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Error analysis of variable stepsize Runge–Kutta methods for a class
of multiply-stiff singular perturbation problemsI
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Abstract

In this paper, we present some results on the error behavior of variable stepsize stiffly-accurate Runge–Kutta methods applied
to a class of multiply-stiff initial value problems of ordinary differential equations in singular perturbation form, under some weak
assumptions on the coefficients of the considered methods. It is shown that the obtained convergence results hold for stiffly-accurate
Runge–Kutta methods which are not algebraically stable or diagonally stable. Some results on the existence and uniqueness of the
solution of Runge–Kutta equations are also presented.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Runge–Kutta methods (RKMs) are an important class of the numerical methods for solving the initial value
problems (IVPs) in singular perturbation form as a special class of stiff IVPs. It is well known that they can’t
be satisfactorily covered by B-theory because of their very special structures. Some authors (cf. [1–9]) have
presented some convergence results for RKMs and their variations (such as Rosenbrock methods, partitioned linearly
implicit RKMs) applied to singly-stiff singular perturbation problems (SSPPs) and multiply-stiff singular perturbation
problems (MSPPs). The corresponding reduced problems of MSPPs become a class of stiff differential–algebraic
equations (SDAEs). Some practical examples of MSPPs can be found in [9].

So far, the results obtained in [1–8] are mainly under fixed stepsizes or the assumptions that RKMs are algebraically
stable and diagonally stable. But some well known families of RKMs used for numerical solutions of stiff systems,
like the Lobatto IIIA (cf. [10,11]) and Lobatto IIIC with stage number s ≥ 3 (cf. [12]), etc., are not algebraically stable
or diagonally stable. In this paper, we present some results on the error behavior of variable stepsize stiffly-accurate
RKMs applied to a class of multiply-stiff IVPs of ordinary differential equations in singular perturbation form under
some weak assumptions on the coefficients of the considered methods. It is shown that the obtained convergence
results can hold for stiffly-accurate RKMs which are not algebraically stable or diagonally stable. Some results on the
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existence and uniqueness of the solution of the corresponding Runge–Kutta equations are also presented. The results
obtained in the present paper can be considered as a partial extension of the corresponding results for stiff problems
in [13].

2. Problems and methods

Consider the singular perturbation problem (SPP){
x ′(t) = f (t, x, y), t ∈ [0, T ],

εy′(t) = g(t, x, y), 0 < ε � 1 (2.1)

with initial values (x(0), y(0)) ∈ Ǧ admitting a smooth solution (x(t), y(t)), where Ǧ is an appropriate, convex, and
open region on RM

× RN , and the maps f : [0, T ] × Ǧ → RM and g : [0, T ] × Ǧ → RN are sufficiently smooth
and satisfy the following assumptions H0–H3, as in [7–9,13] etc.:
H0:

〈g(t, x, y1) − g(t, x, y2), y1 − y2〉 ≤ −‖y1 − y2‖
2, ∀t ∈ [0, T ], ∀(x, y1), (x, y2) ∈ Ǧ, (2.2a)

‖ f (t, x, y1) − f (t, x, y2)‖ ≤ L1‖y1 − y2‖, ∀t ∈ [0, T ], ∀(x, y1), (x, y2) ∈ Ǧ, (2.2b)

‖g(t, x1, y) − g(t, x2, y)‖ ≤ L2‖x1 − x2‖, ∀t ∈ [0, T ], ∀(x1, y), (x2, y) ∈ Ǧ (2.2c)

with moderately-sized constants L1 and L2, where, throughout this paper, 〈., .〉 is the standard inner product in real
Euclidean spaces RM , RN and Rs with the corresponding norm ‖.‖, the matrix norm used in the following text is
subject to ‖.‖, and µ(.) denotes the logarithmic norm with respect to 〈., .〉.
H1: All derivatives of the exact solution (x(t), y(t)) up to a sufficiently high order are bounded independently of the
stiffness of the problem, i.e.

‖x ( j)(t)‖ ≤ M̂ j , ‖y( j)(t)‖ ≤ N̂ j , j = 1, 2, . . . , l, t ∈ [0, T ] (2.2d)

with constants M̂ j , N̂ j of moderate size and sufficiently large l.
H2: The Jacobian matrix of f with respect to the x-variable fx (t, x, y) :=

∂ f (t,x,y)
∂x along the exact solution

(x(t), y(t)) satisfies

µ( fx (t, x(t), y(t))) ≤ 0, t ∈ [0, T ]. (2.2e)

H3: There exist positive constants δ j ( j = 1, 2, 3) and matrices E j = E j (t, 1t, 1x, 1y) ∈ RM×M ( j = 1, 2) such
that for all (t, x(t), y(t)) and (t + 1t, x(t) + 1x, y(t) + 1y) ∈ [0, T ] × Ǧ with

|1t | ≤ δ1, ‖1x‖ ≤ δ2, ‖1y‖ ≤ δ3,

fx (t + 1t, x(t) + 1x, y(t) + 1y) − fx (t, x(t), y(t))

= fx (t, x(t), y(t))E1(t, 1t, 1x, 1y) + E2(t, 1t, 1x, 1y) (2.2f)

with

‖E j (t, 1t, 1x, 1y)‖ ≤ µ j |1t | + λ j‖1x‖ + ζ j‖1y‖, j = 1, 2.

