Histone Deacetylases Positively Regulate Transcription through the Elongation Machinery

Highlights
- HDAC inhibitor-mediated elongation repression requires HSP90
- BRD4 binding to promoters and enhancers is reduced upon HDAC inhibition
- HDAC inhibition results in loss of enhancer RNA synthesis

Authors
Celeste B. Greer, Yoshiaki Tanaka, Yoon Jung Kim, Peng Xie, Michael Q. Zhang, In-Hyun Park, Tae Hoon Kim

Correspondence
geno@utdallas.edu

In Brief
Greer et al. use a combination of GRO-seq, ChIP-seq, and small molecule inhibitors to probe the mechanisms of transcription elongation across the human genome. They determine that histone deacetylases stimulate transcription elongation by mechanisms involving eRNA production at enhancers and eviction of NELF at promoters.
Histone Deacetylases Positively Regulate Transcription through the Elongation Machinery

Celeste B. Greer,1 Yoshiaki Tanaka,2 Yoon Jung Kim,3 Peng Xie,3 Michael Q. Zhang,3 In-Hyun Park,2 and Tae Hoon Kim3,*
1Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
2Department of Genetics and Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
3Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
*Correspondence: genome@utdallas.edu
http://dx.doi.org/10.1016/j.celrep.2015.10.013
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

SUMMARY

Transcription elongation regulates the expression of many genes, including oncogenes. Histone deacetylase (HDAC) inhibitors (HDACIs) block elongation, suggesting that HDACs are involved in gene activation. To understand this, we analyzed nascent transcription and elongation factor binding genome-wide after perturbation of elongation with small molecule inhibitors. We found that HDACI-mediated repression requires heat shock protein 90 (HSP90) activity. HDACIs promote the association of RNA polymerase II (RNAP2) and negative elongation factor (NELF), a complex stabilized by HSP90, at the same genomic sites. Additionally, HDACIs redistribute bromodomain-containing protein 4 (BRD4), a key elongation factor involved in enhancer activity. BRD4 binds to newly acetylated sites, and its occupancy at promoters and enhancers is reduced. Furthermore, HDACIs reduce enhancer activity, as measured by enhancer RNA production. Therefore, HDACs are required for limiting acetylation in gene bodies and intergenic regions. This facilitates the binding of elongation factors to properly acetylated promoters and enhancers for efficient elongation.

INTRODUCTION

Transcription elongation is a critical step in regulating many human genes (Adelman and Lis, 2012; Gilchrist et al., 2010). We have reported previously that inhibition of histone deacetylase (HDAC) activity results in a dramatic decrease in transcription elongation efficiency at multiple genes using global run-on sequencing (GRO-seq) (Core et al., 2008) to analyze RNA polymerase II (RNAP2) activity across the genome. We found that elongation repression occurs in several cell lines derived from both non-cancerous tissue and tumors, suggesting that this is a general effect of inhibiting HDACs in human cells (Kim et al., 2013). As a pivotal determinant of transcript level for many oncogenes, elongation is being investigated for cancer therapy because it is regulated by many factors targetable by small molecule inhibitors (Delmore et al., 2011; Zhai et al., 2002; Zuber et al., 2011). HDAC inhibitors (HDACIs) are used clinically in tumor treatment and inhibit the zinc-dependent HDAC isofoms, which are often components of complexes associated with transcriptional silencing.

Transcription of protein-coding genes by RNAP2 can be regulated at initiation and elongation steps (Adelman and Lis, 2012). Initiation of transcription is catalyzed by the assembly of the pre-initiation complex at the promoter (Thomas and Chiang, 2006), followed by the incorporation of the first several nucleotides downstream from the promoter (Core et al., 2008). Transcription through the gene body by the RNAP2 is prevented by factors that block elongation, such as negative elongation factor (NELF) and dichloro-1-[D-ribofuranosyl]benzimidazole (DRB)-sensitivity inducing factor (DSIF) (Kwak and Lis, 2013). For RNAP2 to transition into the productive elongation phase and synthesize full-length pre-mRNA, elongation-inducing factors are recruited. Positive transcription elongation factor b (P-TEFb), which modifies RNAP2 and other factors required for overcoming the elongation block, is recruited by BRD4, an acetyl-lysine binding protein (Jang et al., 2005; Yang et al., 2005). P-TEFb contains cyclin-dependent kinase 9 (CDK9), which phosphorylates DSIF, NELF, and serine 2 of the heptad repeats in the C-terminal domain (CTD) of the largest subunit of RNAP2 (Fujinaga et al., 2004). NELF can interact with nascent RNAs and is evicted when elongation is induced (Yamaguchi et al., 1999), whereas DSIF travels along with the elongating RNAP2 upon phosphorylation by P-TEFb (Wu et al., 2003).

