Error analysis of variable stepsize Runge-Kutta methods for a class of multiply-stiff singular perturbation problems ${ }^{\star}$

Ai-Guo Xiao
School of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan, 411105, PR China

Received 7 November 2005; received in revised form 15 June 2006; accepted 28 June 2006

Abstract

In this paper, we present some results on the error behavior of variable stepsize stiffly-accurate Runge-Kutta methods applied to a class of multiply-stiff initial value problems of ordinary differential equations in singular perturbation form, under some weak assumptions on the coefficients of the considered methods. It is shown that the obtained convergence results hold for stiffly-accurate Runge-Kutta methods which are not algebraically stable or diagonally stable. Some results on the existence and uniqueness of the solution of Runge-Kutta equations are also presented.

(C) 2007 Elsevier Ltd. All rights reserved.

Keywords: Singular perturbation problems; Runge-Kutta methods; Variable stepsize; Error; Multiple-stiffness

1. Introduction

Runge-Kutta methods (RKMs) are an important class of the numerical methods for solving the initial value problems (IVPs) in singular perturbation form as a special class of stiff IVPs. It is well known that they can't be satisfactorily covered by B-theory because of their very special structures. Some authors (cf. [1-9]) have presented some convergence results for RKMs and their variations (such as Rosenbrock methods, partitioned linearly implicit RKMs) applied to singly-stiff singular perturbation problems (SSPPs) and multiply-stiff singular perturbation problems (MSPPs). The corresponding reduced problems of MSPPs become a class of stiff differential-algebraic equations (SDAEs). Some practical examples of MSPPs can be found in [9].

So far, the results obtained in [1-8] are mainly under fixed stepsizes or the assumptions that RKMs are algebraically stable and diagonally stable. But some well known families of RKMs used for numerical solutions of stiff systems, like the Lobatto IIIA (cf. [10,11]) and Lobatto IIIC with stage number $s \geq 3$ (cf. [12]), etc., are not algebraically stable or diagonally stable. In this paper, we present some results on the error behavior of variable stepsize stiffly-accurate RKMs applied to a class of multiply-stiff IVPs of ordinary differential equations in singular perturbation form under some weak assumptions on the coefficients of the considered methods. It is shown that the obtained convergence results can hold for stiffly-accurate RKMs which are not algebraically stable or diagonally stable. Some results on the

[^0]existence and uniqueness of the solution of the corresponding Runge-Kutta equations are also presented. The results obtained in the present paper can be considered as a partial extension of the corresponding results for stiff problems in [13].

2. Problems and methods

Consider the singular perturbation problem (SPP)

$$
\begin{cases}x^{\prime}(t)=f(t, x, y), & t \in[0, T], \tag{2.1}\\ \epsilon y^{\prime}(t)=g(t, x, y), & 0<\epsilon \ll 1\end{cases}
$$

with initial values $(x(0), y(0)) \in \check{G}$ admitting a smooth solution $(x(t), y(t))$, where \check{G} is an appropriate, convex, and open region on $R^{M} \times R^{N}$, and the maps $f:[0, T] \times \check{G} \rightarrow R^{M}$ and $g:[0, T] \times \check{G} \rightarrow R^{N}$ are sufficiently smooth and satisfy the following assumptions $\mathrm{H} 0-\mathrm{H} 3$, as in $[7-9,13]$ etc.:
H0:

$$
\begin{align*}
& \left\langle g\left(t, x, y_{1}\right)-g\left(t, x, y_{2}\right), y_{1}-y_{2}\right\rangle \leq-\left\|y_{1}-y_{2}\right\|^{2}, \quad \forall t \in[0, T], \forall\left(x, y_{1}\right),\left(x, y_{2}\right) \in \check{G}, \tag{2.2a}\\
& \left\|f\left(t, x, y_{1}\right)-f\left(t, x, y_{2}\right)\right\| \leq L_{1}\left\|y_{1}-y_{2}\right\|, \quad \forall t \in[0, T], \forall\left(x, y_{1}\right),\left(x, y_{2}\right) \in \check{G}, \tag{2.2b}\\
& \left\|g\left(t, x_{1}, y\right)-g\left(t, x_{2}, y\right)\right\| \leq L_{2}\left\|x_{1}-x_{2}\right\|, \quad \forall t \in[0, T], \quad \forall\left(x_{1}, y\right),\left(x_{2}, y\right) \in \check{G} \tag{2.2c}
\end{align*}
$$

with moderately-sized constants L_{1} and L_{2}, where, throughout this paper, $\langle.,$.$\rangle is the standard inner product in real$ Euclidean spaces R^{M}, R^{N} and R^{s} with the corresponding norm $\|$.$\| , the matrix norm used in the following text is$ subject to $\|$.$\| , and \mu($.$) denotes the logarithmic norm with respect to \langle.,$.$\rangle .$
H 1 : All derivatives of the exact solution $(x(t), y(t))$ up to a sufficiently high order are bounded independently of the stiffness of the problem, i.e.

$$
\begin{equation*}
\left\|x^{(j)}(t)\right\| \leq \hat{M}_{j}, \quad\left\|y^{(j)}(t)\right\| \leq \hat{N}_{j}, \quad j=1,2, \ldots, l, t \in[0, T] \tag{2.2d}
\end{equation*}
$$

with constants \hat{M}_{j}, \hat{N}_{j} of moderate size and sufficiently large l.
H2: The Jacobian matrix of f with respect to the x-variable $f_{x}(t, x, y):=\frac{\partial f(t, x, y)}{\partial x}$ along the exact solution $(x(t), y(t))$ satisfies

$$
\begin{equation*}
\mu\left(f_{x}(t, x(t), y(t))\right) \leq 0, \quad t \in[0, T] . \tag{2.2e}
\end{equation*}
$$

H3: There exist positive constants $\delta_{j}(j=1,2,3)$ and matrices $E_{j}=E_{j}(t, \Delta t, \Delta x, \Delta y) \in R^{M \times M}(j=1,2)$ such that for all $(t, x(t), y(t))$ and $(t+\Delta t, x(t)+\Delta x, y(t)+\Delta y) \in[0, T] \times \check{G}$ with

$$
\begin{align*}
& |\Delta t| \leq \delta_{1}, \quad\|\Delta x\| \leq \delta_{2}, \quad\|\Delta y\| \leq \delta_{3}, \\
& f_{x}(t+\Delta t, x(t)+\Delta x, y(t)+\Delta y)-f_{x}(t, x(t), y(t)) \\
& \quad=f_{x}(t, x(t), y(t)) E_{1}(t, \Delta t, \Delta x, \Delta y)+E_{2}(t, \Delta t, \Delta x, \Delta y) \tag{2.2f}
\end{align*}
$$

with

$$
\left\|E_{j}(t, \Delta t, \Delta x, \Delta y)\right\| \leq \mu_{j}|\Delta t|+\lambda_{j}\|\Delta x\|+\zeta_{j}\|\Delta y\|, \quad j=1,2 .
$$

Here $\lambda_{j}, \mu_{j}, \zeta_{j}$ are constants of moderate size, and the constants $\delta_{1}, \delta_{2}, \delta_{3}$ are supposed to be independent of the stiffness of the problem. The class of all IVPs (2.1) statisfying the assumptions $\mathrm{H} 0-\mathrm{H} 3$ for some moderate values of $\hat{M}_{j}, \hat{N}_{j}(j=1,2, \ldots, l), L_{j}(j=1,2), \delta_{j}(j=1,2,3), \mu_{j}, \lambda_{j}, \zeta_{j}(j=1,2)$ will be denoted by P_{ϵ}. The assumption H 3 was firstly introduced by [13-15]. More comments about the above assumptions $\mathrm{H} 1-\mathrm{H} 3$ can be found in [13].

The problem (2.1) is a MSPP, and the problem considered in [1] is a SSPP. The right-side functions of the SSPP in [1] satisfy the Lipschitz conditions with moderately-sized Lipschitz constants, and the stiffness of the SSPP is only caused by the small parameter ϵ. The right-side functions of the MSPP (2.1) satisfy the Lipschitz conditions with moderately-sized Lipschitz constants except f_{x}, and the function f in (2.1) is stiff. The problem (2.1) is obtained by
adding an equation with ϵ to the problem in [13]. In general, the one-sided Lipschitz constant of the problem (2.1) is large and of magnitude $\frac{1}{\epsilon}$. Therefore, the above three classes of problems are essentially different.