Here λ j , µ j , ζ j are constants of moderate size, and the constants δ1, δ2, δ3 are supposed to be independent of the
stiffness of the problem. The class of all IVPs (2.1) statisfying the assumptions H0–H3 for some moderate values
of M̂ j , N̂ j ( j = 1, 2, . . . , l), L j ( j = 1, 2), δ j ( j = 1, 2, 3), µ j , λ j , ζ j ( j = 1, 2) will be denoted by Pε . The
assumption H3 was firstly introduced by [13–15]. More comments about the above assumptions H1–H3 can be found
in [13].

The problem (2.1) is a MSPP, and the problem considered in [1] is a SSPP. The right-side functions of the SSPP
in [1] satisfy the Lipschitz conditions with moderately-sized Lipschitz constants, and the stiffness of the SSPP is only
caused by the small parameter ε. The right-side functions of the MSPP (2.1) satisfy the Lipschitz conditions with
moderately-sized Lipschitz constants except fx , and the function f in (2.1) is stiff. The problem (2.1) is obtained by
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adding an equation with ε to the problem in [13]. In general, the one-sided Lipschitz constant of the problem (2.1) is
large and of magnitude 1

ε
. Therefore, the above three classes of problems are essentially different.

A s-stage RKM (A, b, c) with

A = [ai j ] ∈ Rs×s, bT
= (b1, b2, . . . , bs), cT

= (c1, c2, . . . , cs),

where ci =
∑s

j=1 ai j (i = 1, 2, . . . , s), applied to the problem (2.1) reads

Xni = xn + hn

s∑
j=1

ai j f (tn + c j hn, Xnj , Ynj ), i = 1, 2, . . . , s, (2.3a)

εYni = εyn + hn

s∑
j=1

ai j g(tn + c j hn, Xnj , Ynj ), i = 1, 2, . . . , s, (2.3b)

xn+1 = xn + hn

s∑
i=1

bi f (tn + ci hn, Xni , Yni ), (2.3c)

εyn+1 = εyn + hn

s∑
i=1

bi g(tn + ci hn, Xni , Yni ) (2.3d)

with the starting values x0 and y0, where xn, yn, Xni , and Yni are approximations to the exact solutions
x(tn), y(tn), x(tn + ci hn), and y(tn + ci hn) respectively; the used grid is {t j }

N̆
j=0 with

0 = t0 < t1 < · · · < tN̆ ≤ T, hi = ti+1 − ti (i = 0, 1, . . . , N̆ − 1).

For any positive integer k, l and k × l matrix H , let Il denote an l × l unit matrix and H̄ = H ⊗ IM , H̃ = H ⊗ IN ,
and let ⊗ denote the Kronecker product of two matrices. Then the method (2.3) can be written in more compact form

Xn = e ⊗ xn + hn ĀF(tn, Xn, Yn), (2.4a)

εYn = εe ⊗ yn + hn ÃG(tn, Xn, Yn), (2.4b)

xn+1 = xn + hn b̄T F(tn, Xn, Yn), (2.4c)

εyn+1 = εyn + hn b̄TG(tn, Xn, Yn), (2.4d)

where e = (1, 1, . . . , 1)T
∈ Rs ,

Xn = (XT
n1, XT

n2, . . . , XT
ns)

T
∈ RMs, Yn = (Y T

n1, Y T
n2, . . . , Y T

ns)
T

∈ RNs, (2.5a)

F(tn, Xn, Yn) = ( f (tn + c1hn, Xn1, Yn1)
T, f (tn + c2hn, Xn2, Yn2)

T,

. . . , f (tn + cshn, Xns, Yns)
T)T

∈ RMs, (2.5b)

G(tn, Xn, Yn) = (g(tn + c1hn, Xn1, Yn1)
T, g(tn + c2hn, Xn2, Yn2)

T,

. . . , g(tn + cshn, Xns, Yns)
T)T

∈ RNs . (2.5c)

Now we introduce the Butcher simplifying assumptions

B(p) : ibTci−1
= 1, i = 1, 2, . . . , p,

C(q) : i Aci−1
= ci , i = 1, 2, . . . , q,

where ci
= (ci

1, ci
2, . . . , ci

s)
T. If the method (A, b, c) satisfies B(q) and C(q), then it is of stage order q.

For the spaces of stage vectors RMs and RNs , we define the inner product 〈., .〉 and the corresponding norm ‖.‖

(also cf. [13]) by

〈V̂ , Ŵ 〉 :=
1
s

s∑
i=1

〈V̂i , Ŵi 〉, ‖V̂ ‖ :=

√
〈V̂ , V̂ 〉,
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where V̂ = (V̂ T
1 , V̂ T

2 , . . . , V̂ T
s )T, Ŵ = (Ŵ T

1 , Ŵ T
2 , . . . , Ŵ T

s )T with

V̂i , Ŵi ∈ RM or V̂i , Ŵi ∈ RN , i = 1, 2, . . . , s.