It was surprising that HDACIs are capable of directly repressing the transcription of many genes (Chou et al., 2011; Kim et al., 2013; Scott et al., 2002), given that classical HDACs are components of complexes known to silence transcription. The two inhibitors used here, trichostatin A (TSA) and suberanilhydroxamic acid (SAHA, known clinically as vorinostat), inhibit the 11 classical HDAC isomofrs (Bolden et al., 2006). They are found in the Sin3, nucleosome-remodeling deacetylase (NuRD), and nuclear receptor corepressor 2/silencing mediator for retinoid or thyroid hormone receptors (NCOR2/SMRT) complexes (Glass and Rosenfeld, 2000). Lysine acetylation is a well-known mark of transcriptionally active open chromatin (Eberharer and Becker, 2002), and acetylation of many transcription factors activates their function, and deacetylation...
HDAC Inhibition Blocks Elongation of RNAP2

HDAC Inhibition Blocks Elongation of RNAP2

In this study, we set out to investigate the positive effect of HDACs on transcription elongation. Our data show that HDAC-regulated transcription elongation requires heat shock protein 90 (HSP90) activity. In contrast, the elongation block that results from CDK9 inhibition does not, suggesting that CDK9 functions downstream of HDACs and HSP90. Treatment with HDACi causes redistribution of other elongation factors across the genome. Particularly, colocalization of RNAP2 with the NELF complex across the genome, whose stability is regulated by the HSP90 chaperone, is increased strongly after HDACi treatment. These inhibitors induce global acetylation changes, which redistributes BRD4 binding, an important factor involved in promoting enhancer activity, and affects the regulatory organization of the genome. Because BRD4 and NELF are associated with enhancers, we looked at enhancer activity after HDACi treatment. We found that HDACi reduce eRNA synthesis at high eRNA-producing enhancer sites. This is associated with corresponding changes in the expression of neighboring genes. Overall, we show that HDACs are important regulators of elongation and play an essential role in active gene transcription for many genes.

RESULTS

HDAC Inhibition Blocks Elongation of RNAP2

HDACi repress transcription by blocking elongation, as we have shown previously in human breast cancer (BT474) and non-cancerous breast epithelial (MCF10A) cell lines using GRO-seq (Kim et al., 2013). Analysis of expression within different gene regions by reads per kilobase of annotated region per million mapped sequence reads (RPKM) normalization indicates that repressed genes have an impediment in the transcription of gene bodies, but the transcription near the start of genes is not changed significantly or is increased after 4-hr treatment with either of two pan-specific HDACis, TSA and SAHA, in BT474 (Figure 1A; Figure S1A) and MCF10A (Figure 1B; Figure S1A) cells. GRO-seq gene body RPKM was used to classify genes into three groups based on expression changes in response to HDACi. Genes whose expression goes down after SAHA treatment were defined as repressed, genes whose expression is increased after SAHA treatment were defined as activated, and genes with expression changes for different factors by ChIP-seq in promoter regions. See Table S3 for median fold changes in subclassifications of gene expression changes for different factors by ChIP-seq in promoter regions.
unchanged were identified as not changed, and genes whose expression is increased were defined as activated. There is a high percentage of overlap between genes in the three expression change groupings seen in these data compared with GRO-seq data generated previously (Kim et al., 2013) in these cell lines (Table S1). Chromatin immunoprecipitation sequencing (ChIP-seq) of RNAP2 was conducted to validate the three groupings, and we found that SAHA does not significantly change the density of RNAP2 in the promoters of repressed genes (Figure S1B; Table S2). In the gene body, RNAP2 binding decreases in GRO-seq-repressed genes, stays the same in unchanged genes, and increases significantly in activated genes (Figure S1B; Table S3).