A s-stage RKM (A, b, c) with

$$
A=\left[a_{i j}\right] \in R^{s \times s}, \quad b^{\mathrm{T}}=\left(b_{1}, b_{2}, \ldots, b_{s}\right), \quad c^{\mathrm{T}}=\left(c_{1}, c_{2}, \ldots, c_{s}\right),
$$

where $c_{i}=\sum_{j=1}^{s} a_{i j}(i=1,2, \ldots, s)$, applied to the problem (2.1) reads

$$
\begin{align*}
& X_{n i}=x_{n}+h_{n} \sum_{j=1}^{s} a_{i j} f\left(t_{n}+c_{j} h_{n}, X_{n j}, Y_{n j}\right), \quad i=1,2, \ldots, s, \tag{2.3a}\\
& \epsilon Y_{n i}=\epsilon y_{n}+h_{n} \sum_{j=1}^{s} a_{i j} g\left(t_{n}+c_{j} h_{n}, X_{n j}, Y_{n j}\right), \quad i=1,2, \ldots, s, \tag{2.3b}\\
& x_{n+1}=x_{n}+h_{n} \sum_{i=1}^{s} b_{i} f\left(t_{n}+c_{i} h_{n}, X_{n i}, Y_{n i}\right), \tag{2.3c}\\
& \epsilon y_{n+1}=\epsilon y_{n}+h_{n} \sum_{i=1}^{s} b_{i} g\left(t_{n}+c_{i} h_{n}, X_{n i}, Y_{n i}\right) \tag{2.3d}
\end{align*}
$$

with the starting values x_{0} and y_{0}, where $x_{n}, y_{n}, X_{n i}$, and $Y_{n i}$ are approximations to the exact solutions $x\left(t_{n}\right), y\left(t_{n}\right), x\left(t_{n}+c_{i} h_{n}\right)$, and $y\left(t_{n}+c_{i} h_{n}\right)$ respectively; the used grid is $\left\{t_{j}\right\}_{j=0}^{N}$ with

$$
0=t_{0}<t_{1}<\cdots<t_{\breve{N}} \leq T, \quad h_{i}=t_{i+1}-t_{i} \quad(i=0,1, \ldots, \breve{N}-1) .
$$

For any positive integer k, l and $k \times l$ matrix H, let I_{l} denote an $l \times l$ unit matrix and $\bar{H}=H \otimes I_{M}, \widetilde{H}=H \otimes I_{N}$, and let \otimes denote the Kronecker product of two matrices. Then the method (2.3) can be written in more compact form

$$
\begin{align*}
& X_{n}=e \otimes x_{n}+h_{n} \bar{A} F\left(t_{n}, X_{n}, Y_{n}\right), \tag{2.4a}\\
& \epsilon Y_{n}=\epsilon e \otimes y_{n}+h_{n} \widetilde{A} G\left(t_{n}, X_{n}, Y_{n}\right), \tag{2.4b}\\
& x_{n+1}=x_{n}+h_{n} \bar{b}^{\mathrm{T}} F\left(t_{n}, X_{n}, Y_{n}\right), \tag{2.4c}\\
& \epsilon y_{n+1}=\epsilon y_{n}+h_{n} \tilde{b}^{\mathrm{T}} G\left(t_{n}, X_{n}, Y_{n}\right), \tag{2.4d}
\end{align*}
$$

where $e=(1,1, \ldots, 1)^{\mathrm{T}} \in R^{s}$,

$$
\begin{align*}
& X_{n}=\left(X_{n 1}^{\mathrm{T}}, X_{n 2}^{\mathrm{T}}, \ldots, X_{n s}^{\mathrm{T}}\right)^{\mathrm{T}} \in R^{M s}, \quad Y_{n}=\left(Y_{n 1}^{\mathrm{T}}, Y_{n 2}^{\mathrm{T}}, \ldots, Y_{n s}^{\mathrm{T}}\right)^{\mathrm{T}} \in R^{N s}, \tag{2.5a}\\
& F\left(t_{n}, X_{n}, Y_{n}\right)=\left(f\left(t_{n}+c_{1} h_{n}, X_{n 1}, Y_{n 1}\right)^{\mathrm{T}}, f\left(t_{n}+c_{2} h_{n}, X_{n 2}, Y_{n 2}\right)^{\mathrm{T}},\right. \\
&\left.\ldots, f\left(t_{n}+c_{s} h_{n}, X_{n s}, Y_{n s}\right)^{\mathrm{T}}\right)^{\mathrm{T}} \in R^{M s}, \tag{2.5b}\\
& G\left(t_{n}, X_{n}, Y_{n}\right)=\left(g\left(t_{n}+c_{1} h_{n}, X_{n 1}, Y_{n 1}\right)^{\mathrm{T}}, g\left(t_{n}+c_{2} h_{n}, X_{n 2}, Y_{n 2}\right)^{\mathrm{T}},\right. \\
&\left.\ldots, g\left(t_{n}+c_{s} h_{n}, X_{n s}, Y_{n s}\right)^{\mathrm{T}}\right)^{\mathrm{T}} \in R^{N s} . \tag{2.5c}
\end{align*}
$$

Now we introduce the Butcher simplifying assumptions

$$
\begin{array}{ll}
B(p): i b^{\mathrm{T}} c^{i-1}=1, & i=1,2, \ldots, p \\
C(q): i A c^{i-1}=c^{i}, & i=1,2, \ldots, q
\end{array}
$$

where $c^{i}=\left(c_{1}^{i}, c_{2}^{i}, \ldots, c_{s}^{i}\right)^{\mathrm{T}}$. If the method (A, b, c) satisfies $B(q)$ and $C(q)$, then it is of stage order q.
For the spaces of stage vectors $R^{M s}$ and $R^{N s}$, we define the inner product $\langle.,$.$\rangle and the corresponding norm \|$. (also cf. [13]) by

$$
\langle\hat{V}, \hat{W}\rangle:=\frac{1}{s} \sum_{i=1}^{s}\left\langle\hat{V}_{i}, \hat{W}_{i}\right\rangle, \quad\|\hat{V}\|:=\sqrt{\langle\hat{V}, \hat{V}\rangle},
$$

where $\hat{V}=\left(\hat{V}_{1}^{\mathrm{T}}, \hat{V}_{2}^{\mathrm{T}}, \ldots, \hat{V}_{s}^{\mathrm{T}}\right)^{\mathrm{T}}, \hat{W}=\left(\hat{W}_{1}^{\mathrm{T}}, \hat{W}_{2}^{\mathrm{T}}, \ldots, \hat{W}_{s}^{\mathrm{T}}\right)^{\mathrm{T}}$ with

$$
\hat{V}_{i}, \hat{W}_{i} \in R^{M} \quad \text { or } \quad \hat{V}_{i}, \hat{W}_{i} \in R^{N}, \quad i=1,2, \ldots, s .
$$

Throughout this paper, the constants symbolized in the $O(\cdots)$ terms are independent of the stiffness of the considered problem.

For the method (2.4) (i.e. (2.3)), we will use the following stability assumptions M1, M2 (also cf. [13,14]):
M1: The RKM (A, b, c) is A-stable, i.e. the rational function $R(z):=1+z b^{\mathrm{T}}\left(I_{s}-z A\right)^{-1} e$ satisfies $|R(z)| \leq 1$ for all complex z with $\operatorname{Re} z \leq 0$.
M2: The matrix $I_{s}-z A$ is regular for all $\operatorname{Re} z \leq 0$, and there exists a constant K such that

$$
\sup _{\operatorname{Re} z \leq 0}\left\|\left(I_{s}-z A\right)^{-1}\right\| \leq K<+\infty
$$

The assumption M3 in [13,14] can be obtained from M2 if A is invertible, or if there exists a vector d such that $b^{\mathrm{T}}=d^{\mathrm{T}} A$. For example, Lobatto IIIA and Lobatto IIIC are stiffly accurate and satisfy $b^{\mathrm{T}}=e_{s}^{\mathrm{T}} A$. Moreover, the condition that the eigenvalues of A have positive real parts implies the assumption M2, and that A is invertible (cf. [16]). We also use the grid assumption (cf. [13]):
M4: There is a positive constant L of moderate size independent of the grid such that

$$
\sum_{j=0}^{\check{N}-1} \hat{h}_{j} \leq L T
$$

where $\hat{h}_{j}=\max _{0 \leq i \leq j} h_{i}, j=0,1, \ldots, \breve{N}-1$.
More comments about M1, M2, and M3 can be found in [13]. Let

$$
h_{\min }=\min \left\{h_{j}: 0 \leq j \leq \check{N}-1\right\}, \quad R_{i}(z)=e_{i}^{\mathrm{T}}\left(I_{s}-z A\right)^{-1} e, \quad i=1,2, \ldots, s,
$$

where e_{i} is the unit vector in $R^{s}, \operatorname{Re} z \leq 0$. Then

$$
R_{i}(z)=1+z e_{i}^{\mathrm{T}} A\left(I_{s}-z A\right)^{-1} e=1+z a_{i}^{\mathrm{T}}\left(I_{s}-z A\right)^{-1} e, \quad i=1,2, \ldots, s,
$$

where a_{i}^{T} is the i-row of A. Especially, $R_{s}(z)=R(z)$ when $a_{s}^{\mathrm{T}}=b^{\mathrm{T}}$. Therefore, as pointed out in [13], $R_{i}(z)(i=1,2, \ldots, s)$ can be considered as the stability functions associated to the stage (2.4a) and (2.4b), of the RK formula (2.4), and the assumption M2 yields that $R_{i}(z)(i=1,2, \ldots, s)$ are analytic for all $\operatorname{Re} z \leq 0$, and are uniformly bounded:

$$
\sup _{\operatorname{Re} z \leq 0}\left|R_{i}(z)\right|=r_{i}<+\infty .
$$

3. Convergence results

Now we introduce some notations (in part, also see [8]). Let

$$
\begin{aligned}
& \Delta x_{n}=x_{n}-x\left(t_{n}\right), \quad \Delta y_{n}=y_{n}-y\left(t_{n}\right), \quad \check{X}_{n i}=x\left(t_{n}+c_{i} h_{n}\right), \quad \check{Y}_{n i}=y\left(t_{n}+c_{i} h_{n}\right), \\
& \Delta X_{n i}=X_{n i}-\check{X}_{n i}, \quad \Delta Y_{n i}=Y_{n i}-\check{Y}_{n i}, \\
& \Delta f_{n i}=f\left(t_{n}+c_{i} h_{n}, X_{n i}, Y_{n i}\right)-f\left(t_{n}+c_{i} h_{n}, \check{X}_{n i}, \check{Y}_{n i}\right), \\
& \Delta g_{n i}=g\left(t_{n}+c_{i} h_{n}, X_{n i}, Y_{n i}\right)-g\left(t_{n}+c_{i} h_{n}, \check{X}_{n i}, \check{Y}_{n i}\right), \\
& \check{X}_{n}=\left(\check{X}_{n 1}^{\mathrm{T}}, \check{X}_{n 2}^{\mathrm{T}}, \ldots, \check{X}_{n s}^{\mathrm{T}}\right)^{\mathrm{T}} \in R^{M s}, \\
& \check{Y}_{n}=\left(\check{Y}_{n 1}^{\mathrm{T}}, \check{Y}_{n 2}^{\mathrm{T}}, \ldots, \check{Y}_{n s}^{\mathrm{T}}\right)^{\mathrm{T}} \in R^{N s}, \\
& \check{F}\left(t_{n}, \check{X}_{n}, \check{Y}_{n}\right)=\left(f\left(t_{n}+c_{1} h_{n}, \check{X}_{n 1}, \check{Y}_{n 1}\right)^{\mathrm{T}}, f\left(t_{n}+c_{2} h_{n}, \check{X}_{n 2}, \check{Y}_{n 2}\right)^{\mathrm{T}}, \ldots, f\left(t_{n}+c_{s} h_{n}, \check{X}_{n s}, \check{Y}_{n s}\right)^{\mathrm{T}}\right)^{\mathrm{T}} \in R^{M s}, \\
& \check{G}\left(t_{n}, \check{X}_{n}, \check{Y}_{n}\right)=\left(g\left(t_{n}+c_{1} h_{n}, \check{X}_{n 1}, \check{Y}_{n 1}\right)^{\mathrm{T}}, g\left(t_{n}+c_{2} h_{n}, \check{X}_{n 2}, \check{Y}_{n 2}\right)^{\mathrm{T}}, \ldots, g\left(t_{n}+c_{s} h_{n}, \check{X}_{n s}, \check{Y}_{n s}\right)^{\mathrm{T}}\right)^{\mathrm{T}} \in R^{N s}, \\
& \Delta X_{n}=X_{n}-\check{X}_{n}=\left(\Delta X_{n 1}^{\mathrm{T}}, \Delta X_{n 2}^{\mathrm{T}}, \ldots, \Delta X_{n s}^{\mathrm{T}}\right)^{\mathrm{T}}, \\
& \Delta Y_{n}=Y_{n}-\check{Y}_{n}=\left(\Delta Y_{n 1}^{\mathrm{T}}, \Delta Y_{n 2}^{\mathrm{T}}, \ldots, \Delta Y_{n s}^{\mathrm{T}}\right)^{\mathrm{T}},
\end{aligned}
$$

$$
\Delta F=F-\check{F}, \quad \Delta G=G-\check{G}
$$

Conditions $B(q), C(q)$, and H_{1} imply

$$
\begin{align*}
& \check{X}_{n}=e \otimes x\left(t_{n}\right)+h_{n} \bar{A} \check{F}+w_{n}^{x}, \tag{3.1a}\\
& \check{Y}_{n}=e \otimes y\left(t_{n}\right)+\frac{h_{n}}{\epsilon} \widetilde{A} \check{G}+w_{n}^{y}, \tag{3.1b}\\
& x\left(t_{n+1}\right)=x\left(t_{n}\right)+h_{n} \breve{b}^{\mathrm{T}} \check{F}+w_{n 0}^{x}, \tag{3.1c}\\
& y\left(t_{n+1}\right)=y\left(t_{n}\right)+\frac{h_{n}}{\epsilon} \widetilde{b}^{\mathrm{T}} \check{G}+w_{n 0}^{y}, \tag{3.1d}
\end{align*}
$$

where

$$
\begin{equation*}
\max \left\{\left\|w_{n}^{x}\right\|,\left\|w_{n}^{y}\right\|,\left\|w_{n 0}^{x}\right\|,\left\|w_{n 0}^{y}\right\|\right\} \leq W_{1} h_{n}^{q+1} \tag{3.1e}
\end{equation*}
$$

It follows from (2.4) and (3.1) that

$$
\begin{align*}
& \Delta X_{n}=e \otimes \Delta x_{n}+h_{n} \bar{A} \Delta F-w_{n}^{x}, \tag{3.2a}\\
& \Delta Y_{n}=e \otimes \Delta y_{n}+\frac{h_{n}}{\epsilon} \tilde{A} \Delta G-w_{n}^{y}, \tag{3.2b}\\
& \Delta x_{n+1}=\Delta x_{n}+h_{n} \bar{b}^{\mathrm{T}} \Delta F-w_{n 0}^{x}, \tag{3.2c}\\
& \Delta y_{n+1}=\Delta y_{n}+\frac{h_{n}}{\epsilon} \bar{b}^{\mathrm{T}} \Delta G-w_{n 0}^{y} . \tag{3.2d}
\end{align*}
$$

Since the eigenvalues of A have positive real parts, A is invertible and we can compute ΔF and ΔG from (3.2a) and (3.2b)

$$
\begin{align*}
& \Delta F=\frac{1}{h_{n}} \bar{A}^{-1}\left(\Delta X-e \otimes \Delta x_{n}+w_{n}^{x}\right), \tag{3.3a}\\
& \Delta G=\frac{\epsilon}{h_{n}} \widetilde{A}^{-1}\left(\Delta Y-e \otimes \Delta y_{n}+w_{n}^{y}\right) \tag{3.3b}
\end{align*}
$$

Moreover, it follows from (3.2) and (3.3) that

$$
\begin{align*}
& \Delta x_{n+1}=\alpha \Delta x_{n}+\bar{b}^{\mathrm{T}} \bar{A}^{-1} \Delta X_{n}+\tilde{b}^{\mathrm{T}} \bar{A}^{-1} w_{n}^{x}-w_{n 0}^{x}, \tag{3.4a}\\
& \Delta y_{n+1}=\alpha \Delta y_{n}+\widetilde{b}^{\mathrm{T}} \widetilde{A}^{-1} \Delta Y_{n}+\widetilde{b}^{\mathrm{T}} \widetilde{A}^{-1} w_{n}^{y}-w_{n 0}^{y} \tag{3.4b}
\end{align*}
$$

where $\alpha=1-b^{\mathrm{T}} A^{-1} e$. We can obtain easily

$$
\begin{equation*}
\Delta F=F_{X} \Delta X_{n}+F_{Y} \Delta Y_{n}, \quad \Delta G=G_{X} \Delta X_{n}+G_{Y} \Delta Y_{n} \tag{3.5}
\end{equation*}
$$

where

$$
\begin{array}{ll}
F_{X}=\operatorname{blockdiag}\left(U_{n 1}^{F}, U_{n 2}^{F}, \ldots, U_{n s}^{F}\right), & F_{Y}=\operatorname{blockdiag}\left(V_{n 1}^{F}, V_{n 2}^{F}, \ldots, V_{n s}^{F}\right), \\
G_{X}=\operatorname{blockdiag}\left(U_{n 1}^{G}, U_{n 2}^{G}, \ldots, U_{n s}^{G}\right), & G_{Y}=\operatorname{blockdiag}\left(V_{n 1}^{G}, V_{n 2}^{G}, \ldots, V_{n s}^{G}\right),
\end{array}
$$

where, for $i=1,2, \ldots, s$,

$$
\begin{aligned}
U_{n i}^{F} & =\int_{0}^{1} f_{x}\left(t_{n}+c_{i} h_{n}, \check{X}_{n i}+\theta \Delta X_{n i}, \check{Y}_{n i}\right) \mathrm{d} \theta \\
V_{n i}^{F} & =\int_{0}^{1} f_{y}\left(t_{n}+c_{i} h_{n}, \check{X}_{n i}+\Delta X_{n i}, \check{Y}_{n i}+\theta \Delta Y_{n i}\right) \mathrm{d} \theta \\
U_{n i}^{G} & =\int_{0}^{1} g_{x}\left(t_{n}+c_{i} h_{n}, \check{X}_{n i}+\theta \Delta X_{n i}, \check{Y}_{n i}\right) \mathrm{d} \theta
\end{aligned}
$$

$$
\begin{aligned}
& V_{n i}^{G}=\int_{0}^{1} g_{y}\left(t_{n}+c_{i} h_{n}, \check{X}_{n i}+\Delta X_{n i}, \check{Y}_{n i}+\theta \Delta Y_{n i}\right) \mathrm{d} \theta, \\
& \Delta f_{n i}=U_{n i}^{F} \Delta X_{n i}+V_{n i}^{F} \Delta Y_{n i}, \Delta g_{n i}=U_{n i}^{G} \Delta X_{n i}+V_{n i}^{G} \Delta Y_{n i}
\end{aligned}
$$

