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An extension of the Gleason–Kahane–Żelazko theorem:
A possible approach to Kaplansky’s problem�
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Abstract

Let A and B be unital Banach algebras with B semisimple. Is every surjective unital linear in-
vertibility preserving map � : A → B a Jordan homomorphism? This is a famous open question,
often called “Kaplansky’s problem” in the literature. The Gleason–Kahane–Żelazko theorem gives
an affirmative answer in the special case when B = C. We obtain an improvement of this theorem.
Our result implies that in order to answer the question in the affirmative it is enough to show that
�(x2) and �(x) commute for every x ∈ A. In this way we obtain a new proof of the Marcus–Purves
theorem.
� 2007 Elsevier GmbH. All rights reserved.
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1. Introduction and statement of the main result

Let A and B be complex unital algebras and let � : A → B be a linear map. We say that
� is unital if �(1) = 1 and that � preserves invertibility if �(x) ∈ B is invertible for every
invertible x ∈ A. Note that if � preserves invertibility, then x �→ �(1)−1�(x), x ∈ A,
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is a unital invertibility preserving map. Thus, when studying invertibility preservers, there
is no loss of generality in assuming that they are unital.

The famous Gleason–Kahane–Żelazko theorem [16,18,22] (we will refer to it as the
GKZ theorem) states that every unital invertibility preserving linear functional � on a unital
Banach algebra A is multiplicative. In the case of functionals the invertibility preserving
property simply means that �(x) �= 0 for every invertible x ∈ A. Let Mn denote the algebra
of all n × n complex matrices. In 1959 Marcus and Purves [20] proved that every linear
unital invertibility preserving map on Mn is either multiplicative, or anti-multiplicative.
Recall that a map � : A → B is anti-multiplicative if �(xy)=�(y)�(x) for all x, y ∈ A.
It should be mentioned here that an analogous result for singularity preserving bijective
linear maps on matrix algebras had been proved already in 1949 by Dieudonné [13], and
that even much earlier, in 1897, Frobenius [14] had obtained a similar result for determinant
preserving linear maps.

A linear map � : A → B is called a Jordan homomorphism if �(x2) = �(x)2 for
every x ∈ A. It turns out that a linear map on Mn is a Jordan homomorphism if and
only if it is either multiplicative, or anti-multiplicative. Motivated by the above results, in
1970 Kaplansky [19] asked which conditions imply that every unital linear invertibility
preserving map � : A → B is a Jordan homomorphism. A lot of work has been done on
this problem (see the survey paper [3]). Based on several partial positive results and some
counterexamples (for a more detailed explanation we refer to [12]) the following conjecture
has been posed by Aupetit.

Conjecture 1.1. Let A and B be semisimple unital Banach algebras and let � : A → B
be a surjective unital invertibility preserving linear map. Then � is a Jordan homomorphism.

This problem is still open even for C∗-algebras (see [17]). The best partial solutions are
due to Aupetit [4] and Sourour [21]. Aupetit confirmed the conjecture for von Neumann
algebras, and Sourour for algebras of bounded linear operators acting on Banach spaces. The
proofs are based on the reduction of Kaplansky’s problem to the problem of characterizing
linear maps preserving idempotents or operators of rank one. Unfortunately, these kinds
of approaches obviously can not work in the general case. To the best of our knowledge,
settling Conjecture 1.1 in its full generality seems to be out of reach at present; that is, none
of the approaches that are known from the literature can work out in the general situation.