To examine the kinetics by which HDACIs suppress transcription elongation, the effect of SAHA treatment for a shorter time was examined in BT474 cells with GRO-seq. SAHA represses genes via an elongation block even after a short 30-min treatment and resulted in a similar, although less intense global pattern of elongation inhibition as the 4-hr treatment (Figures S1C and S1D). To test whether the repressive effect of SAHA on transcription elongation is applicable to cells of a different origin, we applied SAHA to a neuroblastoma cell line, SK-N-SH, and examined the transcription elongation pattern. SAHA blocked elongation in SK-N-SH cells (Figure S1E), underscoring the general applicability of HDACIs as transcription elongation blockers. Overall, our data show that HDAC inhibition blocks the transition of RNAP2 into productive elongation in HDACI-repressed genes in a short time window and in a broad cellular context.

We examined whether overexpression of the HDAC1 isoform can rescue the effect of SAHA to validate that HDACIs are inhibiting the intended target and that HDACIs are causing repression through a block in the catalysis of deacetylation. We overexpressed recombinant HDAC1 wild-type (WT) and catalytically dead mutant (mut; Figure S1F), and examined the expression of two well characterized HDAC1-repressed oncogenes regulated by elongation in BT474 cells, ERBB2 and MYC (Kim et al., 2013). Overexpression of the WT HDAC1 isoform, but not mut, in BT474 cells antagonizes SAHA-mediated repression of these two oncogenes (Figure S1G). TSA is also antagonized by HDAC1 overexpression, and the effect of overexpression could be overcome by increasing the dose of the drug (Figure S1H). This demonstrates that HDACIs are repressing transcription by blocking the deacetylation catalyzed by HDAC1, a class I deacetylase, and, possibly, other isoforms. Furthermore, ChIP-seq analysis of HDAC1 shows that, prior to drug treatment, this enzyme is more enriched in genes that can be repressed by SAHA treatment compared with genes that do not change their expression after SAHA (Figure S1I; comparison of DMSO samples). Together, these data suggest that genes that are repressed by HDACI treatment are regulated by deacetylation.

HDAC Repression of Transcription Requires HSP90

The HSP90 chaperone complex promotes RNAP2 pausing in Drosophila (Sawarkar et al., 2012). Therefore, we tested whether the mechanism of HDACI suppression of transcription elongation is dependent on HSP90. A potent HSP90 inhibitor, geldanamycin (GEL), was applied to reduce pausing and was used in combination with HDACIs in BT474 cells to see how these small molecules interact to affect elongation. qRT-PCR shows that ERBB2 and MYC repression by HDACIs is antagonized by GEL treatment (Figure 2A), whereas RPS10 and ACTG1, which are not repressed by HDACIs, do not show a significant increase in expression after combination treatment (Figure S2A). To look at the global elongation changes brought on by the drug combinations, we conducted GRO-seq with single and combined treatment with the inhibitors. As expected, treating with GEL alone reduces the amount of promoter-proximal transcripts in both the BT474 and MCF10A cell lines (Figures 2B and 2C; Figure S2B), validating this treatment as a repressor of pausing. GEL antagonizes the repression of the majority of the top 1,000 HDACI-repressed genes (Figures 2D and 2E) more than 5-fold (Figure S2C). Combination treatment with GEL antagonizes the gene body repression induced by HDACIs (Figures 2F and 2G; Figure S3D). These results show that HDACI-mediated repression of elongation is dependent on HSP90 activity.