For (3.5) and (3.2b), we have

$$
\begin{equation*}
\Delta Y_{n}=\frac{h_{n}}{\epsilon}\left(\tilde{I}_{s}-\frac{h_{n}}{\epsilon} \widetilde{A} G_{Y}\right)^{-1}\left(\frac{\epsilon}{h_{n}} e \otimes \Delta y_{n}+\widetilde{A} G_{X} \Delta X_{n}-\frac{\epsilon}{h_{n}} w_{n}^{y}\right) \tag{3.6}
\end{equation*}
$$

Since (2.2a) holds and the eigenvalues of A have positive real parts, the matrix-valued version of a theorem of von Neumann (cf. [1-3,17]) yields, for $\epsilon \leq C_{0} \breve{h}_{n}$

$$
\begin{equation*}
\left\|\frac{h_{n}}{\epsilon}\left(\widetilde{I}_{s}-\frac{h_{n}}{\epsilon} \widetilde{A} G_{Y}\right)^{-1}\right\| \leq W_{2}, \quad n=0,1, \ldots, \check{N}-1 \tag{3.7}
\end{equation*}
$$

where $\breve{h}_{n}=\min _{0 \leq i \leq n} h_{i}$, that the constants W_{2}, C_{0} are independent of the stiffness of the IVP (2.1).
Lemma 3.1. Let $J_{n}=f_{x}\left(t_{n}, x\left(t_{n}\right), y\left(t_{n}\right)\right)$ and suppose that the IVP (2.1) satisfies (2.2b) and the assumptions $\mathrm{H} 1-\mathrm{H} 3$; then there exist $\check{E}_{i, j} \in R^{M \times M}(j=1,2)$ such that

$$
\begin{equation*}
\Delta f_{n i}=J_{n} \Delta X_{n i}+\left(J_{n} \check{E}_{i, 1}+\check{E}_{i, 2}\right) \Delta X_{n i}+\check{E}_{i, 3} \Delta Y_{n i} \tag{3.8}
\end{equation*}
$$

where $\check{E}_{i, 3}=V_{n i}^{F} \in R^{M \times N}$,

$$
\left\|\check{E}_{i, 3}\right\| \leq L_{1}, \quad\left\|\check{E}_{i, j}\right\| \leq K_{1} h_{n}+K_{2}\left\|\Delta X_{n i}\right\|, \quad j=1,2
$$

with K_{1}, K_{2}, L_{1} independent of the stiffness.
Proof. The proof of Lemma 3.1 can be easily given by some modifications of Lemma 4.1 in [13]. II
Let

$$
\check{E}_{j}=\operatorname{diag}\left(\check{E}_{1, j}, \ldots, \check{E}_{s, j}\right) \in R^{M s \times M s} \quad(j=1,2), \quad \check{E}_{3}=\operatorname{diag}\left(\check{E}_{1,3}, \ldots, \check{E}_{s, 3}\right) \in R^{M s \times N s} .
$$

It follows from the assumptions M2, H2, and a generalized version of von Neumann's theorem given in [17] that

$$
\begin{equation*}
\left\|R_{i}\left(h_{n} J_{n}\right)\right\| \leq r_{i} \quad(i=1,2, \ldots, s), \quad\left\|\left(I_{M s}-\left(A \otimes h_{n} J_{n}\right)\right)^{-1}\right\| \leq K \tag{3.8'}
\end{equation*}
$$

Thus, we have

Lemma 3.2. The inequality

$$
\begin{equation*}
\left\|\Delta X_{n i}\right\| \leq r_{i}\left\|\Delta x_{n}\right\|+(K+1)\left\|\check{E}_{1} \Delta X_{n}\right\|+h_{n} K\|A\|\left\|\check{E}_{2} \Delta X_{n}\right\|+h_{n} K\|A\|\left\|\check{E}_{3} \Delta Y_{n}\right\|+K\left\|w_{n}^{x}\right\| \tag{3.9}
\end{equation*}
$$

holds, where K is the constant in the assumption M 2 .
Proof. The proof of Lemma 3.2 can be easily given by some modifications of Lemma 4.2 in [13]. If
Let

$$
\delta_{n i}^{x}=\left\|\Delta X_{n i}\right\|, \quad \delta_{n i}^{y}=\left\|\Delta Y_{n i}\right\|, \quad i=1,2, \ldots, s ; \quad \delta_{n}^{x}=\max _{1 \leq i \leq s} \delta_{n i}^{x}, \quad \delta_{n}^{y}=\max _{1 \leq i \leq s} \delta_{n i}^{y} .
$$

Then $\delta_{n}^{x} \geq\left\|\Delta X_{n}\right\|, \delta_{n}^{y} \geq\left\|\Delta Y_{n}\right\|$, and

$$
\begin{equation*}
\left\|\check{E}_{j}\right\| \leq K_{1} h_{n}+K_{2} \delta_{n}^{x} \quad(j=1,2), \quad\left\|\check{E}_{3}\right\| \leq L_{1} \tag{3.10}
\end{equation*}
$$

Substituting (3.10) into (3.9) for $h_{n} \leq h_{1}^{*}, i=1,2, \ldots, s$, it follows that

$$
\begin{equation*}
\delta_{n i}^{x} \leq r_{i}\left\|\Delta x_{n}\right\|+h_{n} K_{3} \delta_{n}^{x}+K_{4}\left(\delta_{n}^{x}\right)^{2}+K\left\|w_{n}^{x}\right\|+h_{n} \widetilde{K}_{4} \delta_{n}^{y}, \tag{3.11}
\end{equation*}
$$

where $\tilde{K}_{4}=K\|A\| L_{1}, K_{3}=(K+1) K_{1}+K\|A\| K_{1} h_{1}^{*}, K_{4}=(K+1) K_{2}+K\|A\| K_{2} h_{1}^{*}, h_{1}^{*}, \tilde{K}_{4}$ and K_{3} are independent of the stiffness of the considered problems.

As we will see in Section 4, there is $h_{2}^{*}>0$ independent of the stiffness such that the nonlinear algebraic system (2.4a) and (2.4b) possess a unique solution $X_{n i}=X_{n i}\left(h_{n}\right), Y_{n i}=Y_{n i}\left(h_{n}\right)(i=1,2, \ldots, s)$ which depends continuously on h_{n} for $h_{n} \leq h_{2}^{*}$. This implies that ($\left.\Delta X_{n i}, \Delta Y_{n i}\right)(i=1,2, \ldots, s)$ satisfying (3.2a) and (3.2b) are all defined and continuous for $h_{n} \leq h_{2}^{*}$. Moreover,

$$
\begin{align*}
& \Delta X_{n i}(0)=\Delta x_{n}, \quad \Delta Y_{n i}(0)=\Delta y_{n} \tag{3.12a}\\
& \delta_{n i}^{x}(0)=\delta_{n}^{x}(0)=\left\|\Delta x_{n}\right\|, \quad \delta_{n i}^{y}(0)=\delta_{n}^{y}(0)=\left\|\Delta y_{n}\right\| \tag{3.12b}
\end{align*}
$$

Theorem 3.1. Assume the method (A, b, c) is stiffly-accurate and of stage order $q \geq 2$, and satisfies the assumption M 1 and the condition that the eigenvalues of A have positive real parts. Then, when this method is applied to the problem P_{ϵ}, the following global error estimates hold for $\epsilon \leq C_{0} \min \left\{\check{h}_{n}^{2}, \check{h}_{n}\right\}, 0 \leq h_{n} \leq \bar{h}_{0}, x_{0}-x\left(t_{0}\right)=0$, and $y_{0}-y\left(t_{0}\right)=0$

$$
\left\|x_{n}-x\left(t_{n}\right)\right\| \leq C_{1} \hat{h}_{n}^{q}, \quad\left\|y_{n}-y\left(t_{n}\right)\right\| \leq C_{2} \hat{h}_{n}^{q}
$$

with respect to the grids that satisfy the assumption M 4 , where the constants $\bar{h}_{0}, C_{i}(i=0,1,2)$ are independent of the stiffness of the considered problem.