Throughout this paper, the constants symbolized in the O(· · ·)terms are independent of the stiffness of the
considered problem.

For the method (2.4) (i.e. (2.3)), we will use the following stability assumptions M1, M2 (also cf. [13,14]):
M1: The RKM (A, b, c) is A-stable, i.e. the rational function R(z) := 1 + zbT(Is − z A)−1e satisfies |R(z)| ≤ 1 for
all complex z with Re z ≤ 0.
M2: The matrix Is − z A is regular for all Re z ≤ 0, and there exists a constant K such that

sup
Re z≤0

‖(Is − z A)−1
‖ ≤ K < +∞.

The assumption M3 in [13,14] can be obtained from M2 if A is invertible, or if there exists a vector d such that
bT

= dT A. For example, Lobatto IIIA and Lobatto IIIC are stiffly accurate and satisfy bT
= eT

s A. Moreover, the
condition that the eigenvalues of A have positive real parts implies the assumption M2, and that A is invertible
(cf. [16]). We also use the grid assumption (cf. [13]):
M4: There is a positive constant L of moderate size independent of the grid such that

Ň−1∑
j=0

ĥ j ≤ LT,

where ĥ j = max0≤i≤ j hi , j = 0, 1, . . . , N̆ − 1.
More comments about M1, M2, and M3 can be found in [13]. Let

hmin = min{h j : 0 ≤ j ≤ Ň − 1}, Ri (z) = eT
i (Is − z A)−1e, i = 1, 2, . . . , s,

where ei is the unit vector in Rs , Re z ≤ 0. Then

Ri (z) = 1 + zeT
i A(Is − z A)−1e = 1 + zaT

i (Is − z A)−1e, i = 1, 2, . . . , s,

where aT
i is the i-row of A. Especially, Rs(z) = R(z) when aT

s = bT. Therefore, as pointed out in [13],
Ri (z) (i = 1, 2, . . . , s) can be considered as the stability functions associated to the stage (2.4a) and (2.4b), of
the RK formula (2.4), and the assumption M2 yields that Ri (z) (i = 1, 2, . . . , s) are analytic for all Re z ≤ 0, and are
uniformly bounded:

sup
Re z≤0

|Ri (z)| = ri < +∞.

3. Convergence results

Now we introduce some notations (in part, also see [8]). Let

1xn = xn − x(tn), 1yn = yn − y(tn), X̌ni = x(tn + ci hn), Y̌ni = y(tn + ci hn),

1Xni = Xni − X̌ni , 1Yni = Yni − Y̌ni ,

1 fni = f (tn + ci hn, Xni , Yni ) − f (tn + ci hn, X̌ni , Y̌ni ),

1gni = g(tn + ci hn, Xni , Yni ) − g(tn + ci hn, X̌ni , Y̌ni ),

X̌n = (X̌T
n1, X̌T

n2, . . . , X̌T
ns)

T
∈ RMs,

Y̌n = (Y̌ T
n1, Y̌ T

n2, . . . , Y̌ T
ns)

T
∈ RNs,

F̌(tn, X̌n, Y̌n) = ( f (tn + c1hn, X̌n1, Y̌n1)
T, f (tn + c2hn, X̌n2, Y̌n2)

T, . . . , f (tn + cshn, X̌ns, Y̌ns)
T)T

∈ RMs,

Ǧ(tn, X̌n, Y̌n) = (g(tn + c1hn, X̌n1, Y̌n1)
T, g(tn + c2hn, X̌n2, Y̌n2)

T, . . . , g(tn + cshn, X̌ns, Y̌ns)
T)T

∈ RNs,

1Xn = Xn − X̌n = (1XT
n1, 1XT

n2, . . . ,1XT
ns)

T,

1Yn = Yn − Y̌n = (1Y T
n1, 1Y T

n2, . . . ,1Y T
ns)

T,
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1F = F − F̌, 1G = G − Ǧ.

Conditions B(q), C(q), and H1 imply

X̌n = e ⊗ x(tn) + hn ĀF̌ + wx
n , (3.1a)

Y̌n = e ⊗ y(tn) +
hn

ε
ÃǦ + w

y
n , (3.1b)

x(tn+1) = x(tn) + hn b̄T F̌ + wx
n0, (3.1c)

y(tn+1) = y(tn) +
hn

ε
b̄TǦ + w

y
n0, (3.1d)

where

max{‖wx
n‖, ‖w

y
n‖, ‖wx

n0‖, ‖w
y
n0‖} ≤ W1hq+1

n . (3.1e)

It follows from (2.4) and (3.1) that

1Xn = e ⊗ 1xn + hn Ā1F − wx
n , (3.2a)

1Yn = e ⊗ 1yn +
hn

ε
Ã1G − w

y
n , (3.2b)

1xn+1 = 1xn + hn b̄T1F − wx
n0, (3.2c)

1yn+1 = 1yn +
hn

ε
b̄T1G − w

y
n0. (3.2d)

Since the eigenvalues of A have positive real parts, A is invertible and we can compute 1F and 1G from (3.2a) and
(3.2b)

1F =
1

hn
Ā−1(1X − e ⊗ 1xn + wx

n ), (3.3a)

