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ABSTRACT 

This expository paper describes the ways in which a matrix theoretic construct 

called the Schur complement arises. Properties of the Schur complement are shown 

to have use in computing inertias of matrices, covariance matrices of conditional 

distributions, and other information of interest. 

1. INTRODUCTION 

In recent years, the designation “Schur complement” has been applied 

to any matrix of the form D - CA-lB. These objects have undoubtedly 

been encountered from the time matrices were first used. But today 

under this new name and with new emphasis on their properties, there is 

greater awareness of the widespread appearance and utility of Schur 

complements. The purpose of this paper is to highlight some of the many 

ways that Schur complements arise and to illustrate how their properties 

assist one in efficiently computing inertias of matrices, covariance matrices 

of conditional distributions, and other important information. 

Why Schur ? Complement of what ? The full definition, introduced 

by E. V. Haynsworth [15], answers the second question. Over any field, 
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if A is a nonsingular leading submatrixi of the block matrix 

A B 
M= C D, 1 1 

then D - CA-lB is the Schur complement of A in M and is denoted by 

(M/A). The name Schur is suggested by the well known determinantal 
formula (for the case where M is square) 

det M = det A det(D - CA-IB). (2) 

This relation was remarked in 1917 by I. Schur [26, p. 2171 within the 

proof of a matrix-theoretic lemma. Gantmacher [14, p. 461 refers to it 
as one of the “formulas of Schur.” 

Matrices of the form D - CA-lB are very common; perhaps their 

most frequently encountered manifestation is in ordinary or “generalized” 
Gaussian elimination [14, p, 451. For instance, consider a system of 

linear equations Mz = 0 where M has been partitioned as in Eq. (1) and 

z has been partitioned conformally into the direct sum of x and y. The 

system then becomes 

Ax + By = 0, Pa) 

Cx + Dy = 0. (3 W 

Recall that we assumed the matrix A (called the pivot block) is nonsingular; 

hence elimination of x from Eq. (3b) is legitimate and yields the system 

(D - CA-lB)y = 0. 

Thus, the matrix of coefficients in the reduced form of (3b) is just (M/A). 

Closely related to the system (3) and the associated pivot operation 

is the system 

1 Having the nonsingular matrix A in the upper left-hand corner of M is merely 

for notational convenience. The lower left-hand corner would be equally good in 

this respect. Indeed, one can consider the Schur complement of any nonsingular 

submatrix A in the ambient matrix M. However, suitable permutations of the rows 

and columns of M can be used to shift A to one of these corners. This amounts to 

pre- and post-multiplication of M by permutation matrices. When M is square 

and P is a permutation matrix of the same order, PMPT is called a principal rearrange- 

ment of M. Such a matrix is obtained by “simultaneous” permutation of the rows 

and columns of M. 
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u = Ax + By, (3’a) 

v = Cx+Dy. (3’b) 

If A is nonsingular, one can solve the system (3’) for x and v in terms of 

ti and y. Doing this one obtains 

x = A-h - A-1By, (3"a) 

v = CA-k + (D - CA-lB)y. (3”b) 

When 

is square, the operation transforming it to 

i 

A-1 - A-lB 
pf= 

CA-1 D - CA-lB ’ 

is called a @G&pal pivot [29] or a gyration [ll]. But whether M is square 

or rectangular, the Schur complement shows up again. 

Next, let us suppose M is square and nonsingular. If M can be parti- 

tioned as in Eq. (1) with A and D nonsingular, then 

M-1 = 
(A - BD-lC)-1 - A-lB(D - CA-%)-l 

- D-%(A - BD-lC)-1 (D - CA-%)-l 1 . (4) 

The inverses of the Schur complements (M/A) and (M/D) exist by virtue 

of Eq. (2) and the nonsingularity assumptions imposed above. The 

correctness of Eq. (4) can be verified by multiplication. Its usefulness 

will be exemplified subsequently. 

The Schur complement has also been generalized by Carlson, Hayns- 

worth, and Markham [8] in terms of the Moore-Penrose inverse. Another 

development of this type has been carried out by W. N. Anderson, Jr. [2] 

who uses the term shorted operator instead of generalized Schur complement. 

