CBN v

t →c
CBN (λx.r)[id] r • [(u, x)] →c

CBN v fv(u) = ∅
Beta

(tu)[id] →c
CBN v

(δy′y′′
y .t • [(u, x)])[s] →c

CBN v

(δy′y′′
y .t)[(u, x) : s] →c

CBN v

(t • [(u, x′), (u, x′′)]) • [s] →c
CBN v

Delta
(δx′x′′

x .t)[(u, x) : s] →c
CBN v

(εy.t • [(u, x)])[s] →c
CBN v

(εy.t)[(u, x) : s] →c
CBN v

t • [s] →c
CBN v

(εx.t)[(u, x) : s] →c
CBN v

Fig. 1. Call-by-name evaluation of λc-terms

Call-by-name λc-machine
We define first a call-by-name evaluation strategy for λc-terms in Figure 1. The

operational semantics is given by a set of axioms and rules, defining a relation
t[s] →c

CBN v between closed closures and values. Values are λc-terms of the form
(λy.t)[id], that is, the substitutions will be pushed inside abstractions to compute
values. Usually, this operation requires α-conversion to avoid capture of variables,
but we rely on a closed reduction strategy, which is α-conversion free [14].

The corresponding abstract machine is defined by the transition rules in Table 4
on configurations containing a λc-term and a stack of λc-terms. The correctness of
the machine with respect to the operational semantics is easy to prove, the proof
follows the same lines as the correctness proofs mentioned earlier in this section.
We state the main results below:

Proposition 3.6 (i) An irreducible, closed configuration in the call-by-name λc

machine has the form ((λx.t)[id], []).

(ii) If (t, s) → (t′, s′) then (t, s◦s′′) → (t′, s′◦s′′), where ◦ denotes list concatenation.
Therefore, if (t, []) →∗ (t′, []) also (t, s) →∗ (t′, s) for any s.

Theorem 3.7 (Correctness of the Call-by-name λc Environment Machine)
Let t be a closed λc-term obtained by compiling a closed λ-term u.

(i) If t[] →c
CBN v then (t, []) →∗ (v, []) final.

(ii) If (t, []) →∗ (v, []) final, then t →c
CBN v.

In order to define a call-by-value strategy, →c
CBV , for λc, we just need to replace
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Term Stack Term Stack Cond

(tu)[(u′, x) :e] s →c
CBN ((t • [(u′, x)])u)[e] s x ∈ fv(t)

(tu)[(u′, x) :e] s →c
CBN (t(u • [(u′, x)]))[e] s x ∈ fv(u)

x[(u, x)] s →c
CBN u s

(λx.t)[(u, y) :e] s →c
CBN (λx.t • [(u, y)])[e] s x �≡ y

(εy.t)[(u, x) :e] s →c
CBN (εy.t • [(u, x)])[e] s x �≡ y

(εx.t)[(u, x) :e] s →c
CBN t • [e] s

(δy′y′′
y .t)[(u, x) :e] s →c

CBN (δy′y′′
y .t • [(u, x)])[e] s x �≡ y

(δx′x′′
x .t)[(u, x) :e] s →c

CBN (t • [(u, x′), (u, x′′)]) • [e] s

(tu)[] s →c
CBN t u :s

(λx.t)[] u :s →c
CBN t • [(u, x)] s

(λx.t)[] [] �→c
CBN

Table 4
Call-by-name λc abstract machine

the rule Beta in the definition of →c
CBN by the following rule:

t →c
CBV (λx.r)[id] u →c

CBV v′ r • [(v′, x)] →c
CBV v fv(u) = ∅

Beta
(tu)[id] →c

CBV v

We omit the corresponding call-by-value environment machine.

The right time for evaluating the argument: the λCBV N -machine
The relations →c

CBV and →c
CBN differ in the way the argument is evaluated.

We can take profit of the explicit copy constructs in the λc syntax, and trigger the
evaluation of the argument just before copying. This gives us a reduction strategy
that is in-between call-by-name and call-by-value (but it does not correspond exactly
to a call-by-need strategy, since the existence of a copy construct does not imply
neededness; see [14,15] for a more detailed discussion).