1G =
ε

hn
Ã−1(1Y − e ⊗ 1yn + w

y
n ). (3.3b)

Moreover, it follows from (3.2) and (3.3) that

1xn+1 = α1xn + b̄T Ā−11Xn + b̄T Ā−1wx
n − wx

n0, (3.4a)

1yn+1 = α1yn + b̃T Ã−11Yn + b̃T Ã−1w
y
n − w

y
n0, (3.4b)

where α = 1 − bT A−1e. We can obtain easily

1F = FX1Xn + FY 1Yn, 1G = G X1Xn + GY 1Yn, (3.5)

where

FX = blockdiag(U F
n1, U F

n2, . . . , U F
ns), FY = blockdiag(V F

n1, V F
n2, . . . , V F

ns),

G X = blockdiag(U G
n1, U G

n2, . . . , U G
ns), GY = blockdiag(V G

n1, V G
n2, . . . , V G

ns ),

where, for i = 1, 2, . . . , s,

U F
ni =

∫ 1

0
fx (tn + ci hn, X̌ni + θ1Xni , Y̌ni )dθ,

V F
ni =

∫ 1

0
fy(tn + ci hn, X̌ni + 1Xni , Y̌ni + θ1Yni )dθ,

U G
ni =

∫ 1

0
gx (tn + ci hn, X̌ni + θ1Xni , Y̌ni )dθ,
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V G
ni =

∫ 1

0
gy(tn + ci hn, X̌ni + 1Xni , Y̌ni + θ1Yni )dθ,

1 fni = U F
ni1Xni + V F

ni 1Yni , 1gni = U G
ni 1Xni + V G

ni 1Yni .

For (3.5) and (3.2b), we have

1Yn =
hn

ε

(
Ĩs −

hn

ε
ÃGY

)−1 (
ε

hn
e ⊗ 1yn + ÃG X1Xn −

ε

hn
w

y
n

)
. (3.6)

Since (2.2a) holds and the eigenvalues of A have positive real parts, the matrix-valued version of a theorem of von
Neumann (cf. [1–3,17]) yields, for ε ≤ C0ȟn∥∥∥∥∥hn

ε

(
Ĩs −

hn

ε
ÃGY

)−1
∥∥∥∥∥ ≤ W2, n = 0, 1, . . . , Ň − 1, (3.7)

where ȟn = min0≤i≤n hi , that the constants W2, C0 are independent of the stiffness of the IVP (2.1).

Lemma 3.1. Let Jn = fx (tn, x(tn), y(tn)) and suppose that the IVP (2.1) satisfies (2.2b) and the assumptions H1–H3;
then there exist Ěi, j ∈ RM×M ( j = 1, 2) such that

1 fni = Jn1Xni + (Jn Ěi,1 + Ěi,2)1Xni + Ěi,31Yni , (3.8)

where Ěi,3 = V F
ni ∈ RM×N ,

‖Ěi,3‖ ≤ L1, ‖Ěi, j‖ ≤ K1hn + K2‖1Xni‖, j = 1, 2

with K1, K2, L1 independent of the stiffness.

Proof. The proof of Lemma 3.1 can be easily given by some modifications of Lemma 4.1 in [13]. ¶

Let

Ě j = diag(Ě1, j , . . . , Ěs, j ) ∈ RMs×Ms ( j = 1, 2), Ě3 = diag(Ě1,3, . . . , Ěs,3) ∈ RMs×Ns .

It follows from the assumptions M2, H2, and a generalized version of von Neumann’s theorem given in [17] that

‖Ri (hn Jn)‖ ≤ ri (i = 1, 2, . . . , s), ‖(IMs − (A ⊗ hn Jn))−1
‖ ≤ K . (3.8′)

Thus, we have

Lemma 3.2. The inequality

‖1Xni‖ ≤ ri‖1xn‖ + (K + 1)‖Ě11Xn‖ + hn K‖A‖‖Ě21Xn‖ + hn K‖A‖‖Ě31Yn‖ + K‖wx
n‖ (3.9)

holds, where K is the constant in the assumption M2.

Proof. The proof of Lemma 3.2 can be easily given by some modifications of Lemma 4.2 in [13]. ¶

Let

δx
ni = ‖1Xni‖, δ

y
ni = ‖1Yni‖, i = 1, 2, . . . , s; δx

n = max
1≤i≤s

δx
ni , δ

y
n = max

1≤i≤s
δ

y
ni .

Then δx
n ≥ ‖1Xn‖, δ

y
n ≥ ‖1Yn‖, and

‖Ě j‖ ≤ K1hn + K2δ
x
n ( j = 1, 2), ‖Ě3‖ ≤ L1. (3.10)

Substituting (3.10) into (3.9) for hn ≤ h∗

1, i = 1, 2, . . . , s, it follows that

δx
ni ≤ ri‖1xn‖ + hn K3δ

x
n + K4(δ

x
n )2

+ K‖wx
n‖ + hn K̃4δ

y
n , (3.11)
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where K̃4 = K‖A‖L1, K3 = (K + 1)K1 + K‖A‖K1h∗

1, K4 = (K + 1)K2 + K‖A‖K2h∗

1, h∗

1, K̃4 and K3 are
independent of the stiffness of the considered problems.