Interest in the latter stems from electrical network theory. See [3], [4], 

and [la]. 

2. THE QUOTIENT PROPERTY 

This brief section is concerned with a particularly nice property of the 

Schur complement called the quotient property [9]. It says that if 
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A B 

M= C D I 1 
where A and E are nonsingular, then 

(MIA) = [WIE)I(AlEb (5) 

As mentioned once above, the nonsingularity of (A/E) follows from 

that of A and E via Schur’s determinantal formula (2). Moreover, it turns 

out that (A/E) is the leading block of (M/E) so the grand Schur complement 

on the right-hand side of Eq. (5) IS well-defined. One implication of the 

quotient property is that under the given hypotheses on A and E, the 

calculation of the Schur complement of A in M can be carried out in two 

stages. 

We have already brieflpnoted the appearance of the Schur complement 

in Gaussian elimination. It is not surprising then to find Schur comple- 

ments in the pivotal algebra of mathematical programming. See Tucker 

[28], Parsons [24], and Wendler [31] in this regard. Indeed, Theorem 6 

in Tucker’s paper can be construed as a precursor of the Crabtree- 

Haynsworth Theorem [9] announcing the quotient formula (5). Recently, 

Ostrowski [23] has published a “new” proof. The Schur complement 

terminology and notation aside, there is no telling how long this relationship 

has been known.2 

3. A CONNECTION WITH STATISTICS 

The multivariate normal distribution in mathematical statistics 

provides a magnificent example of how the Schur complement and the 

quotient property arise naturally. 

Let S denote a symmetric positive definite (here we are working over 

the real field) matrix of order ?a and let z represent a fixed n-vector. Then 

det S-l c ) ‘I2 
___ f@) = (247l 

exp(- $(z - i)TS-l(z - Z)} 

is the density function for the n-variate normal distribution with vector 

mean Z and covariance matrix S. (See [l] and [20].) 

2 The reader may like to know of an amusing coincidence : Immediately preceding 

Schur’s article [26] in J. Reine Angezu. Math. 147 (1917) there appears the paper 

“Uber sogenannte perfekte KBrper” by A. Ostrowski. Thus these two papers 

appeared 64 years before Ostrowski [23]. 
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The matrix S and its principal submatrices, being positive definite, are 

all invertible. A formula for the inverse, akin to the one given in Eq. (4), 

is therefore applicable to S; moreover, as we shall see shortly, extra 

benefits accrue from the information that S is symmetric. 

Now assume 

z= 

where x and i belong to Rnl, y and 7 belong to Reg. With the matrix S 

partitioned conformally as 

it can be shown that the density for the (marginal) distribution of y is 

given by 

1’2 
exp{- *(y - jj)rC”(y - 9)). 

To come now to the point, the conditional distribution of x given y has 

density 

f(xly) = f#) 

which is multivariate normal of dimension n, with mean vector 

x + BC-yy - jq, 

and covariance matrix 

(S/C) = A - BC-lBT. 

Getting the right coefficient in front of the exponential is chiefly a matter 

of observing that by the counterpart to Eq. (2), 

det S-r det C 1 

det C-r 
_ ~ = ~ = det(S/C)-l. 

det S det(S/C) 

The quotient of the exponentials reduces to looking at the difference of 

two quadratic forms. This is where the inverse formula and the symmetry 

of S enter. The following lemma, which makes no use of positive definite- 
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ness, pinpoints the relationship between the required difference of quadratic 

forms and the Schur complement (S/C). 

LEMMA. Let the matrix 

A B 
M= 

[ 1 BT C 

be symmetric and nonsingztlar. If A and C are also nonsingular then 

Q(u, v) G i:)’ [ tT ;]-‘(I) - vTC-4 

= (u - BC-l~)T(A - BC-lBT)-l(u - BC-%I) 

ZE Q*(u - BC-4). (6) 

Proof. From the formula (4) for the inverse of M, it follows that 

Q(u, V) = uT(A - BC-lBT)-‘u - 2uTA-lB(C - BTA-‘B)-Iv 

+ vT(C - BTA-lB)-ln - VT-4. 