Proof. When the method (A, b, c) is stiffly accurate, $a_{s}^{T}=b^{T}$ and $\alpha=0$, and we have

$$
x_{n+1}=X_{n s}, \quad y_{n+1}=Y_{n s}, \quad c_{s}=1, \quad \Delta x_{n+1}=\Delta X_{n s}, \quad \Delta y_{n+1}=\Delta Y_{n s}
$$

and

$$
\begin{equation*}
\left\|\Delta x_{n+1}\right\|=\left\|\Delta X_{n s}\right\|=\delta_{n s}^{x}, \quad\left\|\Delta y_{n+1}\right\|=\left\|\Delta Y_{n s}\right\|=\delta_{n s}^{y} \tag{3.13}
\end{equation*}
$$

It follows from (3.11) and (3.1e) that

$$
\begin{align*}
& \delta_{n i}^{x} \leq r_{i}\left\|\Delta x_{n}\right\|+h_{n} K_{3} \delta_{n}^{x}+K_{4}\left(\delta_{n}^{x}\right)^{2}+h_{n} \widetilde{K}_{4} \delta_{n}^{y}+K_{5} h_{n}^{q+1}, \quad i=1,2, \ldots, s, \tag{3.14}\\
& \delta_{n}^{x} \leq \beta\left\|\Delta x_{n}\right\|+h_{n} K_{3} \delta_{n}^{x}+K_{4}\left(\delta_{n}^{x}\right)^{2}+h_{n} \widetilde{K}_{4} \delta_{n}^{y}+K_{5} h_{n}^{q+1} \tag{3.15}
\end{align*}
$$

where

$$
h_{n} \in\left[0, h_{3}^{*}\right], \quad h_{3}^{*}=\min \left\{h_{1}^{*}, h_{2}^{*}\right\}, \quad \beta=\max _{1 \leq i \leq s} r_{i} \geq 1, \quad K_{5}=K W_{1}
$$

For $i=s$, from $r_{s}=1$, (3.14) and (3.13) we have

$$
\begin{equation*}
\left\|\Delta x_{n+1}\right\| \leq\left\|\Delta x_{n}\right\|+h_{n} K_{3} \delta_{n}^{x}+K_{4}\left(\delta_{n}^{x}\right)^{2}+h_{n} \widetilde{K}_{4} \delta_{n}^{y}+K_{5} h_{n}^{q+1}, \quad h_{n} \in\left[0, h_{3}^{*}\right] \tag{3.16}
\end{equation*}
$$

On the other hand, it follows from (3.7) and (3.6) multiplied by $e_{i}^{\mathrm{T}} \otimes I_{M}$ that

$$
\begin{equation*}
\delta_{n}^{y} \leq K_{6}\left(\frac{\epsilon}{h_{n}}\left\|\Delta y_{n}\right\|+\delta_{n}^{x}+\epsilon h_{n}^{q}\right), \quad h_{n} \in\left[0, h_{3}^{*}\right], \epsilon \leq C_{0} \check{h}_{n} \tag{3.17}
\end{equation*}
$$

with K_{6} independent of the stiffness. Inserting (3.17) into (3.16) yields

$$
\begin{equation*}
\delta_{n}^{x} \leq \beta\left\|\Delta x_{n}\right\|+h_{n} \hat{K}_{3} \delta_{n}^{x}+K_{4}\left(\delta_{n}^{x}\right)^{2}+\hat{K}_{4} \epsilon\left\|\Delta y_{n}\right\|+\hat{K}_{5} h_{n}^{q+1}, \quad h_{n} \in\left[0, h_{3}^{*}\right] \tag{3.18}
\end{equation*}
$$

where $\epsilon \leq C_{0} \check{h}_{n}, \hat{K}_{3}=K_{3}+\widetilde{K}_{4} K_{6}, \hat{K}_{4}=\widetilde{K}_{4} K_{6}, \hat{K}_{5}=K_{5}+\widetilde{K}_{4} K_{6} C_{0} h_{3}^{*}$. Let

$$
\gamma\left(h_{n}\right)=\beta\left\|\Delta x_{n}\right\|+\hat{K}_{4} \epsilon\left\|\Delta y_{n}\right\|+\hat{K}_{5} h_{n}^{q+1}
$$

where $\gamma\left(h_{n}\right)$ is a positive continuous function, and

$$
\begin{aligned}
& \gamma(0)=\beta\left\|\Delta x_{n}\right\|+\hat{K}_{4} \epsilon\left\|\Delta y_{n}\right\| \\
& \delta_{n}^{x}(0)=\left\|\Delta x_{n}\right\|<\gamma(0)<2 \gamma(0)
\end{aligned}
$$

and (3.18) yields

$$
\begin{equation*}
\delta_{n}^{x} \leq \gamma\left(h_{n}\right)+h_{n} \hat{K}_{3} \delta_{n}^{x}+K_{4}\left(\delta_{n}^{x}\right)^{2} . \tag{3.19a}
\end{equation*}
$$

Moreover, applying Lemma 4.4 in [13] to (3.19a) we have

$$
\begin{equation*}
\delta_{n}^{x} \leq 2 \gamma\left(h_{n}\right)=2 \beta\left\|\Delta x_{n}\right\|+2 \hat{K}_{4} \epsilon\left\|\Delta y_{n}\right\|+2 \hat{K}_{5} h_{n}^{q+1} \tag{3.19b}
\end{equation*}
$$

for $0 \leq h_{n} \leq h_{4}^{*}, h_{4}^{*}=\min \left\{h_{3}^{*}, \frac{1}{4 \hat{K}_{3}}\right\}$. It follows from (3.16), (3.17) and (3.19b) that

$$
\begin{align*}
\left\|\Delta x_{n+1}\right\| \leq & \left(1+K_{7} h_{n}\right)\left\|\Delta x_{n}\right\|+K_{8} \epsilon\left\|\Delta y_{n}\right\|+K_{9} \epsilon\left\|\Delta x_{n}\right\|\left\|\Delta y_{n}\right\| \\
& +K_{10}\left\|\Delta x_{n}\right\|^{2}+K_{11} \epsilon^{2}\left\|\Delta y_{n}\right\|^{2}+K_{12} h_{n}^{q+1}+K_{13} \epsilon h_{n}^{q+1}, \tag{3.20}
\end{align*}
$$

where $h_{n} \in\left[0, h_{4}^{*}\right], K_{i}(i=7,8, \ldots, 13)$ are positive constants independent of the stiffness.
Now we prove the following formulae by induction:

$$
\begin{equation*}
\left\|\Delta x_{n}\right\| \leq \hat{h}_{n}, \quad\left\|\Delta y_{n}\right\|=O\left(\hat{h}_{n}\right), \quad n \geq 0 \tag{3.21}
\end{equation*}
$$

for $0 \leq \hat{h}_{n} \leq h_{7}^{*}$. In fact, we have first assumed that

$$
\left\|\Delta x_{0}\right\|=0, \quad\left\|\Delta y_{0}\right\|=0
$$

We also assume that (3.21) holds for all $j \leq n$, then $\left\|\Delta y_{n}\right\| \leq K_{15} \hat{h}_{n}$, and (3.20) yields

$$
\begin{equation*}
\left\|\Delta x_{n+1}\right\| \leq\left(1+K_{7} h_{n}\right)\left\|\Delta x_{n}\right\|+K_{10}\left\|\Delta x_{n}\right\|^{2}+\hat{K}_{12} h_{n}^{q+1}+K_{8} K_{15} \hat{h}_{n} \epsilon+K_{9} K_{15} \hat{h}_{n}^{2} \epsilon+K_{11} K_{15}^{2} \hat{h}_{n}^{2} \epsilon^{2}, \tag{3.22}
\end{equation*}
$$

where $q \geq 2$ and

$$
\hat{K}_{12}=K_{12}+\epsilon K_{13} \leq K_{12}+K_{13} C_{0}\left(h_{4}^{*}\right)^{2}, \quad \epsilon \leq C_{0} \check{h}_{n}^{2}
$$

Thus,

$$
\begin{equation*}
\left\|\Delta x_{n+1}\right\| \leq\left(1+K_{7} \hat{h}_{n}\right)\left\|\Delta x_{n}\right\|+K_{10}\left\|\Delta x_{n}\right\|^{2}+K_{14} \hat{h}_{n}^{3}, \quad \hat{h}_{n} \in\left[0, h_{4}^{*}\right], \tag{3.23}
\end{equation*}
$$

where

$$
K_{14}=K_{8} K_{15} C_{0}+\hat{K}_{12} h_{4}^{* q-2}+K_{9} K_{15} C_{0} h_{4}^{*}+K_{11} K_{15}^{2} C_{0}^{2} h_{4}^{* 3} .
$$