As we will see in Section 4, there is h∗

2 > 0 independent of the stiffness such that the nonlinear algebraic
system (2.4a) and (2.4b) possess a unique solution Xni = Xni (hn), Yni = Yni (hn) (i = 1, 2, . . . , s) which depends
continuously on hn for hn ≤ h∗

2. This implies that (1Xni , 1Yni ) (i = 1, 2, . . . , s) satisfying (3.2a) and (3.2b) are all
defined and continuous for hn ≤ h∗

2. Moreover,

1Xni (0) = 1xn, 1Yni (0) = 1yn, (3.12a)

δx
ni (0) = δx

n (0) = ‖1xn‖, δ
y
ni (0) = δ

y
n (0) = ‖1yn‖. (3.12b)

Theorem 3.1. Assume the method (A, b, c) is stiffly-accurate and of stage order q ≥ 2, and satisfies the
assumption M1 and the condition that the eigenvalues of A have positive real parts. Then, when this method is applied
to the problem Pε , the following global error estimates hold for ε ≤ C0 min{ȟ2

n, ȟn}, 0 ≤ hn ≤ h̄0, x0 − x(t0) = 0,
and y0 − y(t0) = 0

‖xn − x(tn)‖ ≤ C1ĥq
n , ‖yn − y(tn)‖ ≤ C2ĥq

n

with respect to the grids that satisfy the assumption M4, where the constants h̄0, Ci (i = 0, 1, 2) are independent of
the stiffness of the considered problem.

Proof. When the method (A, b, c) is stiffly accurate, aT
s = bT and α = 0, and we have

xn+1 = Xns, yn+1 = Yns, cs = 1, 1xn+1 = 1Xns, 1yn+1 = 1Yns,

and

‖1xn+1‖ = ‖1Xns‖ = δx
ns, ‖1yn+1‖ = ‖1Yns‖ = δ

y
ns . (3.13)

It follows from (3.11) and (3.1e) that

δx
ni ≤ ri‖1xn‖ + hn K3δ

x
n + K4(δ

x
n )2

+ hn K̃4δ
y
n + K5hq+1

n , i = 1, 2, . . . , s, (3.14)

δx
n ≤ β‖1xn‖ + hn K3δ

x
n + K4(δ

x
n )2

+ hn K̃4δ
y
n + K5hq+1

n , (3.15)

where

hn ∈ [0, h∗

3], h∗

3 = min{h∗

1, h∗

2}, β = max
1≤i≤s

ri ≥ 1, K5 = K W1.

For i = s, from rs = 1, (3.14) and (3.13) we have

‖1xn+1‖ ≤ ‖1xn‖ + hn K3δ
x
n + K4(δ

x
n )2

+ hn K̃4δ
y
n + K5hq+1

n , hn ∈ [0, h∗

3]. (3.16)

On the other hand, it follows from (3.7) and (3.6) multiplied by eT
i ⊗ IM that

δ
y
n ≤ K6

(
ε

hn
‖1yn‖ + δx

n + εhq
n

)
, hn ∈ [0, h∗

3], ε ≤ C0ȟn (3.17)

with K6 independent of the stiffness. Inserting (3.17) into (3.16) yields

δx
n ≤ β‖1xn‖ + hn K̂3δ

x
n + K4(δ

x
n )2

+ K̂4ε‖1yn‖ + K̂5hq+1
n , hn ∈ [0, h∗

3] (3.18)

where ε ≤ C0ȟn , K̂3 = K3 + K̃4 K6, K̂4 = K̃4 K6, K̂5 = K5 + K̃4 K6C0h∗

3. Let

γ (hn) = β‖1xn‖ + K̂4ε‖1yn‖ + K̂5hq+1
n ,

where γ (hn) is a positive continuous function, and

γ (0) = β‖1xn‖ + K̂4ε‖1yn‖,

δx
n (0) = ‖1xn‖ < γ (0) < 2γ (0),
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and (3.18) yields

δx
n ≤ γ (hn) + hn K̂3δ

x
n + K4(δ

x
n )2. (3.19a)

Moreover, applying Lemma 4.4 in [13] to (3.19a) we have

δx
n ≤ 2γ (hn) = 2β‖1xn‖ + 2K̂4ε‖1yn‖ + 2K̂5hq+1

n (3.19b)

for 0 ≤ hn ≤ h∗

4, h∗

4 = min{h∗

3,
1

4K̂3
}. It follows from (3.16), (3.17) and (3.19b) that

‖1xn+1‖ ≤ (1 + K7hn)‖1xn‖ + K8ε‖1yn‖ + K9ε‖1xn‖‖1yn‖

+ K10‖1xn‖
2
+ K11ε

2
‖1yn‖

2
+ K12hq+1

n + K13εhq+1
n , (3.20)

where hn ∈ [0, h∗

4], Ki (i = 7, 8, . . . , 13) are positive constants independent of the stiffness.
Now we prove the following formulae by induction:

‖1xn‖ ≤ ĥn, ‖1yn‖ = O(ĥn), n ≥ 0 (3.21)

for 0 ≤ ĥn ≤ h∗

7. In fact, we have first assumed that

‖1x0‖ = 0, ‖1y0‖ = 0.

