Solutions for semilinear elliptic problems with critical Sobolev–Hardy exponents and Hardy potential

Dongsheng Kanga,∗, Shuangjie Pengb,c

aDepartment of Mathematics, South-Central University for Nationalities, Wuhan 430074, PR China
bDepartment of Mathematics, Xiaogan University, Xiaogan 432100, PR China
cWuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China

Received 27 September 2004; accepted 28 September 2004

Abstract

Let $\Omega \subset \mathbb{R}^N$ be a smooth bounded domain such that $0 \in \Omega$, $N \geq 5$, $0 \leq s < 2$, $2^*(s) = \frac{2(N-s)}{N-2}$. We prove the existence of nontrivial solutions for the singular critical problem

$$-\Delta u - \mu \frac{u}{|x|^2} = \frac{|u|^{2^*(s)-2}}{|x|^s} u + \lambda u$$

with Dirichlet boundary condition on Ω for all $\lambda > 0$ and $0 \leq \mu < \left(\frac{N+2}{2}\right)^2 - \left(\frac{N+2}{N}\right)^2$.

© 2005 Elsevier Ltd. All rights reserved.

MSC: 35J60; 35B33

Keywords: Nontrivial solutions; Compactness; Critical Sobolev–Hardy exponents; Singularity

1. Introduction and main results

Consider the following problem:

$$\begin{cases}
-\Delta u - \mu \frac{u}{|x|^2} = \frac{|u|^{2^*(s)-2}}{|x|^s} u + \lambda u, & x \in \Omega, \\
u = 0, & x \in \partial \Omega,
\end{cases}$$

(1.1)
where Ω is a smooth bounded domain in $\mathbb{R}^N (N \geq 3)$, $0 \in \Omega$, $\lambda > 0$, $0 \leq \mu < \bar{\mu} := (\frac{N-2}{2})^2$, $\bar{\mu}$ is the best constant in the Hardy inequality, $2^* (s) := \frac{2(N-s)}{N-2}$ is the critical Sobolev–Hardy exponent; note that $2^* (0) = 2^* := \frac{2N}{N-2}$ is the critical Sobolev exponent. As a consequence of the Hardy inequality, the linear elliptic operator $L := (-\Delta - \frac{\mu}{|x|^2})$ is positive and has discrete spectrum σ_μ in $H_0^1 (\Omega)$ if $0 \leq \mu < \bar{\mu}$. Let $\lambda = \lambda_1 (\mu)$ be the first eigenvalue of the operator L in $H_0^1 (\Omega)$ and define the energy functional for (1.1) on $H_0^1 (\Omega)$ by

$$ J (u) := \frac{1}{2} \int_\Omega \left(|\nabla u|^2 - \mu \frac{|u|^2}{|x|^2} \right) dx - \frac{1}{2^*(s)} \int_\Omega \frac{|u|^{2^*(s)}}{|x|^s} dx - \frac{\lambda}{2} \int_\Omega |u|^2 dx, $$

due to the invariance of $\int_\Omega |\nabla u|^2 dx$, $\int_\Omega \frac{|u|^{2^*(s)}}{|x|^s} dx$ and $\int_\Omega \frac{|u|^2}{|x|^s} dx$ with respect to the rescaling $u \mapsto u_\varepsilon = \varepsilon^{-\frac{N-2}{2}} u (\varepsilon \cdot)$ and the existence of nontrivial entire solution of the limiting problem (see [1–3])

$$ \begin{cases}
-\Delta u - \mu \frac{u}{|x|^2} = \frac{|u|^{2^*-2} u}{|x|^s}, & x \in \mathbb{R}^N, \\
|u| < \infty, & |x| \to \infty,
\end{cases} $$