The symmetry of M implies that 

Q*(u - BC-‘v) = #(A - BC- B )- 1 T 1% - 2uT(A - BC-lBT)-lBC-l~ 

$- v~C-~BT(A - BC-lBT)--1BC--1v, 

= &‘(A - BC-lBT)-1% - 2GC-lB(C - BTA-lB)-lv 

+ vTC-lBT(A - BC-lBT)--1BC%. 

The first two major terms of Q(ti, V) equal those of Q*(u - BC-lv). The 

remainder of the proof consists of showing that 

(C _ BTA-rB)-1 _ C-l = C-lBT(A _ BC-rBr)-1BC-1. 

This identity is well known and is attributed to Woodbury [32]. Again, 

from the symmetry of M, it is equivalent to showing that 

(C _ BTA-rB)-’ _ C-l = C-1BTA-rB(C _ BTA-rB)-1. 

However, this follows from 

(C - BTA-lB)(C - BTA-lB)-1 = I. 

The proof is now complete. n 
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In this setting, there is an interesting interpretation of the quotient 

formula. Consider the normally distributed vector 

[t) with mean (i) and covariance matrix S = BT [IT B ii, 

The marginal distribution of t) has mean (z) and covariance matrix 

D E 

G= ET F’ 
[ 1 

The conditional distribution of x given y and z has covariance matrix 

(S/G). The quotient formula 

(S/F) 
(S/G) = ((-IF) 

says that the conditional distribution of [ ’ e)]isthatof [(l)give,,] x given 

given [y given z]. (See T. W. Anderson [l, pp. 33-341.) 

4. USAGE IN A DETERMINANTAL TEST 

In some circumstances, it is desirable to know whether the leading 

principal minors of a square matrix M = [mij] are all nonzero (or, of a 

particular sign, say positive). This can be determined by pivoting and 

use of the quotient formula. 

Let M be of order n and denote by M[l,. . . , k] its leading principal 

submatrix of order k where k = 1,. . . , it : 

ml1 .** mlk 

M[l,. . ., k] = 

[ Ii 

; . 

mkl -a * mkk 

Now suppose rvcii is nonzero (positive). Using ml1 as the pivot leads to 

the Schur complement 

M(l) = (M/m,,), 

in which the leading entry is 
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m12m2, w1 21 mli)=m22__---_=_~. 
ml1 WI 

Moreover, 

det M[l, 21 
rn!i$ = det rn? = det M,Il . 

In general, if the procedure is not interrupted by the discovery of a leading 

entry (i.e., leading principal minor) of zero (nonpositive) value, then 

after k < n steps 

MU,. . ., k + 11 
m”= M[l,...,k] 

and 

It should be emphasized here that at each stage the entries of the new 

Schur complement are easily computed from the matrix currently at hand. 

This is done by pivoting just as in the case of Gaussian elimination. With 

M = M(O), the individual entries of Mck) are given by the formula 

(k-l) (k-1) 

ml;’ 
(k-1) 

= %+l,j+l- 
%+l,lmi,j+i 

(k-l) ’ 
ml1 

The procedure above has an obvious application to the well known 

determinantal test for positive definiteness. (See Stiefel [27, p. 681.) If 

M is symmetric, it is $ositive definite if and only if its leading principal 

minors are all positive. Notice, it is not really necessary to know the 

values of these determinants: only their signs matter. 

The method can also be used to ascertain whether a square (not 

necessarily symmetric) matrix has the so-called Minkowski property. 

This is the case when its off-diagonal entries are nonpositive and all its 

principal minors are positive. Checking the signs of the off-diagonal 

entries is no problem, but for a large matrix, verifying the positivity of 

every principal minor is a disagreeable task. Fortunately, one can do less. 