To define a strategy that evaluates substitutions before copying, we use the
rules in Table 5 instead of the corresponding rules of →c

CBN (see Figure 1). We also
put some laziness in the way substitutions are propagated (we will avoid pushing
substitutions through abstractions). In the corresponding abstract machine, we
use tagged terms, in the same way as in the categorical abstract machine. We do
reduce the substitution just before copying: in the operational semantics, it is easy
to see that a substitution can evaluate only to an abstraction. We use Q to tag
arguments as before, however, P now tags copying constructs instead of functions.
The transition rules for the abstract machine are the rules in rows 1-7 in Table 4
together with the rules in Table 6.
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The Cbvn-machine

Reduction under abstraction - improving the strategy
It is known [4] that no usual strategy based on environments can achieve Lévy’s

optimality. An efficient operational semantics that relaxes some of the demands of
optimal reduction has been given in [14]. The idea is that we can take advantage
of our ability to reduce under abstractions (since we are in an α-conversion free
calculus), but not at the top-level, since we want to stop on a weak-head normal
form. In particular, it is only useful to perform these extra reductions on a term
which will be copied, in order to share these reductions. We refer the reader to [14]
for the definition of an evaluation strategy for λc that interleaves a weak strategy
with a stronger one, called only before an application of the δ rules.

4 Abstract machines with global environments

In the latter machines, each environment is coupled with a term whereas the KAM
and CAM machines explicitly define an environment pointer in their transitions.
Yet another way to couple terms with environments is to define a global lookup-
table, an array to be precise, that contains the bindings. Intuitively, we will use
variable names as array-indices, and reductions will side-effect the array structure.
Below we present two machines based on global environments. First we define a
machine that works with linear λ-terms and then we develop techniques that will

Table 6

�→c
CBV N[](λx.t)[e]

st • ([(B, x′), (B, x′′)] ◦ e)→c
CBV N((δx′x′′

x .t)[e])P :s︸
B

︷︷ ]︸ )[.(λ

st • ([(u, x)] ◦ e)→c
CBV N(u)Q : s(λx.t)[e]

((δx′x′′
x .t)[e])P :su→c

CBV Ns(δx′x′′
x .t)[(u, x) : e]

(u)Q :st→c
CBV Ns(tu)[id]

StackTermStackTerm

Delta′
(δx′x′′

x .t)[(u, x) : s] →c
CBV N v

Table 5
→c

CBV N -evaluation of λc-terms

Beta′
(tu)[id] →c

CBV N v

u →c
CBV N u′ t • ([(u′, x′), (u′, x′′)] ◦ s) →c

CBV N v

Ax′
(λy.t)[s] →c

CBV N (λy.t)[s]
t →c

CBV N (λx.r)[s] r • [(u, x) ◦ s] →c
CBV N v
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allow us to move to the full case.

The linear J-Machine
A closed λ-term is linear if every abstraction in a term binds exactly one vari-

able occurrence. Such terms are a subset of pure λc-terms, that is terms without
substitutions, where no sub-term contains instances of δ and ε-terms.

Definition 4.1 We define linear closure terms as tuples (t, a) where

• t is a linear λ-term and we assume all variable names are pairwise distinct, and
• a is an array of size equal to the number of distinct variables in t, representing

the global environment (GEnv for short).

We write Array (l, u) [(n, t)] to denote an array with lower bound l and upper bound
u that associates to the index n the term t. We write an to access the element at
index n in the array a, and a || [(n, u)] to destructively update the element at index
n with u.

We proceed with the definition of the operational semantics. To evaluate a
closed, linear term, we start with a linear closure (t, a) where a is empty, and use
the array to store the substitutions as they are created. Values are closures where
the term is an abstraction.

v value

v → v

t = ax t → v

(x, a) → v

(t, a) → (λx.t′, a′) (t′, a′ || [(x, u)]) → v

(tu, a) → v

The configurations of the corresponding abstract machine consist of a closure term
and a stack (s) of pure λ-terms. Notice that no closure terms are build in the stack
(cf. KAM and CAM). The transitions of the machine are given below:

Term GEnv Stack Term GEnv Stack

tu a s →g
LIN t a u :s

λn.t a u :s →g
LIN t a || [(n, u)] s

n a s →g
LIN an a s

λn.t a [] �→g
LIN

The work-flow of the machine is simple: we traverse the term, updating the
global environment (a similar machine was defined in [13]). We do not overwrite
any previously stored arguments in the array, since the machine does not copy any
environments. Note that this machine does not require any external machinery and
each transition takes O(1) time. We obtain the result via the following read-back
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function, where the overlined substitution is built using the associations in a.

r(t, a, [u1 . . . un]) = r′(tu1 . . . un, a)

r′(t, a) = t if fv(t) = ∅
r′(t, a) = r′(t[u/n], a) if fv(t) = n

The δ-machine
The problem is the following: how do we use the previous array design in a

non-linear way? Clearly, we cannot expect to fit all bindings in an array whose size
is bound by the size of the initial term!