By means of Lemma 4.4 in [13], (3.23) yields

$$
\left\|\Delta x_{n+1}\right\| \leq \frac{K_{14}}{K_{7}+K_{10}}\left(e^{\left(K_{7}+K_{10}\right) L T}-1\right) \hat{h}_{n}^{2} \leq \hat{h}_{n}, \quad n \geq 0
$$

whenever

$$
\hat{h}_{n} \leq h_{5}^{*}=\min \left\{h_{4}^{*},\left(\frac{K_{14}}{K_{7}+K_{10}}\left(e^{\left(K_{7}+K_{10}\right) L T}-1\right)\right)^{-1}\right\}, \quad(n \geq 0) .
$$

It follows from (3.17) and (3.19b) that

$$
\begin{align*}
\delta_{n}^{y} & \leq K_{6}\left(\frac{\epsilon}{h_{n}}\left\|\Delta y_{n}\right\|+2 \beta\left\|\Delta x_{n}\right\|+2 \hat{K}_{4} \epsilon\left\|\Delta y_{n}\right\|+2 \hat{K}_{5} h_{n}^{q+1}+\epsilon h_{n}^{q}\right) \\
& =K_{6}\left(\frac{\epsilon}{h_{n}}+2 \hat{K}_{4} \epsilon\right)\left\|\Delta y_{n}\right\|+2 \beta K_{6}\left\|\Delta x_{n}\right\|+2 K_{6} \hat{K}_{5} \hat{h}_{n}^{q+1}+K_{6} \epsilon \hat{h}_{n}^{q} . \tag{3.24}
\end{align*}
$$

Inserting (3.24) into (3.4b) yields

$$
\begin{align*}
\left\|\Delta y_{n+1}\right\| & \leq\left(|\alpha|+K_{16} \epsilon\left(1+\frac{1}{h_{n}}\right)\right)\left\|\Delta y_{n}\right\|+K_{17} \hat{h}_{n} \\
& =\left(|\alpha|+K_{16 \hat{\epsilon}}\right)\left\|\Delta y_{n}\right\|+K_{17} \hat{h}_{n}, \quad \hat{h}_{n} \leq h_{5}^{*}, \tag{3.25}
\end{align*}
$$

where K_{16}, K_{17} are independent of the stiffness and $\hat{\epsilon}=\epsilon\left(1+\frac{1}{h_{n}}\right)$. Since $\epsilon \leq C_{0} \check{h}_{n}^{2}, \hat{\epsilon} \leq C_{4} \check{h}_{n}$, here $C_{4}=C_{0}\left(1+h_{5}^{*}\right)$. Therefore, there exists $h_{6}^{*}>0$ such that

$$
|\alpha|+K_{16} C_{4} \check{h}_{n} \leq K_{16} C_{4} h_{6}^{*}<1 \quad \text { for } \check{h}_{n} \in\left[0, h_{6}^{*}\right],
$$

and

$$
\begin{aligned}
\left\|\Delta y_{n+1}\right\| & \leq\left(|\alpha|+K_{16} C_{4} h_{6}^{*}\right)\left\|\Delta y_{n}\right\|+K_{17} \hat{h}_{n} \\
& \leq \sum_{i=0}^{n}\left(K_{16} C_{4} h_{6}^{*}\right)^{i} K_{17} \hat{h}_{n} \\
& \leq \frac{K_{17}}{1-K_{16} C_{4} h_{6}^{*}} \hat{h}_{n} \\
& =O\left(\hat{h}_{n}\right), \quad \hat{h}_{n} \in\left[0, h_{7}^{*}\right] .
\end{aligned}
$$

where $h_{7}^{*}=\min \left\{h_{5}^{*}, h_{6}^{*}\right\}$.
Now we obtain the global error estimate results. It follows from (3.20) and (3.21) that

$$
\begin{equation*}
\left\|\Delta x_{n+1}\right\| \leq\left(1+K_{19} \hat{h}_{n}\right)\left\|\Delta x_{n}\right\|+K_{20} \epsilon\left\|\Delta y_{n}\right\|+K_{12} \hat{h}_{n}^{q+1}+K_{13} \epsilon \hat{h}_{n}^{q+1} \tag{3.26}
\end{equation*}
$$

where $K_{19}=K_{7}+K_{10}, K_{20}=K_{8}+K_{9} h_{7}^{*}+K_{11} K_{15} C_{0} h_{7}^{* 2}$.
It follows from (3.4b), (3.17) and (3.19b) that

$$
\begin{align*}
\left\|\Delta y_{n+1}\right\| & \leq\left(|\alpha|+K_{21} \epsilon\left(1+\frac{1}{h_{n}}\right)\right)\left\|\Delta y_{n}\right\|+K_{22}\left\|\Delta x_{n}\right\|+K_{23} h_{n}^{q+1}+K_{24 \epsilon h_{n}^{q}} \\
& \leq\left(|\alpha|+K_{21} \hat{\epsilon}\right)\left\|\Delta y_{n}\right\|+K_{22}\left\|\Delta x_{n}\right\|+K_{23} \hat{h}_{n}^{q+1}+K_{24} \epsilon \hat{h}_{n}^{q}, \tag{3.27}
\end{align*}
$$

where $K_{21}, K_{22}, K_{23}, K_{24}$ are independent of the stiffness. (3.25) and (3.27) yield

$$
\binom{\left\|\Delta x_{n+1}\right\|}{\left\|\Delta y_{n+1}\right\|} \leq\left(\begin{array}{cc}
1+K_{19} \hat{h}_{n} & K_{20} \epsilon \\
K_{22} & |\alpha|+K_{21} \hat{\epsilon}
\end{array}\right)\binom{\left\|\Delta x_{n}\right\|}{\left\|\Delta y_{n}\right\|}+\Psi\binom{\hat{h}_{n}}{1},
$$

where $\Psi=O\left(\hat{h}_{n}^{q}\right)+O\left(\epsilon \hat{h}_{n}^{q}\right)$. By means of the same technique used in the proof of [1, pp. 432-433, Lemma 2.9], we easily obtain the conclusion of Theorem 3.1. If

Remark. The assumption M1, and the invertibility of the matrix A, imply in general that the eigenvalues of A have positive real parts. Otherwise, the stability function would have to be reducible (cf. [1, p. 431], [3]). Therefore, Radau IIA methods with $s \geq 2$ and Lobatto IIIC methods with $s \geq 3$ can satisfy the assumptions of Theorem 3.1, and are of $q=s$ and $q=s-1$ respectively.

The corresponding reduced equations of (2.1) with $\epsilon=0$ is a SDAE

$$
\begin{align*}
& x^{\prime}(t)=f(t, x, y), \quad t \in[0, T], \tag{3.28a}\\
& 0=g(t, x, y) \tag{3.28b}
\end{align*}
$$

whose initial values $x(0)$ and $y(0)$ are consistent if $0=g(0, x(0), y(0))$. Moreover, if the Jacobian $g_{y}(t, x, y)$ is invertible and bounded, then the problem (3.28) is of index 1, and the Eq. (3.28b) then possesses a unique solution $y=\Omega(x)$. Inserting it into (3.28a) yields

$$
\begin{equation*}
x^{\prime}(t)=f(t, x, \Omega(x)) . \tag{3.29}
\end{equation*}
$$

We obtain from (2.4b)

$$
\begin{equation*}
h_{n} G=\epsilon \widetilde{A}^{-1}\left(Y_{n}-e \otimes y_{n}\right) \tag{3.30}
\end{equation*}
$$

Insert (3.30) into (2.4d) and let $\epsilon=0$ in (2.4). Then

$$
\begin{align*}
& X_{n}=e \otimes x_{n}+h_{n} \bar{A} F\left(t_{n}, X_{n}, Y_{n}\right), \tag{3.31a}\\
& 0=G\left(t_{n}, X_{n}, Y_{n}\right), \tag{3.31b}
\end{align*}
$$

$$
\begin{align*}
& x_{n+1}=x_{n}+h_{n} \bar{b}^{\mathrm{T}} F\left(t_{n}, X_{n}, Y_{n}\right) \tag{3.31c}\\
& y_{n+1}=\alpha y_{n}+\widetilde{b}^{\mathrm{T}} \tilde{A}^{-1} Y_{n} \tag{3.31~d}
\end{align*}
$$

Theorem 3.2. Suppose that the method (A, b, c) is stiffly accurate and of stage order $q \geq 2$, and satisfies the assumption M1 and the condition that the eigenvalues of A have positive real parts. If the problem (3.28) satisfies $(2.2 b)$ and (2.2c) and the assumptions $\mathrm{H} 1-\mathrm{H} 3, g_{y}$ is invertible and bounded, and the initial values are consistent, then the numerical solution of (3.31) has global error

$$
x_{n}-x\left(t_{n}\right)=O\left(\hat{h}_{n}^{q}\right), \quad y_{n}-y\left(t_{n}\right)=O\left(\hat{h}_{n}^{q}\right)
$$

when $x_{0}-x\left(t_{0}\right)=0, y_{0}-y\left(t_{0}\right)=0, h \leq \bar{h}_{0}$.
Proof. Because (3.31a)-(3.31c) are independent of y_{n} and do not change if (3.31d) is replaced by $0=$ $g\left(t_{n+1}, x_{n+1}, y_{n+1}\right), x_{n}-x\left(t_{n}\right)=O\left(\hat{h}_{n}^{q}\right)$ follows from the fact that (3.29) is a stiff ordinary differential equation which can be covered by [13]. The remaining proof is completely similar to that of Theorem 2.2 in [8], with some modifications; for example, we can obtain

$$
\left\|\Delta X_{n}\right\| \leq 2 \beta\left\|\Delta x_{n}\right\|+2 \hat{K}_{5} h_{n}^{q+1}
$$

by means of the similar process of giving (3.19b), hence $\Delta X_{n}=O\left(\hat{h}_{n}^{q}\right) . \quad$ II