Only the leading principal minors need be checked for positivity. This is 

proved by Fiedler and Ptak [13, p. 3871 in an omnibus theorem on this 

subject. 
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5. THE INERTIA FORMULA 

The second property of the Schur complement to be discussed and 

applied here concerns the concept of inertia. The formulation is exclusively 

in terms of real symmetric matrices. With a little extra effort, the case of 

complex Hermitian matrices can also be covered. 

The inertia of a real symmetric n x n matrix M is a triple 

In M = [n(M), V(M), a(M)], 

where n(M) = number of positive eigenvalues of M, V(M) = number of 

negative eigenvalues of M, 6(M) = number of zero eigenvalues of M. 

The three components of In M are sometimes called the $ositivity, 

negativity and nullity of M, respectively. They are related to the rank p(M) 

and signature a(M) of M through the equations 

p(M) = 4M) + @f), 

o(M) = z(M) - v(M). 

The inertia of M can be inferred from knowledge of its rank, signature, 

and order. 

The inertia of a nonsingular matrix and of its inverse are the same since 

their eigenvalues are all nonzero and reciprocals of each other. The inertias 

of similar matrices are the same because their eigenvalues are identical. 

The inertias of congruent matrices are the same; this is just another way 

of stating Sylvester’s famous Law of Inertia. 

Now, if 

M= 

and A is nonsingular, the facts on inverses and congruent matrices cited 

in the preceding paragraph can easily be used to show that 

In M = In A + In(M/A). (7) 

This form of the inertia formula is proved by Haynsworth in [15, p. 751. It is 

used there for obtaining inertia results for partitioned matrices. 

In a later work, Haynsworth and Ostrowski [16, p. 3021 prove a 

special inertia formula for matrices of the form 

A B 
M= 

[ 1 A arbitrary but symmetric, 

BT 0 ’ B nonsingular of order k. (8) 
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They attribute to Carlson and Schneider [7] the observation that 

A B 
In 

[ 1 BT 0 = 6, k, O), (9) 

and then give an alternate proof. In the next paragraph, we sketch another 

alternate proof that seems to retain a little bit more of the Schur comple- 

ment flavor. 

Alternate Proof of Eq. (9). We use induction on k. For k = 1, the 

formula is an easy consequence of the definition of an eigenvalue. Assume 

it is true for B of order less than k. When B has order k, we can isolate 

a 2 x 2 principal submatrix of the form 

b,, # 0. 

As remarked in Sec. 1, it is not necessary for C to be a leading principal 

submatrix in order to have a Schur complement. In the present circum- 

stances, it appears advantageous to perform a principal rearrangement 

of M making it permissible to assume Y = k, s = 1. Hence (M/C) is found 

by first pivoting on b,, = cl2 = mk,le+l # 0 and then on the element 

that corresponds to czl in (M/c&. Because of the block of zeros in M, 

these operations produce a new matrix, the Schur complement (M/C), 

having the same block form 

A P 
AZ= @ 

[ I 

A symmetric, 

0 ’ B nonsingular of order k - 1 

as M. The formula (9) now follows from the inertia formula, the case 

for k = 1, and the inductive hypothesis. n 

7. AN ALGORITHM FOR COMPUTING INERTIA 

The inertia formula engenders a nice algorithm for computing the 

inertia of a real symmetric matrix, say M. Notice M has exactly one of 

the following properties: 

(Pl) diag M # 0; 

(P2) diagM=O,M#O; 

(P3) M = 0. 
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In case (Pl) holds, we may use principal rearrangement of M to guarantee 

that ml, # 0. Then 

In ml1 = 1 (1, 0, O), if ml1 > 0, 

(0, I, O), if ml1 < 0. (10) 

The Schur complement of ml1 in M is defined and is symmetric. If (P2) 

holds, we may use principal rearrangement to insure that ml2 # 0, whence 

In 
0 ml2 

1 1 m2i O 
= (1, 1,O). (11) 

The Schur complement of 

0 ml2 

[ 1 m21 0 

in M is defined and symmetric. In the third case, (P3), if M is of order n, 

InM = (O,O,n). (12) 

The same analysis can be applied to the Schur complements constructed 
in cases (Pl) and (PZ). This is the basis of the algorithm; the details 

follow. 
Formally, let 0 stand for the empty matrix and take In 0 = (0, 0, 0). 