NELFE, a subunit of the NELF complex, is destabilized upon HSP90 inhibition in cells from several organisms (Sawarkar et al., 2012). Destabilization of just one subunit of the four-subunit NELF complex leads to the degradation of the entire complex (Narita et al., 2007; Sun and Li, 2010; Sun et al., 2008). We tested whether NELF is a downstream effector of HSP90 that could be mediating transcriptional elongation repression by HDACIs. In BT474 cells, GEL destabilizes the NELFA subunit (Figure 3A), which likely leads to the destabilization of the entire NELF complex. To examine the change in binding of NELF upon HDACI treatment, we performed ChIP-seq of NELFA and HSP90 in DMSO- and SAHA-treated BT474 cells. NELFA and HSP90 density are correlated in promoters and gene bodies, with a stronger correlation in gene bodies (Figure 3B). More than half of RNAP2 binding peaks are not colocalized with NELFA in the DMSO treatment control. In contrast, SAHA treatment dramatically increases the number of NELFA peaks, and these peaks predominantly overlap with RNAP2 (Figure 3C). These results show that the global distribution of NELF binding is affected by SAHA, indicating that HDACI treatment may result in transcription pausing through NELF.

P-TEFb Inhibition Affects Transcription Elongation, but Not through HSP90

P-TEFb is an important regulator of elongation, so we sought to determine how P-TEFb might act in connection with HDACs and HSP90. In addition to the HSP90 inhibitor GEL, we used the elongation inhibitor flavopiridol (FLAVO), which inhibits the CDK9 subunit of the P-TEFb complex. We aimed to compare its effects on elongation with HDACI and GEL combination treatment. Like HDACIs, FLAVO represses ERBB2 and MYC transcript levels in BT474 cells (Figure S3A). Globally, FLAVO-repressed genes show a decrease in gene body transcription in GRO-seq experiments. However, unlike HDACI-repressed genes, FLAVO-repressed genes displayed a dramatic increase in promoter-proximal transcription (Figures 4A and 4B; Figure S3B). Furthermore, transcription in the gene bodies of FLAVO-repressed genes in BT474 and MCF10A cells is still repressed in the presence of GEL (Figures 4C and 4D;
Figure S3B), whereas the transcription of HDACI-repressed genes was recovered by GEL treatment (Figures 2D and 2E; Figure S2C). Elongation patterns observed in GRO-seq were examined after combined treatment with these drugs. The FLAVO-induced elongation repression pattern persists in the presence of GEL (Figures 4E and 4F; Figure S3B), suggesting that its mechanism of repression is HSP90-independent. This shows that HDACI-mediated transcription suppression occurs through a different mechanism than FLAVO. Perhaps FLAVO suppresses elongation via more immediate effects on the phosphorylation of RNAP2 CTD than HDACIs, which suppress genes under tight control of HSP90.

Acetylation and BRD4 Binding Changes in Gene Bodies and Intergenically after HDACI
HDACI treatment globally increases acetylation, and we predicted that this results in changes in the distribution of the binding of key acetylated histone readers such as BRD4. This protein acts as a scaffold to recruit elongation factors, so its redistribution would lead to changes in the binding of other proteins.
Figure 3. HSP90 Stabilizes NELFA, and SAHA Increases NELFA Binding

(A) NELFA stability after treatment with different elongation-affecting drugs, shown with western blot of BT474 cell lysates (representative image for one of two blots).

(B) Correlation of NELFA and HSP90 fold enrichments in promoter and gene body regions for 33,119 annotated RefSeq genes. Two biological replicates for each ChIP-seq were conducted, and the average signal is plotted.

(C) Venn diagrams of RNAP2 and NELFA peak overlaps. Overlaps were within a 500-bp window. The numbers of genes in each section are shown.

ChIP-seq shows that the acetylation of lysines in histone H3K27 (H3K27Ac), H3 (H3Ac), and H4 (H4Ac) is reduced in promoter-proximal regions, whereas, in gene bodies, acetylation increases after SAHA treatment (Figure S5A). Consistent with the changes in acetylation, SAHA treatment decreases the binding of BRD4 near TSSs and increases its binding in gene bodies (Figure S5B; Tables S2 and S3). BRD4 is enriched in repressed genes more than in unchanged genes in BT474 cells without inhibitor treatment, suggesting that their transcription is regulated by BRD4 under normal conditions, unlike the unchanged genes.