Let A and B be arbitrary algebras and let � : A → B be a linear map. We shall say
that � locally preserves commutativity if

[�(x2), �(x)] = 0 for all x ∈ A. (1)

Here, [x, y] denotes the Lie product xy − yx. Such maps were studied extensively in
ring theory. The first result was obtained in 1993 by the first author [9], and this was fol-
lowed by a series of papers by different authors. For history and details we refer the reader
to the last papers in the series [7,10]. Let us only mention here that one can regard (1)
as a special functional identity, so the results on maps that locally preserve commutativ-
ity are usually obtained as applications of the general theory of functional identities (see
[11]). The standard goal is to show that � is a linear combination of a Jordan homomor-
phism and a map having the range in the center ZB of B. Assuming the surjectivity of �,



M. Brešar, P. Šemrl / Expo. Math. 26 (2008) 269–277 271

this can be shown under rather mild assumptions on A and B. On the other hand, some spe-
cial algebras must obviously be excluded. For instance, if every element inA is algebraic of
degree �2 (as for example in M2), then every linear map sending 1 in ZB obviously locally
preserves commutativity; so one cannot expect any reasonable conclusion in this case.

The purpose of this note is to “glue” the topic of invertibility preservers with the topic of
preservers of local commutativity, and in this way obtain the following result.

Theorem 1.2. Let A and B be unital Banach algebras with B semisimple, and let � :
A → B be a unital surjective linear map that preserves invertibility and locally preserves
commutativity. Then � is a Jordan homomorphism.

Of course, if B= C, then the assumptions that � locally preserves commutativity and is
surjective are automatically fulfilled. Thus, Theorem 1.2 is a noncommutative generaliza-
tion of the GKZ theorem. On the other hand, in view of the heavy algebraic and analytic
machineries that are at our disposal, it is admittedly not so surprising that Theorem 1.2
can be proved. Still the proof has turned out to be nontrivial, and we believe it is of some
interest also because of the diversity of the tools that are used. However, our main goal
in this paper is to point out a possible new approach to the general Kaplansky’s problem.
Namely, in order to confirm Conjecture 1.1 one has to show, in principle, that �(x2) is equal
to the square of �(x) for every x ∈ A. Theorem 1.2 now tells that it is enough to establish
a much weaker assertion that �(x2) and �(x) always commute. That is, Conjecture 1.1 is
now equivalent to

Conjecture 1.3. Let A and B be semisimple unital Banach algebras and let � : A →
B be a surjective unital invertibility preserving linear map. Then � locally preserves
commutativity.

At the end of the note we will confirm Conjecture 1.3 for the case whenA=B=Mn, and
thereby obtain a new proof of the aforementioned Marcus-Purves theorem. Unfortunately it
is not clear how to extend the method of our proof to more general algebras. But on the other
hand this is, to the best of our knowledge, the first proof of the Marcus–Purves theorem
that does not depend on rank or idempotents. It is based on the concept of commutativity,
which is, unlike the concepts of a rank and an idempotent, non-trivial in every algebra
in the sense that we can always find a lot of commuting pairs while it is possible that 0
and 1 are the only idempotents in an algebra and it is also possible that there are no non-zero
finite rank elements with respect to any natural definition of the rank. So this at least gives
an indication that the proposed new approach could be effective.

On the other hand, one might take the opposite point of view and try to disprove
Conjecture 1.1. Then the message of this note is that one has to search for a counterex-
ample among maps that do not locally preserve commutativity.

2. Proof of the main theorem

We begin with some auxiliary results. First we record an elementary lemma.
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Lemma 2.1. Let A be a ring and let G be a torsion-free additive group. Assume that
B : A × A → G is a biadditive map such that

B(x, x) = B(x2, x) = 0

for all x ∈ A. Then

B(xn, xm) = 0

for all x ∈ A and all positive integers n, m.

Proof. Linearizing B(x, x) = 0 we get that B is skew-symmetric, that is,

B(x, y) = −B(y, x)

for all x, y ∈ A, and linearizing B(x2, x) = 0 we see that B satisfies

B(x ◦ y, z) + B(z ◦ x, y) + B(y ◦ z, x) = 0 (2)

for all x, y, z ∈ A. Here, u ◦ v denotes uv + vu. Fix an integer N �4 and let us show that

ak = B(xN−k, xk)

is equal to 0 for every k = 1, . . . , N − 1. Setting y = xk and z = xN−k−1 in (2) we get

aN−k−1 + ak + a1 = 0, k = 1, . . . , N − 2.