Let Mtk) denote kth Schur complement computed, and let M, denote the 

kth pivot (block). We adopt the following conventions: 

(M/0) = M, (M/M) = 0; 

M(O) = M, MO = 0. 

At the outset, we have trivially, 

InM = InM, + InM(O). 

The steps listed below pertain only to Mck) which has order n 
with k = 0. 

Step 0. So far, we have 

- k. Start 

(13) 

(14) 

In M = 5 In M, + In Mtk). 
i=O 

If M(“) has property (Pi), i = 1, 2, 3, go to Step i. 
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Step 1. We may assume that me # 0. Let 

M (4 
k+l = mll9 

M’L+l’ = (M’k’/M,,l) 

Use Eq. (10) to obtain In Mk+l and then, 

hi-1 

In M = c In Mi + In Mck+l). 
i=O 

If Mck+l) = 0, stop. Otherwise, return to Step 0 with k replaced by k + 1. 

Step 2. We may assume that mike) = m!$ # 0. Let 

M - 0, k+l - 

M k+2 = 

M’“+l’ = (M’“‘/M,+,) = M(k), 

M’“+2) = (M’k+l’/M,+2). 

Use Eq. (11) to obtain In Mk+z, and then 

In M = 2 In Mi + In M(k+2). 
i=O 

If M(k+2) = 0, stop. Otherwise, return to Step 0 with k replaced by k + 2. 

Step 3. In this case, M tk) = 0. It is of order 12 - k, so 

In MC”) = (0, 0, n - k), 

and hence 

In M = 2 In Mi + (0, 0, n - k) 
i=o 

Stop. The inertia of M has been found. 

This algorithm can be regarded as the logical extension of the one 
suggested by Stiefel (lot. cit.). Stiefel’s concern there is to determine 

whether a given real symmetric matrix is positive definite, that is, whether 
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it has inertia (n, 0, 0). He does this by a pivoting scheme closely related 

to the one above but not described explicitly in terms of the Schur com- 

plement or inertia. 

Such a method is reminiscent of the technique of com$deting the square 

often attributed to Lagrange. 3 To take the simplest example, consider 

the binary quadratic form 

Q(x, y) = ax2 + 2bxy + cy2, 

in which the coefficient a is nonzero. Then 

= a(x+$yr+(c--g)y2, 

which reveals that the coefficient of y2 is just the Schur complement of a 

in the coefficient matrix of the form Q. This observation extends 

to rc-ary quadratic forms.’ Uni!ortunately, the complication presented by 

the absence of squared terms in the portion of the form that remains to be 

expressed as the sum of squares of linear forms makes the connection with 

the Schur complement concept just a bit less compelling. However, it 

should be emphasized that in the technique of reducing a quadratic form 

to a sum of squares of linear forms, one demands more information than 

simply the inertia of the coefficient matrix. In some applications, such 

as quadratic programming, only the inertia matters; not everyone wants 

to reduce to diagonal form ! 

8. REMARKS 

The algorithm described in the preceding section is appropriate only 

for exact arithmetic. Where finite precision arithmetic is involved, as 

in electronic digital computers, the method is not numerically stable. 

In [6], this problem is overcome by Bunch and Parlett who exhibit a 

numerically stable principal or (as they call it) diagonal pivoting procedure 

3 Debreu [lo. p. 2991 remarks that Lagrange discussed only binary and ternary 

quadratic forms, whereas the first treatment of the general case was given by F. 

Brioschi [5]. 
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for achieving a factorization 

M = LDLT, 

where L is unit lower triangular, D is the direct sum of 1 x 1 or 2 x 2 

matrices, and li+l,i = 0 if d,+l,i # 0. 