We follow the idea developed in the previous section and work with closure
terms, but now using the set of pure λc-terms to build our closures, that is, terms
in closures will also contain ε and δ. The design of the environment part is more
involved since copying will take place and thus, each array index cannot identify a
single binding. The solution is to work with an array of lists. Due to the unique
variable name constraint and the linearity of λc-terms, we can still use names as
indexes in the array. The array will be initialised with empty list structures, and as
the computation progresses, the list at the element x in the array will contain the
different terms that need to be substituted for x in different copies of the term.

The problem is then how to discriminate between all of the elements in such a
list. Our solution is the following: the presence of δ-terms in the syntax gives a
clear indication of which arguments are copied. All we have to do is to “tag” argu-
ments with an identifier that indicates to which copy these belong; we then need an
appropriate semantics that accesses the right copy at the right time. Summarising,
each element in the array will contain a list of triples of the form (c, u, c′) where
the first and last elements are strings — c := R ◦ c | S ◦ c | ε — which we call
copy addresses, used to identify copies of terms. The middle element is reserved
for arguments which are pure λc-terms. More precisely, an element (c, u, c′) in the
list an indicates that the c copy of the variable n is associated to the c′ copy of
u. We use the auxiliary function (an)find

c , which yields a triple from the list stored
at array index n. The triple is found based on its first element c. We also use
the auxiliary function (an)del

c , which yields a list, where the triple identified by c

is removed. Updating a list element of an array is done as before; the difference is
that we may have multiple updates at several lists of the array: a || [(n, l)] where
now o denotes a sequence of several index-element pairs. We now summarise the
definition of closure terms.

Definition 4.2 A closure term is a triple (t, a, c) where t is a λc-term, c is a copy
address, and a = Array (l, u) [(n, b)] is an array representing the global environment
GEnv, where the elements b are lists of triples of the form (c, t, c′) consisting of a
copy address, a λc-term and another copy address.

The big-step operational semantics is provided next; followed by the definition
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of the abstract machine which implements the semantics.

→

The strings that we use as copy addresses come from the Geometry of Interaction
interpretation for Linear Logic [22] and the path based realisation in [29]. There,
sharing is maintained via contraction nodes (fan nodes) whose traversal builds
(R | S)∗-strings to discriminate between shared contexts. In our case, sharable
information is represented via δ-nodes, where we create copy addresses to discrimi-
nate between different copies. From a different point of view, one may argue that we
implement on the fly α-conversion: our variable names consist of a fixed part (given
at initialisation) and a volatile part (the copy address). Notice that the bindings of
each copy are tagged by distinct addresses.

It is easy to see from the rules above that we only store evaluated expressions in
the array structure and hence, these rules define a call-by-value strategy. We have
used in the rules two auxiliary functions (cpy and clr) which facilitate copying and
cleaning up elements in the environment. Copying is carried out by the definition
in Table 7, which we prefer to present as a transition relation so that it can be
directly used in the definition of the abstract machine; we use a stack (r) to keep
track of recursive calls. Cleaning up behaves in a similar fashion: all we need to do
is to modify the first rule in Table 7 such that the copies tr′ and tr′′ are omitted
in the definition (i.e. nothing is concatenated). The effect of this is that we simply
delete (or use up) unwanted triples.

The configurations of the corresponding abstract machine consist of a closure
term and a stack: tQc : s | tPc : s | [] where each stack cell is tagged with the usual
constants P,Q and a copy-address c.