As aN−m = −am by skew-symmetry of B, we can rewrite this as

ak+1 = ak + a1, k = 1, . . . , N − 2.

This clearly implies that

ak = ka1, k = 1, . . . , N − 1.

However, as aN−1 = −a1, we have −a1 = (N − 1)a1. Thus, Na1 = 0, and hence a1 = 0
for G is torsion-free. Accordingly, ak = 0 for each k = 1, . . . , N − 1. �

The next result is much deeper. It is one of the important by-products of the general
theory of functional identities.

Lemma 2.2. Let V be linear space over a field F with characteristic not 2, let B be a
prime F-algebra with extended centroid C, let � : V → B be a surjective linear map,
and let F : V × V → B be a bilinear map such that [F(x, x), �(x)] = 0 for all x ∈ V.
Suppose that B contains an element that is not algebraic over C of degree �2. Then there
exist � ∈ C, a linear map � : V → C, and a bilinear map � : V × V → C such that

F(x, x) = ��(x)2 + �(x)�(x) + �(x, x) for all x ∈ V.

Although this lemma can be considered as a “folklore” result among specialists in
functional identities, it is not so easy to find a direct reference. Anyway, from
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[11, Theorem 5.11 and Corollary 4.15] the assertion of the lemma follows, however, with
� (resp. �) only additive (resp. biadditive). Using a standard argument one can easily show
that � (resp. �) is actually linear (resp. bilinear).

Lemma 2.2 involves the concept of the extended centroid of a prime F-algebra. We refer
the reader to [8] for a full account on this concept. Let us only mention here that in general
the extended centroid is a certain field extension of the base field F. Fortunately, in the only
case we will be interested in, the extended centroid coincides with the base field:

Lemma 2.3. The extended centroid of a primitive complex Banach algebra is C.

This lemma is another folklore result. It can be deduced, for example, from
[8, Corollary 4.1.2].

We now have enough information to start the proof of Theorem 1.2. Actually, we will
use several other results in this proof. But they are either well-known or easy to formulate,
so it does not seem necessary to state them explicitly.

By �(a) we will denote the spectrum of the element a.

Proof of Theorem 1.2. . So, let us assume thatA andB are unital Banach algebras withB
semisimple and � : A → B is a unital surjective linear map that preserves invertibility and
locally preserves commutativity. We may and we will assume that B is a primitive algebra.
Indeed, if P is a primitive ideal in B, then B/P is a primitive Banach algebra and the
product of � and the quotient map is a surjective unital invertibility preserver which locally
preserves commutativity. If this product is a Jordan homomorphism for every primitive
ideal P, then, because the intersection of all primitive ideals is 0 by the semisimplicity of
B, the map � itself is a Jordan homomorphism.

If B is finite dimensional, and hence isomorphic to Mn for some n, then it is exactly the
result by Aupetit [1] that gives the desired conclusion. So, we may assume that B is infinite
dimensional (incidentally, our proof that follows works as long as dim B> 16). Note that
this implies that for every n�1 there exists an element in B which is not algebraic of degree
�n. This is a standard fact that follows easily from the Jacobson density theorem.

Define F : A × A → B by F(x, y) = �(xy). Clearly, F is bilinear and satisfies
[F(x, x), �(x)] = 0 for every x ∈ A. Therefore, Lemma 2.2, together with Lemma 2.3,
implies that

�(x2) = ��(x)2 + �(x)�(x) + �(x, x) for all x ∈ A, (3)

where � ∈ C = C, � : A → C is a linear functional, and � : A2 → C is a bilinear map.
Of course, our goal is to show that � = 1, � = 0, and � = 0.

Next we define B : A×A → B by B(x, y)=[�(x), �(y)]. Since B(x, x)=B(x2, x)=0
for every x ∈ A, Lemma 2.1 implies that

B(xn, xm) = [�(xn), �(xm)] = 0 for all x ∈ A.