We also assume that (3.21) holds for all j ≤ n, then ‖1yn‖ ≤ K15ĥn , and (3.20) yields

‖1xn+1‖ ≤ (1 + K7hn)‖1xn‖ + K10‖1xn‖
2
+ K̂12hq+1

n + K8 K15ĥnε + K9 K15ĥ2
nε + K11 K 2

15ĥ2
nε2, (3.22)

where q ≥ 2 and

K̂12 = K12 + εK13 ≤ K12 + K13C0(h∗

4)
2, ε ≤ C0ȟ2

n .

Thus,

‖1xn+1‖ ≤ (1 + K7ĥn)‖1xn‖ + K10‖1xn‖
2
+ K14ĥ3

n, ĥn ∈ [0, h∗

4], (3.23)

where

K14 = K8 K15C0 + K̂12h∗

4
q−2

+ K9 K15C0h∗

4 + K11 K 2
15C2

0 h∗

4
3
.

By means of Lemma 4.4 in [13], (3.23) yields

‖1xn+1‖ ≤
K14

K7 + K10
(e(K7+K10)LT

− 1)ĥ2
n ≤ ĥn, n ≥ 0,

whenever

ĥn ≤ h∗

5 = min

{
h∗

4,

(
K14

K7 + K10
(e(K7+K10)LT

− 1)

)−1
}

, (n ≥ 0).

It follows from (3.17) and (3.19b) that

δ
y
n ≤ K6

(
ε

hn
‖1yn‖ + 2β‖1xn‖ + 2K̂4ε‖1yn‖ + 2K̂5hq+1

n + εhq
n

)
= K6

(
ε

hn
+ 2K̂4ε

)
‖1yn‖ + 2βK6‖1xn‖ + 2K6 K̂5ĥq+1

n + K6εĥq
n . (3.24)

Inserting (3.24) into (3.4b) yields

‖1yn+1‖ ≤

(
|α| + K16ε

(
1 +

1
hn

))
‖1yn‖ + K17ĥn

= (|α| + K16ε̂)‖1yn‖ + K17ĥn, ĥn ≤ h∗

5, (3.25)
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where K16, K17 are independent of the stiffness and ε̂ = ε(1+
1

hn
). Since ε ≤ C0ȟ2

n , ε̂ ≤ C4ȟn , here C4 = C0(1+h∗

5).
Therefore, there exists h∗

6 > 0 such that

|α| + K16C4ȟn ≤ K16C4h∗

6 < 1 for ȟn ∈ [0, h∗

6],

and

‖1yn+1‖ ≤ (|α| + K16C4h∗

6)‖1yn‖ + K17ĥn

≤

n∑
i=0

(K16C4h∗

6)
i K17ĥn

≤
K17

1 − K16C4h∗

6
ĥn

= O(ĥn), ĥn ∈ [0, h∗

7].

where h∗

7 = min{h∗

5, h∗

6}.
Now we obtain the global error estimate results. It follows from (3.20) and (3.21) that

‖1xn+1‖ ≤ (1 + K19ĥn)‖1xn‖ + K20ε‖1yn‖ + K12ĥq+1
n + K13εĥq+1

n , (3.26)

where K19 = K7 + K10, K20 = K8 + K9h∗

7 + K11 K15C0h∗

7
2.

It follows from (3.4b), (3.17) and (3.19b) that

‖1yn+1‖ ≤

(
|α| + K21ε

(
1 +

1
hn

))
‖1yn‖ + K22‖1xn‖ + K23hq+1

n + K24εhq
n

≤ (|α| + K21ε̂)‖1yn‖ + K22‖1xn‖ + K23ĥq+1
n + K24εĥq

n , (3.27)

where K21, K22, K23, K24 are independent of the stiffness. (3.25) and (3.27) yield(
‖1xn+1‖

‖1yn+1‖

)
≤

(
1 + K19ĥn K20ε

K22 |α| + K21ε̂

) (
‖1xn‖

‖1yn‖

)
+ Ψ

(
ĥn
1

)
,

where Ψ = O(ĥq
n) + O(εĥq

n). By means of the same technique used in the proof of [1, pp. 432–433, Lemma 2.9], we
easily obtain the conclusion of Theorem 3.1. ¶

Remark. The assumption M1 , and the invertibility of the matrix A, imply in general that the eigenvalues of A have
positive real parts. Otherwise, the stability function would have to be reducible (cf. [1, p. 431], [3]). Therefore, Radau
IIA methods with s ≥ 2 and Lobatto IIIC methods with s ≥ 3 can satisfy the assumptions of Theorem 3.1, and are of
q = s and q = s − 1 respectively.