4. Existence and uniqueness of the solution of RK equations

Theorem 4.1. If the IVP (2.1) satisfies the assumptions $\mathrm{H} 0-\mathrm{H} 3$, and the R method satisfies the condition that the eigenvalues of A have positive real parts, then there exist $h^{*}>0$ and $\delta>0$ independent of the stiffness such that the system

$$
\begin{align*}
& X=e_{s} \otimes x_{n}+h \bar{A} F\left(t_{n}, X, Y\right) \tag{4.1a}\\
& \epsilon Y=\epsilon e_{s} \otimes y_{n}+h \widetilde{A} G\left(t_{n}, X, Y\right) \tag{4.1b}
\end{align*}
$$

where $X=\left(X_{1}^{\mathrm{T}}, X_{2}^{\mathrm{T}}, \ldots, X_{s}^{\mathrm{T}}\right)^{\mathrm{T}} \in R^{M s}, Y=\left(Y_{1}^{\mathrm{T}}, Y_{2}^{\mathrm{T}}, \ldots, Y_{s}^{\mathrm{T}}\right)^{\mathrm{T}} \in R^{N s}$, possess a unique solutions for $0 \leq h \leq h^{*}$ and

$$
\left\|x_{n}-x\left(t_{n}\right)\right\| \leq \delta, \quad\left\|y_{n}-y\left(t_{n}\right)\right\| \leq \delta
$$

Proof. The part idea of the proof is similar to that of Theorem 5.1 in [13]. (4.1) is obtained from (2.4a) and (2.4b) by omitting the subscript " n " of X_{n}, Y_{n}, h_{n}. Moreover, the other corresponding notations will also be given from Section 3 in the same way.

The conditions $B(q)$ and $C(q)$ imply

$$
\begin{align*}
& \check{X}=e \otimes x\left(t_{n}\right)+h \bar{A} F\left(t_{n}, \check{X}, \check{Y}\right)+w_{n}^{x} \tag{4.2a}\\
& \epsilon \check{Y}=\epsilon e \otimes y\left(t_{n}\right)+h \widetilde{A} G\left(t_{n}, \check{X}, \check{Y}\right)+w_{n}^{y} \tag{4.2b}
\end{align*}
$$

where $\left\|w_{n}^{x}\right\| \leq W_{1} h^{q+1},\left\|w_{n}^{y}\right\| \leq W_{1} h^{q+1}$. Subtracting (4.2) from (4.1) we have

$$
\begin{align*}
& \Delta X=e \otimes \Delta x_{n}+h \bar{A}\left(F\left(t_{n}, \check{X}+\Delta X, \check{Y}+\Delta Y\right)-F\left(t_{n}, \check{X}, \check{Y}\right)\right)-w_{n}^{x} \tag{4.3a}\\
& \epsilon \Delta Y=\epsilon e \otimes \Delta y_{n}+h \tilde{A}\left(G\left(t_{n}, \check{X}+\Delta X, \check{Y}+\Delta Y\right)-G\left(t_{n}, \check{X}, \check{Y}\right)\right)-w_{n}^{y} \tag{4.3b}
\end{align*}
$$

Let

$$
\begin{align*}
\Phi(\Delta X)= & \left(I_{M s}-h\left(A \otimes J_{n}\right)\right)^{-1}\left[e \otimes \Delta x_{n}+h\left(A \otimes I_{M}\right)\left(-\left(I_{s} \otimes J_{n}\right) \Delta X\right.\right. \\
& \left.\left.+F\left(t_{n}, \check{X}+\Delta X, \check{Y}+\Delta Y\right)-F\left(t_{n}, \check{X}, \check{Y}\right)\right)-w_{n}^{x}\right] \tag{4.4}
\end{align*}
$$

Let $\Delta X, \Delta \bar{X}, \Delta Y, \Delta \bar{Y}$ such that

$$
\|\Delta X\| \leq \rho, \quad\|\Delta \bar{X}\| \leq \rho, \quad\|\Delta Y\| \leq \rho, \quad\|\Delta \bar{Y}\| \leq \rho
$$

(4.4) yields

$$
\begin{align*}
\Phi(\Delta X)-\Phi(\Delta \bar{X})= & \left(I_{M s}-h\left(A \otimes J_{n}\right)\right)^{-1} h\left(A \otimes I_{M}\right)\left[-\left(I_{s} \otimes J_{n}\right)(\Delta X-\Delta \bar{X})\right. \\
& \left.+F\left(t_{n}, \check{X}+\Delta X, \check{Y}+\Delta Y\right)-F\left(t_{n}, \check{X}+\Delta \bar{X}, \check{Y}+\Delta \bar{Y}\right)\right] . \tag{4.5}
\end{align*}
$$

The j-subvector component of the last bracket can be written as

$$
\begin{aligned}
&-J_{n}\left(\Delta X_{j}-\Delta \bar{X}_{j}\right)+f\left(t_{n}+c_{j} h, x\left(t_{n}+c_{j} h\right)+\Delta X_{j}, y\left(t_{n}+c_{j} h\right)+\Delta Y_{j}\right) \\
&-f\left(t_{n}+c_{j} h, x\left(t_{n}+c_{j} h\right)+\Delta \bar{X}_{j}, y\left(t_{n}+c_{j} h\right)+\Delta \bar{Y}_{j}\right) \\
&= \int_{0}^{1}\left(-J_{n}+f_{x}\left(t_{n}+c_{j} h, \check{X}_{j}+\theta \Delta X_{j}+(1-\theta) \Delta \bar{X}_{j}, \check{Y}_{j}+\Delta Y_{j}\right)\right) \mathrm{d} \theta\left(\Delta X_{j}-\Delta \bar{X}_{j}\right) \\
&+\int_{0}^{1} f_{y}\left(t_{n}+c_{j} h, \check{X}_{j}+\Delta \bar{X}_{j}, \check{Y}_{j}+\theta \Delta Y_{j}+(1-\theta) \Delta \bar{Y}_{j}\right) \mathrm{d} \theta\left(\Delta Y_{j}-\Delta \bar{Y}_{j}\right),
\end{aligned}
$$

which can be written in the form

$$
\begin{equation*}
\left(J_{n} \check{E}_{1 j}+\check{E}_{2 j}\right)\left(\Delta X_{j}-\Delta \bar{X}_{j}\right)+\check{E}_{3 j}\left(\Delta Y_{j}-\Delta \bar{Y}_{j}\right) \tag{4.6}
\end{equation*}
$$

by the assumption H 3 as in Lemma 3.1, and we have $\left\|\check{E}_{3 j}\right\| \leq L_{1}$,

$$
\left\|\check{E}_{i j}\right\| \leq\left(\mu_{i}+\left(\lambda_{i}+\zeta_{i}\right) \hat{M}_{1}\right)\left|c_{j}\right| h+\left(\lambda_{i}+\zeta_{i}\right) \rho=\left(\lambda_{i}+\zeta_{i}\right) \rho+O(h), \quad i=1,2 .
$$

Let $\check{E}_{i}=\operatorname{diag}\left(\check{E}_{i 1}, \check{E}_{i 2}, \ldots, \check{E}_{i s}\right)(i=1,2,3)$. Then (4.5) and (4.6) yield

$$
\begin{align*}
& \Phi(\Delta X)-\Phi(\Delta \bar{X}) \\
& =\left(I_{M s}-h\left(A \otimes J_{n}\right)\right)^{-1}\left(A \otimes h I_{M}\right)\left[\left(\left(I_{s} \otimes J_{n}\right) \check{E}_{1}+\check{E}_{2}\right)(\Delta X-\Delta \bar{X})+\check{E}_{3}(\Delta Y-\Delta \bar{Y})\right] \\
& =\left[\left(I_{M s}-h\left(A \otimes J_{n}\right)\right)^{-1}\left(A \otimes h J_{n}\right) \check{E}_{1}+\left(I_{M s}-h\left(A \otimes J_{n}\right)\right)^{-1}\left(A \otimes h I_{M}\right) \check{E}_{2}\right](\Delta X-\Delta \bar{X}) \\
& \quad+\left(I_{M s}-h\left(A \otimes J_{n}\right)\right)^{-1}\left(A \otimes h I_{M}\right) \check{E}_{3}(\Delta Y-\Delta \bar{Y}) . \tag{4.7}
\end{align*}
$$