The Bunch-Parlett method uses an unpublished proposal made in 1965 

by W. Kahan (see [6, pp. 646-6471) that pertains to Lagrange’s reduction 

method. As noted at the end of the preceding section, the coefficient 

matrix of a reduced quadratic form in Lagrange’s method can be obtained 

from the Schur complement of a nonzero diagonal entry in the matrix of 

the current nonreduced quadratic form. If there are no such entries and 

the quadratic form is not identically zero, one uses a transformation 

invented by Lagrange to create them and then proceed as before. Bunch 

and Parlett acknowledge Kahan’s contribution by saying [6, p. 6461 

“Kahan made the important observation that Lagrange’s transformation 

could be interpreted as generalizing the notion of a pivot from a 1 x 1 

to a 2 x 2 principal submatrix.” They also describe and comment on 

Kahan’s pivotal strategies. 

To assure the numerical stability of a method like the one in Sec. 7, 

one must occasionally resort to 2 x 2 pivots even when nonzero diagonal 

entries are available. Nevertheless, it is easy to keep track of the inertia. 

{Indeed, if the 2 x 2 pivot block is 

its inertia is In P = (1, 1, 0) if UC - b2 < 0. On the other hand, if ac - 

b2 > 0, then ac > 0. Hence, In P = (2, 0, 0) if a > 0 and In P = (0, 2, 0) 

if a < O.} Details on how and when to use 2 x 2 block pivots are carefully 

explained in [6]. 

In addition to being used in computing the number of positive and 

negative eigenvalues of a matrix (i.e., its positivity and negativity) Schur 

complements are found in theorems for estimating the eigenvakes them- 

selves. Such a result is due to Rutishauser [25, p. 511 who shows that if 

and A is a positive definite principal submatrix of M of maximal order, 

then the smallest eigenvalue of (M/A) is negative and is a lower bound 

for the smallest eigenvalue of M. 
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9. THE RESTRICTION OF A QUADRATIC FORM 

In this section we develop a second interpretation of the Schur com- 

plement, as the coefficient matrix of a quadratic form restricted to the 

null space of a matrix. 

To begin, let Q be a quadratic form in n variables, say, 

Q(z) = ZTMZ = ZT [tT 51 Z, 

where A is nonsingular. We may then write 

Q(z) = P(x, y) = #AX + 2xTBy + yTCy. 

Suppose Q is constrained by the system of equations 

Ax + By = 0, 

(15) 

(16) 

the solutions of which are the null space L of [A, B]. [One would be led 

to such a consideration by minimizing P(x, y) with respect to x.1 

To represent QL = QIL, we may use Eq. (16) to eliminate x: 

x = - A-‘By. (1’) 

From Eqs. (15) and (17) we have 

QJy) = yTBTA-lAA-lBy - 2yTBTA-lBy + y’cy, 

= yT(C - BFA-lB)y, (18) 

and the symmetric coefficient matrix of QL is just (M/A). Using the 

substitution (17) amounts to choosing the columns of 

as a base for L. 

- A-lB 

[ 1 I 

In the preceding instance, L was specified as the null space of a set 

of rows of M. It is also possible to associate a Schur complement with 

the restriction of a quadratic form to a null space given “externally.” 

For example, let Q be written as before and suppose N is a matrix of order 

r x n and rank r. Let QL be the restriction of Q to 

L = {z: Nz = O}. 
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Since N is of rank 7, its columns may be permuted so that the first 

- D-IE 

1 1 I 

for L, the quadratic form QL has the coefficient matrix 

Proof. Q can be expressed as in Eq. (15). The equation 

Nz = Dx + Ey = 0 

yields x = - D-IEy which can be substituted into the expression for Q 

to give 

QJy) = Y~E~(D-~)~AD-~E~ - ~Y*E~(D-~)~B~ + y’Cy, 

= yT[C - 2ET(D-1)TB + ET(D-l)TAD-lE]y. 

On the other hand, 

G_l = (DYAD-1 p)-1 

D-1 0 ; 1 
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so, by definition, 

(E/G) = C - [ET, f+"l 
- (DT)-IAD- 

D_1 

205 

(D’)-l E I[ 1 0 B’ 

= C - ET(DT)-lB - BTD-lE + ET(DT)-lAD-1E. 