That is, � maps every unital subalgebra of A generated by a single element into a
commutative set.
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We continue with analytic tools. First of all, by [2, Theorem 5.5.2], � is continuous. Fix
x ∈ A and denote by A1 the closed unital subalgebra generated by x, and by B1 the closed
subalgebra of B generated by �(A1) and all inverses of invertible elements of �(A1). By
the previous paragraph and the continuity of �, B1 is a commutative unital Banach algebra.
If u ∈ A1 is invertible inA1, then �(u) is invertible inB, and in view of the definition ofB1,
it is invertible already in B1. Hence, the restriction of � to A1 is an invertibility preserving
unital linear map between commutative Banach algebras A1 and B1. Let � : B1 → C be
any non-zero linear multiplicative functional. Then ��|A1

: A1 → C is a unital linear

functional preserving invertibility. Thus, by the GKZ theorem, �(�(x2) − �(x)2) = 0 for
every linear multiplicative functional � on B1, and therefore �(x2) − �(x)2 lies in the
Jacobson radical of B1. In particular, �(x2)−�(x)2 is a quasinilpotent in B1, and hence it
is a quasinilpotent in B. Denoting by Q the set of all quasinilpotent elements of B we thus
have �(x2) − �(x)2 ∈ Q for every x ∈ A, which together with(3) gives

	�(x)2 + �(x)�(x) + �(x, x) ∈ Q for all x ∈ A, (4)

where 	 = � − 1. As B is infinite dimensional, it contains elements b whose spectra have
cardinality at least three (once again we may apply the Jacobson density theorem to ver-
ify this statement). If 	 �= 0, then (4) shows that b = �(x) for some x has the property
that �(p(b)) = {0} for some polynomial p of degree 2, a contradiction. Therefore, 	 = 0,
i. e. � = 1. Now (4) reduces to

�(x)�(x) + �(x, x) ∈ Q for all x ∈ A. (5)

Accordingly, for every x ∈ A we have either �(x) = 0, or |�(�(x))| = 1. Here, | · |
denotes the cardinality of the set. Suppose that there exists x0 ∈ A such that �(x0) �= 0.
If y ∈ A is such that |�(�(y))|�2, then �(y) = 0, whence �(x0 + y) �= 0, and therefore,
|�(�(x0 + y))| = 1. By the Jacobson density theorem B is isomorphic to the algebra of
bounded linear operators acting densely on an infinite dimensional Banach space X. Pick
linearly independent �1, �2, �3, �4 ∈ X. We will slightly abuse the notation and identify an
element in B by the corresponding operator on X. Now, by the surjectivity of � and density
there exists y ∈ A satisfying

�(y)�1 = �1 − �(x0)�1, �(y)�2 = −�(x0)�2,

�(y)�3 = �3, �(y)�4 = 0.

The last two relations show that |�(�(y))|�2. From the first two relations we infer that

�(x0 + y)�1 = �1 and �(x0 + y)�2 = 0

and consequently, |�(�(x0 +y))|�2, a contradiction. Therefore, �=0, and so, by (5), �=0
as well. This completes the proof.

3. A new proof of the Marcus–Purves theorem

First we need a preliminary result characterizing the commutativity of certain matrices
through the means of the addition and the spectrum. Let A ∈ Mn be a matrix with n distinct
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eigenvalues. We will call a linear subspace W ⊂ Mn an A-space if

• dim W = 1
2n(n − 1), and

• �(A + T ) = �(A) for every T ∈ W.

Lemma 3.1. Let A, B ∈ Mn be two matrices both having n distinct eigenvalues. Then the
following are equivalent:

• AB = BA,
• The set of all A-spaces is equal to the set of all B-spaces.