The corresponding reduced equations of (2.1) with ε = 0 is a SDAE

x ′(t) = f (t, x, y), t ∈ [0, T ], (3.28a)
0 = g(t, x, y) (3.28b)

whose initial values x(0) and y(0) are consistent if 0 = g(0, x(0), y(0)). Moreover, if the Jacobian gy(t, x, y) is
invertible and bounded, then the problem (3.28) is of index 1, and the Eq. (3.28b) then possesses a unique solution
y = Ω(x). Inserting it into (3.28a) yields

x ′(t) = f (t, x,Ω(x)). (3.29)

We obtain from (2.4b)

hnG = ε Ã−1(Yn − e ⊗ yn). (3.30)

Insert (3.30) into (2.4d) and let ε = 0 in (2.4). Then

Xn = e ⊗ xn + hn ĀF(tn, Xn, Yn), (3.31a)
0 = G(tn, Xn, Yn), (3.31b)
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xn+1 = xn + hn b̄T F(tn, Xn, Yn), (3.31c)

yn+1 = αyn + b̃T Ã−1Yn . (3.31d)

Theorem 3.2. Suppose that the method (A, b, c) is stiffly accurate and of stage order q ≥ 2, and satisfies the
assumption M1 and the condition that the eigenvalues of A have positive real parts. If the problem (3.28) satisfies
(2.2b) and (2.2c) and the assumptions H1–H3, gy is invertible and bounded, and the initial values are consistent, then
the numerical solution of (3.31) has global error

xn − x(tn) = O(ĥq
n), yn − y(tn) = O(ĥq

n)

when x0 − x(t0) = 0, y0 − y(t0) = 0, h ≤ h̄0.

Proof. Because (3.31a)–(3.31c) are independent of yn and do not change if (3.31d) is replaced by 0 =

g(tn+1, xn+1, yn+1), xn − x(tn) = O(ĥq
n) follows from the fact that (3.29) is a stiff ordinary differential equation

which can be covered by [13]. The remaining proof is completely similar to that of Theorem 2.2 in [8], with some
modifications; for example, we can obtain

‖1Xn‖ ≤ 2β‖1xn‖ + 2K̂5hq+1
n

by means of the similar process of giving (3.19b), hence 1Xn = O(ĥq
n). ¶

4. Existence and uniqueness of the solution of RK equations

Theorem 4.1. If the IVP (2.1) satisfies the assumptions H0–H3, and the RK method satisfies the condition that the
eigenvalues of A have positive real parts, then there exist h∗ > 0 and δ > 0 independent of the stiffness such that the
system

X = es ⊗ xn + h ĀF(tn, X, Y ), (4.1a)

εY = εes ⊗ yn + h ÃG(tn, X, Y ), (4.1b)

where X = (XT
1 , XT

2 , . . . , XT
s )T

∈ RMs, Y = (Y T
1 , Y T

2 , . . . , Y T
s )T

∈ RNs , possess a unique solutions for 0 ≤ h ≤ h∗

and

‖xn − x(tn)‖ ≤ δ, ‖yn − y(tn)‖ ≤ δ.

Proof. The part idea of the proof is similar to that of Theorem 5.1 in [13]. (4.1) is obtained from (2.4a) and (2.4b)
by omitting the subscript “n” of Xn, Yn, hn . Moreover, the other corresponding notations will also be given from
Section 3 in the same way.

The conditions B(q) and C(q) imply

X̌ = e ⊗ x(tn) + h ĀF(tn, X̌ , Y̌ ) + wx
n , (4.2a)

εY̌ = εe ⊗ y(tn) + h ÃG(tn, X̌ , Y̌ ) + w
y
n , (4.2b)

where ‖wx
n‖ ≤ W1hq+1, ‖w

y
n‖ ≤ W1hq+1. Subtracting (4.2) from (4.1) we have

1X = e ⊗ 1xn + h Ā(F(tn, X̌ + 1X, Y̌ + 1Y ) − F(tn, X̌ , Y̌ )) − wx
n , (4.3a)

ε1Y = εe ⊗ 1yn + h Ã(G(tn, X̌ + 1X, Y̌ + 1Y ) − G(tn, X̌ , Y̌ )) − w
y
n . (4.3b)

Let

Φ(1X) = (IMs − h(A ⊗ Jn))−1
[e ⊗ 1xn + h(A ⊗ IM )(−(Is ⊗ Jn)1X

+ F(tn, X̌ + 1X, Y̌ + 1Y ) − F(tn, X̌ , Y̌ )) − wx
n ]. (4.4)

Let 1X, 1X̄ , 1Y, 1Ȳ such that

‖1X‖ ≤ ρ, ‖1X̄‖ ≤ ρ, ‖1Y‖ ≤ ρ, ‖1Ȳ‖ ≤ ρ.
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(4.4) yields

Φ(1X) − Φ(1X̄) = (IMs − h(A ⊗ Jn))−1h(A ⊗ IM )[−(Is ⊗ Jn)(1X − 1X̄)

+ F(tn, X̌ + 1X, Y̌ + 1Y ) − F(tn, X̌ + 1X̄ , Y̌ + 1Ȳ )]. (4.5)

The j-subvector component of the last bracket can be written as

−Jn(1X j − 1X̄ j ) + f (tn + c j h, x(tn + c j h) + 1X j , y(tn + c j h) + 1Y j )

− f (tn + c j h, x(tn + c j h) + 1X̄ j , y(tn + c j h) + 1Ȳ j )