This means the quadratic form associated with (F/G) is just QL. n 

There is another variation on this theme. Suppose F (as defined above) 

is the coefficient matrix of a quadratic form Q; i.e., 

Q(x, y, z) = yTAy + zTC.z + 2xTDy + 2xTEz + 2yTBz. 

Suppose further that D is nonsingular and Q is to be represented on the 

null space L of [0, D, E]. This can be done by using the equation 

Ox + Dy + Ez = 0 

to eliminate y from the expression for Q. Since 

0 - D-1E 

I 1 

I 0 

0 I 

is a base for L, the resulting quadratic form would be expected to involve 

x and z; only y = - D-IEz is eliminated. Curiously enough, the substitu- 

tion process appears automatically to eliminate x as well as y. That is 

to say, x does not show up in the expression for QL. Indeed, the suggested 

elimination produces 

Q&, z) = zT[C - 2ET(D-1)TB + ET(D-l)TAD-lE]~. 

From this and the theorem above, it follows that 

The subspace L generated by a given set of linearly independent 

n-vectors can always be viewed as the null space of a matrix appropriately 

constructed from the components of the vectors themselves. The restriction 

of a quadratic form Q to the subspace L can then be written in terms of 

a Schur complement. This may seem an awkward thing to do if only 
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the values of QL really matter; for if I’ denotes the n x Y matrix whose 
columns are the given base for L, then elements of L are of the form Vu 
and hence 

Q&J) = uTVTMVu. 

The advantage of the approach to QL via the Schur complement lies 
in what can be said about the inertia of its coefficient matrix. This will 
be brought out in the next section. 

It might be mentioned at this point that determining the inertia of a 
quadratic form restricted to a subspace is an important problem which 
bears on the second-order conditions for a constrained local minimum. 
See Debreu [lo] for a discussion of this point and a determinantal approach 
to testing QL for positive semidefiniteness. 

10. APPLICATION TO SOME THEOREMS OF M. MORSE 

In [21] and [22], M. Morse considers a quadratic form restricted to a 
subspace. His results, which could be classified as inertia theorems, have 
technical applications in the “study of critical extremals and extended 
Sturm theorems” (see [22, pp. 560 and 5691). In this section, we employ the 
interpretation of the Schur complement given in Sec. 9 in conjunction 
with the inertia formula (7) to rederive Morse’s findings. We caution the 
reader that some of Morse’s notation has been drastically modified, but 
we believe no content has been lost thereby. 

The formulation is as follows. Suppose we are given a real quadratic 
form 

Q(z) = zTMz 

in n variables. For some integer r, 0 < r < n, let s = n - Y and assume 
z is expressed as the direct sum of an r-vector x and an s-vector y. Thus 

(-3,. . . , 4 = (X1,...,Xr;Ylr...,Ys). 

This induces a corresponding decomposition of M into a block matrix 

A B 
M= BT C’ 

[ 1 
Accordingly, we write 

Q(z) E P(x, y) E #‘AX + 2xTBy + yTCy. 



MANIFESTATIONS OF THE SCHUR COMPLEMENT 207 

Morse terms the quadratic form P(x, 0) = X~AX subordinate to Q(z). The 

central point of his study is to obtain a formula, when [A, B] is of rank Y, 

for the difference 

index P(x, y) - index P(x, 0) 

In this context, the index of a quadratic form is the negativity of the 

corresponding coefficient matrix. Morse gives his formula in terms of 

the index and nullity of a class of “congruent quadratic forms” called 

complementary to P(x, 0). The latter stem from the restriction of Q to the 

null space L of [A, B]. By the rank assumption, L is of dimension s. This 

rank property can be assured if either A or M is nonsingular, but these 

sufficient conditions are not necessary. 

A quadratic form complementary to P(x, 0) is just obtained by rep- 

resenting Q in terms of a base for L. The coefficient matrices resulting 

from such choices are all congruent and consequently have the same 

inertia. From these considerations, it is evident that it suffices to extract 

a base for L from [A, B] itself. 