Proof. Assume first that A and B commute and that W is an A-space. Let a1, . . . , an

be the eigenvalues of A and C any member of W. From �(A + �C) = �(A) we
conclude that

(A + �C − a1I ) . . . (A + �C − anI) = 0

for every � ∈ C. As all the coefficients of this polynomial in � must be zero we get in
particular that C is a nilpotent. Hence, W is a space of nilpotent matrices of dimension
(1/2)n(n− 1), and is therefore simultaneously triangularizable by Gerstenhaber’s theorem
[15]. We may assume with no loss of generality that W is the space of all strictly upper
triangular matrices. We claim that from �(A + C) = �(A), C ∈ W, it now follows that
A is an upper triangular matrix whose diagonal entries form the set {a1, . . . , an}. Indeed,
let A1 be the strictly upper triangular matrix obtained from A by replacing all entries on
the diagonal and below the diagonal by zeroes. Then A − A1 is a lower diagonal matrix
and because �(A − A1) = �(A) we conclude that the set of diagonal entries of A is equal
to �(A). Suppose now that there exists aij , the (i, j)-entry of A, such that aij �= 0 and
i > j . Assume further that among all nonzero entries of A below the main diagonal aij is
chosen in such a way that the difference i − j is minimal. Then −A1 + Eji ∈ W, where
Eji is the matrix having all entries equal to zero but the (j, i)-entry which is equal to one.
Then �(A − A1 + Eji) �= �(A), a contradiction.

Thus, we can find eigenvectors of A that are of the form

e1, e2 + �e1, . . . , en + 
en−1 + · · · + �e1.

Here, e1, . . . , en denote the standard basis vectors of Cn. As A and B are commuting matrices
with n distinct eigenvalues, they have the same eigenspaces. It follows that B is an upper
triangular matrix as well. Consequently, W is a B-space, as desired.

To prove the converse assume that the set of all A-spaces is equal to the set of all
B-spaces. We have to show that A and B have the same eigenspaces. Assume to the
contrary that a certain vector, say e1, is an eigenvector of A, but is not an eigenvec-
tor of B. We may further assume that e2, . . . , en are eigenvectors of A. Then the set of
all strictly upper triangular matrices is an A-space, and hence a B-space. As before we
conclude that B is upper triangular, which further yields that e1 is an eigenvector of B,
a contradiction. �
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As mentioned in the introduction, our main theorem proposes a possible way to solve
Kaplansky’s problem in full generality. We will illustrate this by giving a new proof of the
Marcus–Purves theorem.

Theorem 3.2. (Marcus and Purves [20]). Let � : Mn → Mn be a unital linear map
preserving invertibility. Then � is a Jordan homomorphism.

Proof. It is not too difficult to see that � is bijective [20, Lemma 2.3]. From �(I ) = I and
invertibility preserving property we get immediately that

�(�(A)) ⊂ �(A) for all A ∈ Mn.

Indeed, if a complex number � does not belong to �(A), then �I − A is invertible, and
consequently, �I − �(A) is invertible, or equivalently, � does not belong to �(�(A)).
It follows that

�(�(A)) = �(A)

for every A ∈ Mn with the property that �(A) has n distinct eigenvalues. The set of matrices
with n distinct eigenvalues is dense in Mn, and by the continuity of spectra the above equality
holds true for every A ∈ Mn.

In order to complete the proof we only need to show that

[�(A2), �(A)] = 0 for all A ∈ Mn, (6)

since then the conclusion follows directly from Theorem 1.2. In fact, it is enough to prove
that (6) holds true on some dense subset of Mn. We choose this set to be the set of all
matrices A such that both A and A2 have n distinct eigenvalues. By Lemma 3.1, for every
such A the set of all A-spaces is equal to the set of all A2-spaces. By the spectrum preserving
property and bijectivity the set of all �(A)-spaces coincides with the set of all �(A2)-spaces.
Applying Lemma 3.1 once more we get the desired equality (6). �
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[18] J.-P. Kahane, W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia

Math. 29 (1968) 339–343.
[19] I. Kaplansky, Algebraic and Analytic Aspects of Operator Algebras, American Mathematical Society,

Providence, 1970.
[20] M. Marcus, R. Purves, Linear transformations on algebras of matrices: the invariance of the elementary

symmetric functions, Canad. J. Math. 11 (1959) 383–396.
[21] A.R. Sourour, Invertibility preserving linear maps on L(X), Trans. Amer. Math. Soc. 348 (1996) 13–30.
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