$J (u)$ fails to satisfy the classical Palais–Smale (PS in short) condition in $H_0^1 (\Omega)$. However, a local PS condition can be established. Indeed, define the best constant

$$ A_{\mu,s} := \inf_{u \in H_0^1 (\Omega) \setminus \{0\}} \frac{\int_\Omega \left(|\nabla u|^2 - \mu \frac{|u|^2}{|x|^2} \right) dx}{\left(\int_\Omega \frac{|u|^{2^*(s)}}{|x|^s} dx \right)^{\frac{s}{2^*(s)}}}, $$

suppose $\{u_n\} \subset H_0^1 (\Omega)$ is a sequence such that $J (u_n) \leq c < \frac{2-s}{2(N-s)} (A_{\mu,s})^{\frac{N-s}{2-s}}$, $J' (u_n) \rightarrow 0$ in $H^{-1} (\Omega) = \left(H_0^1 (\Omega) \right)^*$, then $\{u_n\}$ contains a strongly convergent subsequence. Using this local PS condition, Kang and Peng proved in [3] that problem (1.1) has at least one positive solution $u_0 \in H_0^1 (\Omega)$ for $0 < \lambda < \lambda_1$ and suitable parameter μ. For earlier work on (1.1) as $s = 0$, see [4–6]. For the quasi-linear form of (1.1) with $\mu = 0$, see [7]. Note that as $s = 0$, $A_{\mu,s}$ becomes $A_{\mu,0}$, i.e.,

$$ A_{\mu,0} := \inf_{u \in H_0^1 (\Omega) \setminus \{0\}} \frac{\int_\Omega \left(|\nabla u|^2 - \mu \frac{|u|^2}{|x|^2} \right) dx}{\left(\int_\Omega |u|^2 dx \right)^\frac{2}{2^*}}. $$

The best constant $A_{\mu,0}$ is used and plays an important role in the discussion of [4–6].

By the results in [1,2], the authors of [3] found that for $\varepsilon > 0$ and $\beta := \sqrt{\mu} - \mu$, the functions

$$ u_\varepsilon^\beta (x) = \left(\frac{2\beta \varepsilon^2 (N-s)}{\sqrt{\mu}} \right)^{\frac{N-s}{2-s}} / \left(|x|^{\sqrt{\mu} - \beta} \left(\varepsilon + |x|^{\frac{2-s}{\sqrt{\mu}}} \right)^{\frac{N-s}{2-s}} \right) $$

solves the equation

$$ -\Delta u - \mu \frac{u}{|x|^2} = \frac{|u|^{2^*(s)-2}}{|x|^s} u \quad \text{in } \mathbb{R}^N \setminus \{0\} $$
and satisfy
\[\int_{\mathbb{R}^N} \left(|\nabla u^s_\mu|^2 - \mu \frac{|u^s_\mu|^2}{|x|^s} \right) \, dx = \int_{\mathbb{R}^N} \frac{|u^s_\mu|^2(s)}{|x|^s} \, dx = (A_{\mu,s})^{\frac{N-s}{2}}; \]

$A_{\mu,s}$ is independent of Ω and is achieved by U_0 on \mathbb{R}^N.

By Pohozaev’s identity, if Ω is a star-shaped domain in \mathbb{R}^N, then problem (1.1) has no nontrivial solutions for $\lambda \leq 0$. It is easy to verify that as $\lambda \geq \lambda_1$, every solution of (1.1) must change sign. So it is meaningful to study the existence of nontrivial solutions for problem (1.1) as $s \in [0, 2)$ and $\lambda \in (0, +\infty)$. Kang and Peng in [8] discussed the nontrivial solutions to (1.1) and get some existence results for large range $\lambda > 0$.

Recently, Cao and Han in [9] proved affirmatively an open problem in [5], that is:

Open Problem. Assume that Ω is an open bounded domain in \mathbb{R}^N, $N \geq 5$, $0 \in \Omega$ and $0 \leq \mu < \bar{\mu} - (N+2)^2/N$. Then for $s = 0$ and for all $\lambda > 0$, problem (1.1) admits a nontrivial solution with critical level in the range $(0, \frac{1}{N}(A_{\mu,0})^{\frac{N}{N-2}})$.

Stimulated by [9], a natural interesting question arises, i.e., whether the above results remain true for (1.1) as $0 < s < 2$, with the critical Sobolev–Hardy growth.

This question is in fact the continuation of the above open problem. In the case of problem (1.1) with $s > 0$, we need to consider not only the effect of parameter λ and μ, but also that of parameter s. Namely, problem (1.1) becomes more complicated to deal with.