Interestingly, we noticed that, in gene coding regions, although the magnitude of BRD4 binding and acetylation may differ, the locations of detected peaks did not show many changes upon SAHA treatment (Figure 5A). In intergenic regions, however, there are much more striking changes in the location of peaks, and there is an increase in the number of peaks by SAHA treatment (Figure 5B), suggesting that HDACIs may affect the global chromatin landscape far beyond regions encoding genes.

To investigate whether changes in BRD4 binding are correlated with changes in acetylation, we identified whether peaks were maintained after SAHA treatment. We identified sites where BRD4 binding peaks were lost (only present in DMSO), overlap (present in both DMSO and SAHA), and gained (only present after SAHA treatment). We determined the magnitude of change in the acetylation and binding at these sites. As expected, BRD4 binding is reduced at sites where BRD4 is lost, stays the same at overlapping sites, and increases at gained sites (Figure 6B). Therefore, BRD4 is being recruited to newly created sites of acetylation in intergenic regions. Loss of BRD4 binding at certain sites after SAHA treatment may be due to newly created acetylated sites competing for the binding of this protein.

JQ1, a BRD4 inhibitor, and HDACIs share similar gene expression change profiles (Bhadury et al., 2014). To see which genes were mutually affected by BRD4, HDAC, or P-TEFb inhibition, we defined the top 1,000 most repressed genes for each drug and FLAVO does not have as large of an overlap with HDACIs as JQ1, indicating more similarity between the effects of BRD4 and HDAC inhibition than P-TEFb inhibition (Figure S4A). Concordantly, JQ1 represses ERBB2 and MYC in BT474 cells (Figure S4B). This drug also represses elongation in a pattern similar to HDACIs in our two cell lines (Figures S4C and S4D). This indicates that JQ1 and HDACIs may have a similar mechanism of action.

eRNA Transcription Is Repressed by HDACIs

BRD4 is bound at active enhancers (Chapuy et al., 2013), and it has been found recently that JQ1 reduces eRNA synthesis (Kanno et al., 2014). Because restructuring of acetylation and BRD4 binding occurs in intergenic regions, we wondered whether HDACI treatment could be affecting positive regulators of transcription located in intergenic regions, namely enhancers, via loss of BRD4 at pertinent enhancer sites. We used a prediction method similar to the one defined by the Ozato group (Kanno et al., 2014) to find eRNA-generating sites by determining intergenic BRD4 peak locations in BT474 cells from ChIP-seq and characterized the level of eRNA synthesis around them (Figure 7A). As validation, we showed that the enrichment of H3K27Ac, a mark of active enhancers, is higher at predicted enhancer sites than at annotated promoters (Figure 7B). The expression of the most highly expressed eRNAs from a 4-hr DMSO treatment were analyzed in comparison with their expression after different inhibitor treatments (Figure 7C). JQ1, as expected from previous reports, reduced eRNAs. HDACIs did as well, and to an even greater extent. Even after only 30 min of SAHA treatment, the inhibitor was able to reduce eRNAs (Figure S5A), showing that this treatment causes fast action at enhancers. Both BRD4 and HDACIs are therefore positive regulators of enhancer activity, possibly through effects of HDACIs on BRD4 binding (Figure 6; Figure S5B). In contrast, FLAVO did not decrease the median eRNA synthesis level at enhancers, suggesting that eRNA transcription is P-TEFb-independent. Surprisingly, GEL treatment is a strong repressor of eRNA
synthesis, indicating that HSP90 is necessary for enhancer function and, possibly, linking NELF to enhancer function because of the effect HSP90 has on NELF stability. As in the BT474 cell line, HDACI treatment reduces eRNAs in MCF10A cells, as do JQ1 and GEL. FLAVO, again, does not repress eRNAs (Figure S5C), demonstrating that the effect of HDACI on enhancers is not cancer-specific. We tested whether these enhancers are regulating genes nearby because, although enhancers can work from a great distance, they often regulate nearby genes. We looked at the percentage of genes near eRNA sites that are reduced significantly by inhibitor treatment. We found that, compared with the percentage of all genes that are repressed by an inhibitor, there is a higher percentage of genes repressed that are located near downregulated eRNA sites (Figure 7D; Figure S5D). This suggests that the eRNA activity level affects target gene expression and shows that enhancer activity is dependent on HDACs.