In the case where A is nonsingular, the required complementary form 

QL is given by the matrix (M/A) = C - BTklB; the inertia formula 

applies and yields 

index P(x, y) - index P(x, 0) = index QL(y), (19) 

nullity P(x, y) = nullity QL(y). (20) 

These two equations are just (3.17) and (3.18) of [22]. They are indicative 

of the general results to follow. 

The case where A is not necessarily of full rank is, of course, more 

complicated. The assumption that [A, B] has rank Y means it contains 

a nonsingular submatrix D or order Y. Since the particular choice of D 

(equivalently, base for L) has no bearing on the inertia of the coefficient 

matrix of interest, it may as well be chosen conveniently. 

To this end, let A have rank t. Note: 0 < t ,( Y. If t = 0, then A = 0; 

we do not exclude this case from the present discussion. It follows that A 

contains a principal submatrix of order t and rank t. Moreover, no larger 

principal submatrix of A is nonsingular. By a principal rearrangement 

of the first r rows and columns of M, we may assume this t x t submatrix 

of A is Ali where A Al2 
A = Al1 

[ 1 21 AZ2 
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A consequence of this assumption is 

(API,) = 0 (or 0 if A = Arr), (21) 

for otherwise A contains a nonsingular principal submatrix of order t + 1 

or t + 2. 

This decomposition of A induces one of M, say A 11 AI, BI 
M = AtI A,, B, . 

[ 1 BIT BzT C 

Next, it follows that the Y - t rows of B, are linearly independent. Hence 

the last s rows and columns of M can be permuted so that 

(22) 

where B,, is nonsingular. Now select 

as the nonsingular Y x Y submatrix of [A, B]. In agreement with the 

decomposition (22) of M, write 

thus L is specified by the equations 

A+l + Al2x2 + hlyl + Bl2~2 = 0, (23) 

A21x1 -t -422~2 + B2lyl + B22~2 = 0. (24) 

We compute the restriction of Q to L in two stages. By eliminating 

x1 from Q [i.e., restricting Q to the solution set L, of Eq. (23)] we obtain 

the quadratic form QL, with coefficient matrix 
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Actually, Azz = (.4/A,,) = 0 (or perhaps A,, = 0), and Bnl = (D/A,,) 

is nonsingular. Moreover, A,,, Bai, and B,, are the coefficients of xp, yi, 

and y2, respectively, after the elimination of xi from Eq. (24). Finally, 

QL is just the restriction of QL, to L, the solution set of Eq. (24) in revised 

form, i.e., 

But this quadratic form corresponds to the matrix 

The net effect of all this is that (relative to the choice of D) the restriction 

of Q to L has the coefficient matrix [M/E) where 

The order of (M/E) is just the dimension of y2. This would suggest there 

is a discrepancy in identifying QL with (M/E) because only xi and yi 

are eliminated. Strictly speaking, the proper coefficient matrix of QL is 

0 o- 

I J O (M/E) . 

Its nullity is evidently Y - t. From the inertia formula (7), we see that 

In M = In E + In(M/E), (25) 

In E = In A,, + In(E/A,,). 

Since & is nonsingular, Eq. (9) applies to (E/A,,) and gives us 

In(E/All) = (Y - t, Y - t, 0). 

(26) 

(27) 

Substituting Eq. (27) into Eq. (26) and the result into Eq. (25) we get 

In M = In A,, + (Y - t, Y - t, 0) + In(M/E). (28) 

This equation and the association between forms and matrices imply 
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index P(x, y) - index P(x, 0) = nullity Q&z2, y2) + index QL&, y2). 

Now, in general, 

nullity QL(xZ, y2) = Y - t + nullity (M/E), 

= Y - t + nullity IM. 

If we assume 1M is nonsingular, then nullity QL(x,, yz) = Y - t, and upon 

substitution, Eq. (29) becomes the conclusion reached by Morse [22, 

Theorem 1.11 under just this assumption. 

The author gratefully acknowledges his indebtedness to Professors Garrett 

Birkhoff, Gene H. Golub, Ingram Olkin, and Dr. Philip Wolfe for numerous 

discussions of this subject and valuable comments on earlier versions of the 

paper. 
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