In this paper, by using the techniques in [5,8,9], we obtain the following existence results, which also answer the newly arisen question.

Theorem 1.1. Assume that $N \geq 5$, Ω is an open bounded domain in \mathbb{R}^N, $0 \leq s < 2$ and $0 \leq \mu < \bar{\mu} - (N+2)^2/N$. Then for all $\lambda > 0$, problem (1.1) has at least one nontrivial solution $u \in H_0^1(\Omega)$ with energy level in the range $(0, \frac{2-s}{2(N-s)}(A_{\mu,s})^{\frac{N-s}{N-2}})$.

This paper is organized as follows. In Section 2, we establish some asymptotic estimates; in Section 3, we give the proof of our theorem. These ideas are essentially introduced in [5,8,9]. In the following discussion, we denote various positive constants as C, C_1, C_2, \ldots, and omit dx in integration for convenience.

2. Some technical asymptotic estimates

We first define the equivalent norm in $H_0^1(\Omega)$ for $0 \leq \mu < \bar{\mu}$:
\[
\|u\| := \left(\int_{\Omega} \left(|\nabla u|^2 - \mu \frac{u^2}{|x|^s} \right) \right)^{\frac{1}{2}}, \quad \forall u \in H_0^1(\Omega).
\]

By Hardy inequality, this norm is equivalent to the usual norm in $H_0^1(\Omega)$. We also denote the norm of $L^p(\Omega)$ space as $|u|_p$.

Fix $k \in \mathbb{N}$ and for all $i \in \mathbb{N}$ denote by e_i an L^2 normalized eigenfunction relative to $\lambda_i \in \sigma_{\mu}$, let H^- denote the space spanned by the eigenfunctions corresponding to the eigenvalues $\lambda_1, \ldots, \lambda_k$ and $H^+ := (H^-)^\perp$. Take always $m \in \mathbb{N}$ large enough so that $B_{1/m} \subset \Omega$, where $B_{1/m}$ denotes the ball of
radius \(1/m\) with center at 0. Define
\[
\zeta_m(x) := \begin{cases}
0, & x \in B_{1/m}, \\
 m|x| - 1, & x \in A_m = B_{2/m} \setminus B_{1/m}, \\
1, & x \in \Omega \setminus B_{2/m}.
\end{cases}
\]

\(e_i := \zeta_i e_i, H_m := \text{span}\{e_i; i = 1, \ldots, k\}\) and \(\Lambda := \{u \in H_m^{-}; |u|_2 = 1\}\).

Lemma 2.1 ([5,9]). As \(m \to \infty\), we have

(i) \(e^m_i \to e_i\) in \(H_1^0(\Omega), \forall i \in \mathbb{N}\).

(ii) \[
\max_{u \in \Lambda} \|u\|^2 \leq \lambda_k + Cm^{-2\beta}. \quad \Box
\]

Consider the function \(u^*_\varepsilon(x)\) in (1.2). Since \(u^*_\varepsilon\) is a radial function, we can view it also as a function on \(\mathbb{R}^+\). For all \(m \in \mathbb{N}\) and \(\varepsilon > 0\), define the shifted functions
\[
u^m_\varepsilon(x) := \begin{cases}
 u^*_\varepsilon(x) - u^*_\varepsilon\left(\frac{1}{m}\right), & x \in B_{1/m} \setminus \{0\}, \\
0, & x \in \Omega \setminus B_{1/m},
\end{cases}
\]
then we have the following estimates.

Lemma 2.2 ([8]). There exist \(C_1, C_2\) and \(K > 0\), such that if \(\varepsilon < 2(N-2)\alpha m^{2\beta} < K\), then
\[
\|u^m_{\varepsilon}\|^2 \leq (A_{\mu,s}) \frac{N-s}{2-s} + C_1 \varepsilon \frac{2(N-2)\alpha m^{2\beta}}{2-s}, \quad (2.1)
\]
\[
\int_{\Omega} |u^m_{\varepsilon}|^{2^*(s)} \geq (A_{\mu,s}) \frac{N-s}{2-s} - C_2 \varepsilon \frac{2(N-2)\alpha m^{2\beta}}{2-s}. \quad (2.2)
\]