=

∫ 1

0
(−Jn + fx (tn + c j h, X̌ j + θ1X j + (1 − θ)1X̄ j , Y̌ j + 1Y j ))dθ(1X j − 1X̄ j )

+

∫ 1

0
fy(tn + c j h, X̌ j + 1X̄ j , Y̌ j + θ1Y j + (1 − θ)1Ȳ j )dθ(1Y j − 1Ȳ j ),

which can be written in the form

(Jn Ě1 j + Ě2 j )(1X j − 1X̄ j ) + Ě3 j (1Y j − 1Ȳ j ) (4.6)

by the assumption H3 as in Lemma 3.1, and we have ‖Ě3 j‖ ≤ L1,

‖Ěi j‖ ≤ (µi + (λi + ζi )M̂1)|c j |h + (λi + ζi )ρ = (λi + ζi )ρ + O(h), i = 1, 2.

Let Ěi = diag(Ěi1, Ěi2, . . . , Ěis) (i = 1, 2, 3). Then (4.5) and (4.6) yield

Φ(1X) − Φ(1X̄)

= (IMs − h(A ⊗ Jn))−1(A ⊗ hIM )[((Is ⊗ Jn)Ě1 + Ě2)(1X − 1X̄) + Ě3(1Y − 1Ȳ )]

= [(IMs − h(A ⊗ Jn))−1(A ⊗ h Jn)Ě1 + (IMs − h(A ⊗ Jn))−1(A ⊗ hIM )Ě2](1X − 1X̄)

+ (IMs − h(A ⊗ Jn))−1(A ⊗ hIM )Ě3(1Y − 1Ȳ ). (4.7)

Thus, from (3.8′) we have

‖Φ(1X) − Φ(1X̄)‖ ≤ ((1 + K )(λ1 + ζ1)ρ + O(h))‖1X − 1X̄‖ + hL1 K‖A‖‖1Y − 1Ȳ‖. (4.8)

On the other hand, (4.3b) and

1Ȳ = e ⊗ 1yn +
h
ε

Ã(G(tn, X̌ + 1X̄ , Y̌ + 1Ȳ ) − G(tn, X̌ , Y̌ )) − w
y
n

imply that

1Y − 1Ȳ =
h
ε

Ã(G(tn, X̌ + 1X, Y̌ + 1Y ) − G(tn, X̌ + 1X̄ , Y̌ + 1Ȳ ))

=
h
ε

Ã[Ĝ X (1X − 1X̄) + ĜY (1Y − 1Ȳ )], (4.9)

where Ĝ X and ĜY can be given by the similar way to G X and GY in (3.5). Moreover,

1Y − 1Ȳ =
h
ε

(
I −

h
ε

ÃĜY

)−1

ÃĜ X (1X − 1X̄). (4.10)

It follows from (4.10) and (3.7) that

‖1Y − 1Ȳ‖ ≤ L3‖1X − 1X̄‖, (4.11)

where L3 = W2‖A‖L2. (4.11) and (4.8) yield

‖Φ(1X) − Φ(1X̄)‖ ≤ ((1 + K )(λ1 + ζ1)ρ + O(h))‖1X − 1X̄‖.

The above formula implies that Φ is contractive provided that h̃1 and ρ satisfy

(1 + K )(λ1 + ζ1)ρ + O (̃h1) ≤ λ =
1
2
.
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For 1X = 0, we have

‖Φ(0)‖ = ‖(IMs − h(A ⊗ Jn))−1
‖

× ‖(e ⊗ 1xn + h(A ⊗ IM )(F(tn, X̌ , Y̌ + 1Y ) − F(tn, X̌ , Y̌ )) − wx
n )‖

≤ K (δ + ‖A‖L1h‖1Y‖ + W1hq+1), (4.12)

and (4.3b) and (3.7) (or (3.6) and (3.7)) yield

1Y =
h
ε

(
INs −

h
ε

ÃGY

)−1 ( ε

h
e ⊗ 1yn −

ε

h
w

y
n

)
, (4.13a)

‖1Y‖ ≤ W2

( ε

h
δ + W1εhq

)
, ε ≤ C0h. (4.13b)

It follows from (4.12) and (4.13) that

‖Φ(0)‖ ≤ K (δ + W2‖A‖L1(εδ + W1εhq+1) + W1hq+1)

≤ K1δ + K2hq+1, h ≤ h∗

1, (4.14)

where K1 = K (1 + W2‖A‖L1C0h̃1), K2 = K W1(W2‖A‖L1C0h̃1 + 1).
We may choose h∗

≤ h̃1 and δ such that

K1δ + K2h∗
≤

ρ

2
= (1 − λ)ρ.

Hence, by the contractive mapping theorem (cf. [18]), 1X = Φ(1X) equivalent to (4.1) possesses a locally unique
solution for X .

For (4.1), since X is locally unique, we can consider (4.1b) as a nonlinear system about Y . By (3.7), we can show
that the Jacobian of (4.1b) ε

h INs − ÃGY (ε ≤ C0h) has a bounded inverse. This implies that the system (4.1) possesses
a locally unique solution (X, Y ). ¶
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