The machine is loaded with a λc-term, the array of lists where each list is ini-
tialised to the empty one and we set the current-copy-address to ε. The latter
indicates that initially, we do not work inside a copy. The transitions are defined in

(εx.t, a, c) v

(δy,z
x .t, a, c) → v

(c, u, c′) = (ax)find
c a′ = a || [(x, (ax)del

c )] (t, clr((c, u, c′), fv(u), a′), c) → v

(tu, a, c) → v

(c, u, c′) = (ax)find
c a′ = a ||

⎡
⎢⎢⎢⎣

(x, (ax)del
c ),

(y, (c, u,R ◦ c′) :ay),

(z, (c, u, S ◦ c′) :az)

⎤
⎥⎥⎥⎦ (t, cpy((c, u, c′), fv(u), a′), c) → v

(x, a, c) → v

(t, a, c) → (λx.t′, a′, c′) (u, a′, c) → (u′, a′′, c′′) (t′, a′′ || [(x, (c′, u′, c′′) : (a′′x))], c′) → v

v → v

(c, t, c′) = (ax)find
c (t, a || [(x, (ax)del

c )], c′) → vv value
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Table 7
Copying in the δ-machine

Table 8. Here we use again the two external functions, namely cpy and clr but it is

Term GEnv CurC Stack Term GEnv CurC Stack

tu a c s t a c (u)Q
c :s

λn.t a c (u)Q
c′ :s u a c′ (λn.t)P

c :s

λn.t a c (λn′.t′)P
c′ :s t′ a || [(n′, (c′, λn.t, c) :an′)] c′ s

n a c s u a || [(n, (an)del
c )] c′ s

where (c, u, c′) = (an)find
c

δn′n′′
n .t a c s t cpy((c, u, c′), fv(u), a′) c s

where (c, u, c′) = (an)find
c

a′ = a ||

⎡
⎢⎢⎢⎣

(n, (an)del
c ),

(n′, (c, u,R ◦ c′) :an′),

(n′′, (c, u, S ◦ c′) :an′′)

⎤
⎥⎥⎥⎦

εn.t a c s t clr((c, u.c′), fv(u), a′) c s

where (c, u, c′) = (an)find
c

a′ = a || [ (n, (an)del
c ) ]

λn.t a c []

Table 8
δ-machine transitions

[]a[]

rafv(u)(c, u, to)(c, u, to) :ra[]

where (to, u′, to′) = (af ′)find
to

tr′ = ((S ◦ to), u′, (S ◦ to′))

tr′′ = ((R ◦ to), u′, (R ◦ to′))

(to, u′, to′) :ra || [(f ′, tr′ : tr′′ : (af ′)del
to )]f(c, u, to)raf ′ :f(c, u, to)

stackGEnvfvstriplestackGEnvfvstriple
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Theorem 4.3 (Correctness) The δ-machine implements the call-by-value opera-
tional semantics defined above on closure terms.

Example 4.4 We compile the term (λx.xx)((λx.x)(λx.x)) into a λc-term and α-
convert as appropriate. For the sake of clarity, we use names instead of natural
numbers, obtaining: (λx.δx′ x′′

x .x′x′′)((λy.y)(λk.k)). The transitions are given in
Table 9 on page 16; we write uc

c′ instead of (c, u, c′). Note that δ-terms generate a
copy-address for each copy and if we move inside a copy, we update the current-
copy-address. The last line in the example shows the final state of the machine:
the computation yields the identity function and the current-copy-address indicates
that we jumped into the S-copy of the two copies that the δ-term generates. The
external functions are not utilised, because the terms that we copy are closed.

5 Conclusions

Applying techniques inspired by the work in Linear Logic, we have derived two
families of abstract machines for the λ-calculus. In the first one, environments
associate to each sub-term, locally, the information needed about the bindings of
the free variables. A syntax for terms with explicit copying and erasing constructs
allows us to optimise the machines. The second family of machines also benefits from
the use of a syntax with explicit copying and erasing, but uses a global environment,
well-suited for compilation. The copy addresses that we generate can get quite big;
a more compact representation would be more efficient, for instance, one could draw
fresh addresses from a free-list. Finally, notice that there is no garbage collector
involved. There is however a space leak if we do not make full copies of the copy
address.
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[23] B. Grégoire and X. Leroy. A compiled implementation of strong reduction. In Proceedings of ICFP’02,
Pittsburgh, Pennsylvania, USA, 2002.
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