3. **Proof of Theorem 1.1**

We recall that a sequence \(\{u_n\} \subset H_1^0(\Omega)\) is called a PS sequence for \(J\) at level \(c\) if \(J(u_n) \to c\) and \(J'(u_n) \rightharpoonup 0\) in \(H^{-1}(\Omega)\). The functional \(J\) is said to satisfy the (PS)\(_c\) condition, if every (PS) sequence of \(J\) at level \(c\) contains a strongly convergent subsequence. The following results concerning the local compactness are already known. The proof of Lemma 3.1 can also be found in Theorem 4.1 of [7] by setting \(p = 2\) and by using \(A_{\mu,s}\) and our equivalent norm in \(H_1^0(\Omega)\).

Lemma 3.1 ([3]). Suppose \(\lambda > 0\), then \(J(u)\) satisfies the (PS)\(_c\) condition for all \(c < \frac{2-s}{2(N-s)}(A_{\mu,s}) \frac{N-s}{2-s}\).

For any \(m > 0\) and \(\varepsilon > 0\), we define
\[
c_{\varepsilon} := \inf_{h \in \Gamma} \max_{v \in Q^c_m} J(h(v)),
\]
where
\[
\Gamma := \{h \in C(Q^c_m, H_0^1(\Omega)); h(v) = v, \forall v \in \partial Q^c_m\}
\]
and
\[
Q^c_m := [(B_{R} \cap H_m^{-}) \oplus [0, R][u^m_{\varepsilon}]].
\]
The following result is crucial in our discussion.

Lemma 3.2. Assume that \(\lambda > 0, N \geq 5 \) and \(0 \leq \mu < \tilde{\mu} - \frac{(N+2)^2}{N} \). Then we have

\[
c_{\varepsilon} < \frac{2 - s}{2(N - s)} (A_{\mu, s})^{\frac{N-s}{N}}.
\]

Proof. We may assume that \(\lambda_k \leq \lambda < \lambda_{k+1} \). Let

\[
\max_{u \in Q_m} J(u) = J(w^m + t_m u^m) \quad \text{for some } w^m \in H_m^-.
\]

Note that the space \(H_m^- \) is finite dimensional and the convergence of \(\{w^m\} \) can be viewed as in any norm topology; thus from Lemma 2.1 we get

\[
J(w^m) = \frac{1}{2} \|w^m\|^2 - \frac{\lambda}{2} \int_{\Omega} |w^m|^2 - \frac{1}{2^* (s)} \int_{\Omega} |w^m|^{2^* (s)}
\]

\[
\leq \left(\frac{\lambda_k - \lambda}{2} + C_3 m^{-2\beta} \right) |w^m|_2^2 - C_4 |w^m|_2^{2^* (s)}
\]

\[
\leq C_3 m^{-2\beta} |w^m|_2^2 - C_4 |w^m|_2^{2^* (s)}
\]

\[
\leq \max_{t \geq 0} (C_3 m^{-2\beta} t^2 - C_4 t^{2^* (s)})
\]

\[
= C_5 m^{-\frac{2(N-\beta)}{2-s}}.
\]

On the other hand, as in [8], setting \(\varepsilon = m^{-(N+2)(2-s)\beta/(2(N-2))} \), from now on we denote \(u^m \) and \(t_m \) as \(u^m \) and \(t_m \) with the above choice of \(\varepsilon \). Then as \(m \to \infty \), (2.1) and (2.2) become

\[
\|u^m\|^2 \leq (A_{\mu, s})^{\frac{N-s}{2-s}} + C_1 m^{-N\beta}, \tag{3.1}
\]

\[
\int_{\Omega} |u^m|^{2^* (s)} \geq (A_{\mu, s})^{\frac{N-s}{2-s}} - C_2 m^{-\frac{\mu(N-\beta)}{N-2}}. \tag{3.2}
\]

Moreover, we also get that (see [8])

\[
\int_{\Omega} |u^m|^2 \geq C_0 m^{-(N+2)}. \tag{3.3}
\]