Thus, from (3.8') we have

$$
\begin{equation*}
\|\Phi(\Delta X)-\Phi(\Delta \bar{X})\| \leq\left((1+K)\left(\lambda_{1}+\zeta_{1}\right) \rho+O(h)\right)\|\Delta X-\Delta \bar{X}\|+h L_{1} K\|A\|\|\Delta Y-\Delta \bar{Y}\| . \tag{4.8}
\end{equation*}
$$

On the other hand, (4.3b) and

$$
\Delta \bar{Y}=e \otimes \Delta y_{n}+\frac{h}{\epsilon} \widetilde{A}\left(G\left(t_{n}, \check{X}+\Delta \bar{X}, \check{Y}+\Delta \bar{Y}\right)-G\left(t_{n}, \check{X}, \check{Y}\right)\right)-w_{n}^{y}
$$

imply that

$$
\begin{align*}
\Delta Y-\Delta \bar{Y} & =\frac{h}{\epsilon} \widetilde{A}\left(G\left(t_{n}, \check{X}+\Delta X, \check{Y}+\Delta Y\right)-G\left(t_{n}, \check{X}+\Delta \bar{X}, \check{Y}+\Delta \bar{Y}\right)\right) \\
& =\frac{h}{\epsilon} \widetilde{A}\left[\hat{G}_{X}(\Delta X-\Delta \bar{X})+\hat{G}_{Y}(\Delta Y-\Delta \bar{Y})\right], \tag{4.9}
\end{align*}
$$

where \hat{G}_{X} and \hat{G}_{Y} can be given by the similar way to G_{X} and G_{Y} in (3.5). Moreover,

$$
\begin{equation*}
\Delta Y-\Delta \bar{Y}=\frac{h}{\epsilon}\left(I-\frac{h}{\epsilon} \widetilde{A} \hat{G}_{Y}\right)^{-1} \widetilde{A} \hat{G}_{X}(\Delta X-\Delta \bar{X}) \tag{4.10}
\end{equation*}
$$

It follows from (4.10) and (3.7) that

$$
\begin{equation*}
\|\Delta Y-\Delta \bar{Y}\| \leq L_{3}\|\Delta X-\Delta \bar{X}\|, \tag{4.11}
\end{equation*}
$$

where $L_{3}=W_{2}\|A\| L_{2}$. (4.11) and (4.8) yield

$$
\|\Phi(\Delta X)-\Phi(\Delta \bar{X})\| \leq\left((1+K)\left(\lambda_{1}+\zeta_{1}\right) \rho+O(h)\right)\|\Delta X-\Delta \bar{X}\| .
$$

The above formula implies that Φ is contractive provided that \widetilde{h}_{1} and ρ satisfy

$$
(1+K)\left(\lambda_{1}+\zeta_{1}\right) \rho+O\left(\widetilde{h}_{1}\right) \leq \lambda=\frac{1}{2} .
$$

For $\Delta X=0$, we have

$$
\begin{align*}
\|\Phi(0)\|= & \left\|\left(I_{M s}-h\left(A \otimes J_{n}\right)\right)^{-1}\right\| \\
& \times\left\|\left(e \otimes \Delta x_{n}+h\left(A \otimes I_{M}\right)\left(F\left(t_{n}, \check{X}, \check{Y}+\Delta Y\right)-F\left(t_{n}, \check{X}, \check{Y}\right)\right)-w_{n}^{x}\right)\right\| \\
\leq & K\left(\delta+\|A\| L_{1} h\|\Delta Y\|+W_{1} h^{q+1}\right) \tag{4.12}
\end{align*}
$$

and (4.3b) and (3.7) (or (3.6) and (3.7)) yield

$$
\begin{align*}
& \Delta Y=\frac{h}{\epsilon}\left(I_{N s}-\frac{h}{\epsilon} \widetilde{A} G_{Y}\right)^{-1}\left(\frac{\epsilon}{h} e \otimes \Delta y_{n}-\frac{\epsilon}{h} w_{n}^{y}\right) \tag{4.13a}\\
& \|\Delta Y\| \leq W_{2}\left(\frac{\epsilon}{h} \delta+W_{1} \epsilon h^{q}\right), \quad \epsilon \leq C_{0} h \tag{4.13b}
\end{align*}
$$

It follows from (4.12) and (4.13) that

$$
\begin{align*}
\|\Phi(0)\| & \leq K\left(\delta+W_{2}\|A\| L_{1}\left(\epsilon \delta+W_{1} \epsilon h^{q+1}\right)+W_{1} h^{q+1}\right) \\
& \leq K_{1} \delta+K_{2} h^{q+1}, \quad h \leq h_{1}^{*} \tag{4.14}
\end{align*}
$$

where $K_{1}=K\left(1+W_{2}\|\underset{\widetilde{f}}{A}\| L_{1} C_{0} \widetilde{h}_{1}\right), K_{2}=K W_{1}\left(W_{2}\|A\| L_{1} C_{0} \tilde{h}_{1}+1\right)$.
We may choose $h^{*} \leq \widetilde{h}_{1}$ and δ such that

$$
K_{1} \delta+K_{2} h^{*} \leq \frac{\rho}{2}=(1-\lambda) \rho
$$

Hence, by the contractive mapping theorem (cf. [18]), $\Delta X=\Phi(\Delta X)$ equivalent to (4.1) possesses a locally unique solution for X.

For (4.1), since X is locally unique, we can consider (4.1b) as a nonlinear system about Y. By (3.7), we can show that the Jacobian of (4.1b) $\frac{\epsilon}{h} I_{N s}-\widetilde{A} G_{Y}\left(\epsilon \leq C_{0} h\right)$ has a bounded inverse. This implies that the system (4.1) possesses a locally unique solution (X, Y). II

Acknowledgements

The author is indebted to the referees for their useful comments and valuable suggestions.

References

[1] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1991.
[2] E. Hairer, CH. Lubich, M. Roche, Error of Rosenbrock methods for stiff problems studied via differential-algebraic equations, BIT 29 (1989) 77-90.
[3] E. Hairer, CH. Lubich, M. Roche, Error of Runge-Kutta methods for stiff problems studied via differential-algebraic equations, BIT 28 (1988) 678-700.
[4] K. Strehmel, R. Weiner, M. Büttner, Order results for Rosenbrock type methods on classes of stiff equations, Numer. Math. 59 (1991) 723-737.
[5] K. Strehmel, R. Weiner, I. Dannehl, On error behaviour of partitioned linearly implicit Runge-Kutta methods for stiff and differential algebraic systems, BIT 30 (1990) 358-375.
[6] S. Schneider, Convergence results for general linear methods on singular perturbation problems, BIT 33 (1993) 670-686.
[7] A. Xiao, S.F. Li, Error of partitioned Runge-Kutta methods for multiple stiff singular perturbation problems, Computing 64 (2000) 183-189.
[8] A. Xiao, Convergence results of Runge-Kutta methods for multiply-stiff singular perturbation problems, J. Comput. Math. 20 (3) (2002) 325-336.
[9] A. Xiao, C.M. Huang, S.Q. Gan, Convergence results of one-leg and linear multistep methods for multiply stiff singular perturbation problems, Computing 66 (2001) 365-375.
[10] J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations, John Wiley \& Sons, Chichester, 1987.
[11] S. Gonzalez-Pinto, S. Pérez, J.I. Montijano, On the numerical solution of stiff IVPs by Lobatto IIIA Runge-Kutta methods, J. Comput. Appl. Math. 82 (1-2) (1997) 129-148.
[12] J. Schneid, B-convergence of Lobatto IIIC formulas. K. Burrage, Numer. Math. 51 (1987) 229-235.
[13] M. Calvo, S. Gonzalez-Pinto, J.I. Montijano, On the convergence of Runge-Kutta methods for stiff nonlinear differential equations, Numer. Math. 81 (1998) 31-51.
[14] M.N. Spijker, On the error committed by stopping the Newton iteration in implicit Runge-Kutta methods, Ann. Numer. Math. 1 (1994) 199-212.
[15] J.L.M. van Dorsselaer, M.N. Spijker, The error committed by stopping the Newton iteration in the numerical solution of stiff initial value problems, IMA J. Numer. Anal. 14 (1994) 183-209.
[16] M. Calvo, S. Gonzalez-Pinto, J.I. Montijano, Runge-Kutta methods for the numerical solution of stiff semilinear systems, BIT 40 (4) (2000) 611-639.
[17] O. Nevanlinna, Matrix valued versions of a result of von Neumann with an application to time discretization, J. Comput. Appl. Math. 12-13 (1985) 475-489.
[18] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, Berlin, 1983.

[^0]: ${ }^{*}$ This work is supported by projects from NSF of China (No. 10571147) and the Scientific Research Fund of Hunan Provincial Education Department (No. 04A057).

 E-mail address: xag@xtu.edu.cn.