DISCUSSION

The repression of transcription by HDACIs in many genes is counterintuitive because of the well-known role HDACs play in turning off transcription. We have shown that HDACIs cause a block in the elongation step of transcription by RNAP2. Some studies show evidence to support this finding. First, HDACs bind to highly expressed genes more than to lowly expressed genes and heterochromatin, suggesting that they play a role in active gene transcription (Wang et al., 2009). This is in line with our previous finding that HDACIs target the most highly expressed genes for repression (Kim et al., 2013). Second, single-cell imaging experiments show that, shortly after induction of transcription initiation, acetylation of histones is decreased around the time that the elongating form of RNAP2 is detected (Stasevich et al., 2014). The deacetylation caused by classical HDACs post-initiation is likely an important step in inducing gene body transcription and may suggest that cycling of acetylation and deacetylation is important in the process of transcription elongation (Wang et al., 2009).

Based on our analysis, HDACs are required for the removal of acetylation marks in gene bodies and intergenic regions, where their levels are lower than at promoters and enhancers. We know that, in yeast, the RPD3 deacetylase, related to class I HDACs in humans, acts to specifically deacetylate gene bodies. It is recruited by the histone H3 lysine 36 methylation (H3K36me) mark, which is deposited cotranscriptionally along with the elongating RNAP2 (Carrozza et al., 2005; Joshi and Struhl, 2005). When the cell is unable to deacetylate these sites because of the presence of HDACIs, the acetylation enriched near promoters and enhancers may no longer serve to demarcate these regulatory regions from the rest of the genome. BRD4, which is lost at promoters and redistributed when these HDACIs are present.
intergenically after HDACI treatment, is important in the recruitment of elongation factors to appropriate locations to activate transcription. Indeed, HDACs are required for BRD4-inducible transcription in human cell lines (Hu et al., 2014). The reduction in BRD4 likely leads to the reduction of the factors it recruits, such as P-TEFb, at promoters after HDACI treatment. Other elongation factors may also redistribute in response to BRD4 binding to inappropriate acetylation marks when HDACs are not able to maintain a lower level of acetylation at specific sites. More work is required to determine whether BRD4 binding partners are responsible for the block in elongation after applying HDACIs or whether BRD4 redistribution itself exerts this effect on elongation.

HDACIs appear to work upstream of P-TEFb and require HSP90 activity. HDAC inhibition affects NELF binding, and HDACIs cannot repress transcription in the presence of GEL. This may be through the stabilization of the NELF complex as well as effects on other client proteins of HSP90 involved in elongation (Schaaf et al., 2013; Zhou et al., 2015). Although there are multiple known acetylation sites on HSP90, all seem to reduce the interaction of HSP90 with client proteins (Kovacs et al., 2005; Scroggins et al., 2007; Yang et al., 2008), opposite of what would be expected based on the results reported here. HDACIs have also been shown to change the levels of reactive oxygen species in the cell, which induces some HSP90 degradation (Park et al., 2015), but this, again, contradicts the increase in NELF binding after HDACI treatment. So it may be that HDACIs regulate elongation by directly affecting NELF or other elongation factors and that these factors require HSP90 to stabilize them. Whether there are intermediate steps between HDAC function and NELF activity is unknown.

Here we report that eRNA production is reduced when HDACs are inhibited. They are also reduced when HSP90, which is responsible for NELF stability, is repressed. This may further explain how HDACIs repress transcription because enhancer function and elongation are possibly linked via NELF function.
Further analysis of which genes these enhancers regulate is required to fully understand the effects HDACs and NELF have on enhancer activity. Going forward, it will be important to identify relevant targets of acetylation that are necessary for transcriptional activation by HDACs in histones or other proteins because deacetylation of non-histone substrates may also be involved in promoting transcription elongation. A large amount of lysine acetylation events on non-histone substrates have been identified globally using mass spectrometry, and BRD4, several HDAC isoforms, SPT5 (a DSIF component), and NELFB all have acetylated lysines (Choudhary et al., 2009) that could have effects on elongation. Functional analysis of these sites will help determine how they affect this pathway. Also, biochemical analysis of elongation factors after HSP90 inhibition would be beneficial to elucidate how this factor affects their stability and function.