Note that \(id \in I \) and \(|\text{supp } w^m \cap \text{supp } u^m| = 0 \), thus

\[
c_{\varepsilon} \leq \max_{u \in Q_m} J(u) = J(w_m + t_m u^m) = J(w_m) + J(t_m u^m) \tag{3.4}
\]

for some \(t_m > 0 \). From (3.1)–(3.3) we have that

\[
J(t_m u^m) = \frac{1}{2} \|t_m u^m\|^2 - \frac{\lambda}{2} \|t_m u^m\|_2^2 - \frac{1}{2^* (s)} \int_{\Omega} |t_m u^m|^{2^* (s)}
\]

\[
= \frac{t_m^2}{2} (\|u^m\|^2 - \lambda |u^m|^2) - \frac{t_m^2}{2^* (s)} \int_{\Omega} |t_m u^m|^{2^* (s)}
\]

\[
\leq \frac{t_m^2}{2} ((A_{\mu, s})^{\frac{N-s}{2-s}} + C_1 m^{-N\beta} - \lambda C_0 m^{-(N+2)}).
\]
for m large enough, where we have used the fact that

$$\max_{t \geq 0} \left(\frac{t^2}{2} B_1 - \frac{t^{2s}(s)}{2^s(s)} B_2 \right) = \frac{2 - s}{2(N - s)} B_1 \left(\frac{B_1}{B_2} \right)^{\frac{N - s}{2} - 1}, \quad B_1 > 0, B_2 > 0$$

and

$$N + 2 < N \beta < \frac{N(N - s)}{N - 2} \beta \quad \text{for } 0 \leq \mu < \tilde{\mu} - \left(\frac{N + 2}{N} \right)^2.$$

By $0 \leq \mu < \tilde{\mu} - (\frac{N + 2}{N})^2$ we also get

$$N + 2 < N \beta < \frac{2(N - s)}{2 - s} \beta.$$

Hence, for m large enough we deduce from (3.4) that

$$c_e \leq \frac{2 - s}{2(N - s)} (A_{\mu,s})^{\frac{N - s}{2 - s}} + C_7 m^{-N \beta} - C_8 m^{-(N + 2)} + C_5 m^{-\frac{2(N - s)}{2 - s} \beta}$$

$$\leq \frac{2 - s}{2(N - s)} (A_{\mu,s})^{\frac{N - s}{2 - s}}. \quad \square$$

Proof of Theorem 1.1. The proof is standard and we only give a sketch of it. According to [5], as m, R large enough, the functional $J(u)$ satisfies all the assumptions of the linking theorem (see [10]) except for the $(PS)_c$ condition, namely:

(i) There exist $\alpha, \rho > 0$ such that

$$J(u) \geq \alpha \quad \text{for all } u \in \partial B_\rho \cap H^+.$$

(ii) There exists $R > \rho$ such that

$$J|_{\partial Q_m} \leq p(m) \quad \text{with } p(m) \to 0 \text{ as } m \to \infty.$$

On the other hand, $\partial B_\rho \cap H^+$ and ∂Q_m link (also see [10]). Then we can get a PS sequence $\{u_n\}$ for J at level c_e with

$$c_e \geq \inf_{u \in \partial B_\rho \cap H^+} J(u) \geq \alpha > 0,$$
see Theorem 2.12 of [11]. From our Lemmas 3.1 and 3.2, there exists a subsequence of \(\{u_n\} \), still denoted by \(\{u_n\} \), such that \(u_n \rightarrow u \) strongly in \(H^1_0(\Omega) \) for some \(u \in H^1_0(\Omega) \). Hence, \(c_\varepsilon \) is a critical value of \(J \) and \(u \) is a nontrivial solution of problem (1.1).

Thus we complete the proof of Theorem 1.1.

Acknowledgments

The authors would like to thank the anonymous referee of this paper for very helpful comments and suggestions. The authors also sincerely acknowledge Prof. Daomin Cao (AMSS, Chinese Academy of Sciences) and Prof. Yinbin Deng (Central China Normal University) for useful discussions.

This work is supported partly by the National Natural Science Foundation of China (No. 10171036) and the Natural Science Foundation of South-Central University for Nationalities (No. YZZ03001).

References