HDACIs are an effective treatment for several types of cancer (Federico and Bagella, 2011). These drugs globally increase acetylation, which is often associated with an increase in the transcription level of many genes, and they increase the expression of many important cell cycle arrest and apoptotic genes (Xu et al., 2007). In contrast, we have also found that many oncogenes are selectively targeted for repression by HDACIs through effects on elongation because of their high level of transcription (Kim et al., 2013). The elongation pathway may be a very useful therapeutic target for cancer because other elongation-inhibiting drugs, like FLAVO and JQ1, have also shown promise as cancer treatments (Filippakopoulos et al., 2010; Patel et al., 1998; Zuber et al., 2011). Understanding the mechanism by which HDACIs strengthen elongation blocks may facilitate the development of treatments able to more specifically target genes for therapeutic repression.

EXPERIMENTAL PROCEDURES

Cell Culture

MCF10A, BT474, and SK-N-SH cells were obtained from the American Type Culture Collection (ATCC) and cultured according to their suggested conditions.
Drug Treatments

TSA and SAHA were obtained from Sigma (SAHA lot no. 042M4740V), (S)-JQ1 was a gift from J. Bradner at the Dana Farber Cancer Institute (DFCI), FLAVO was from Sigma (lot no. 100M4723V), and GEL was from Enzo Life Sciences (BML-EI280).

For GRO-seq, the doses were 500 nM, 5 nM, 500 nM, 500 nM, and 10 nM for TSA, SAHA, JQ1, FLAVO, and GEL, respectively. 4-hr treatments were done for the elongation inhibitors TSA, SAHA, JQ1, and FLAVO, and GEL was applied for 4 hr and 15 min (15-min pre-treatment of GEL for combined GEL plus elongation inhibitor treatments). The 30-min SAHA treatment for GRO-seq was the exception. 4-hr treatments were used for DMSO, SAHA, and FLAVO ChIP-seq experiments and 24-hr treatments for qRT-PCR and western blot samples unless stated otherwise.

Expression Analysis

qRT-PCR was performed as described previously (Kim et al., 2013) except with the ImProm-II enzyme from Promega with 4.6875 mM MgCl₂ in the reverse-transcriptase reaction. The MYC primer sequences are MYC-F 5′-CTCTGACCTTTTGCCAGGAG-3′ and MYC-R 5′-TCCTCGGATTCTCTCTC-3′.

Western Blot

Western blots were done with the same NELFA antibody as that used in ChIP-seq or polyclonal rabbit V5 antibody from Abcam (catalog no. ab9116). BT474 cells were treated for 24 hr before lysis.

GRO-Seq

GRO-seq was performed as described previously (Kim et al., 2013), except the detergent concentration was optimized and libraries were multiplexed to conduct high-throughput sequencing in one lane. Additional details can be found in the Supplemental Experimental Procedures.

ChIP

Chromatin was prepared and immunoprecipitated as described previously (Kim et al., 2011), except that protein A/G dynabeads (Invitrogen) were used instead of organism-specific secondary antibody bound beads. 25% of the amount of chromatin was used for RNAP2 and acetyl ChIPs to reduce oversaturation of bead binding. Details regarding antibodies used can be found in the Supplemental Experimental Procedures.

ChIP-Seq Library Preparation

The ThruPLEX DNA-seq kit from Rubicon Genomics was used for multiplexed ChIP-seq library prep of BT474 chromatin. Indexed samples were quantitated with qPCR and mixed in equimolar amounts. The input sample was prepared with an Illumina DNA-seq kit.

Sequencing and Sequencing Data Analysis

The Yale Stem Cell Center Genomics and Bioinformatics Core Facility conducted the sequencing on an Illumina HiSeq 2000 platform. Sequencing data alignment and normalization are described in the Supplemental Experimental Procedures.

Metagenes of GRO-seq data were generated with scripts from H. Kwak (Kwak et al., 2013) and are shown as 25-base pair (bp) windows considering transcript directionality. ChIP-seq metagenes were generated with our own perl scripts, which count ChIP-seq and input reads and normalize read counts by the total number of mapped reads in 50-bp sliding windows. Directionality of the gene was not considered. Boxplots and Venn diagrams were created using R version 3.1.2.

Peaks were called with MACS 1.3.7.1 (Zhang et al., 2008) with the mfold parameter set to 10. BEDTools v2.23.0 (Glass and Rosenfeld, 2000) was used to generate overlaps between duplicate samples and identify peaks and signals coming from genic and intergenic regions, and the multicov
function was used to determine the amount of signal coming from a given genomic region.

In BT474 cells, eRNA annotation was done by taking peaks called in model-based analysis for ChiP-seq (MACS) for BRD4, removing regions within 1 kilobase of Refseq-annotated genes. BEDTools was used to find overlapping peaks between replicates. Partek was used to find the amount of reads coming from 500 bp upstream and downstream of the center of the BRD4 peaks. The highest expressed putative eRNAs in a DMSO treatment from an independently generated GRO-seq experiment was used to sort the highest expressed eRNAs, and then the DMSO from the same experiment as the other treated samples acted as the control. Genes nearest to the predicted eRNA sites were determined using BEDTools closest function.

Statistical Tests and Categorizations

Two-tailed Student’s t tests and R^2 were performed in Excel 14.4.9. Wilcoxon rank-sum tests were performed in R version 3.1.2, and the p values reported are not corrected for multiple testing. Statistical analysis for defining repression or activation in GRO-seq was performed using the log-likelihood ratio in the Partek Genomic Suite, version 6.14.0220. GRO-seq expression level change groupings for ChiP-seq were determined by selecting significantly repressed or activated genes (log-likelihood ratio, $p < 10^{-5}$) based on gene body RPKM in DMSO and SAHA treatments. Unchanged genes were expressed in DMSO and SAHA conditions, were not changed significantly ($p > 10^{-2}$), and had less than a 2-fold change in their expression, up or down. The genes common to these categorized lists from the GRO-seq prepared for this manuscript and the GRO-seq prepared previously (Kim et al., 2013) were used to analyze ChiP-seq data (Table S1). Additional methods and associated references are available in the Supplemental Information.

ACCESSION NUMBERS

The accession numbers for the GRO-seq and ChiP-seq data reported in this paper are ArrayExpress: E-MTAB-3626, E-MTAB-3631

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, five figures, and three tables and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2015.10.013.

AUTHOR CONTRIBUTIONS

C.B.G. designed, performed, and analyzed experiments; made the figures; wrote scripts; interpreted data; and wrote the manuscript. T.H.K. conceived the project, provided overall direction, and secured funding for the project. Y.T. wrote scripts for the analysis of ChiP-seq data. Y.J.K. worked with Y.T. to develop the data analysis and overview sequencing library preparation, P.X. and M.Q.Z. contributed to the annotation of putative eRNA sites in MCF10A. I.H.P. and T.H.K. discussed the results and edited the manuscript.

ACKNOWLEDGMENTS

We are grateful to James Bradner (Harvard Medical School) for providing us with JQ1. We thank Y. Zhang and G. Greer for technical help with cloning. C.B.G. has received support from NIH Training Grant GM007324 and a PhRMA foundation predoctoral fellowship. MQZ and PX acknowledge support from NIH Grant R01 MH102616, the Cecil H. and Ida Green Endowment Chair, and a UTD Founder’s Fellowship. I.H.P. is partly supported by NIGMS (GM0099130-01, GM111667-01), the KRBII/KRCF research initiative program (NAP-09-1), and a CT Stem Cell Grant (13-SCB-YALE-06). Grants to T.H.K. from the Rita Allen Foundation, Sidney Kimmel Foundation for Cancer Research, Yale Comprehensive Cancer Center (CA-16359), Alexander and Margaret Stewart Trust, National Institute of Allergy and Infectious Disease (R21AI107067), and National Cancer Institute (RO1CA140485) supported this work.

REFERENCES

Yamaguchi, Y., Inukai, N., Narita, T., Wada, T., and Handa, H. (2002). Evidence that negative elongation factor represses transcription elongation through

