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Abstract

Sharpening work of the first two authors, for every proportion� ∈ (0, 1) we provide exact
quantitative relations between global parameters ofn-dimensional symmetric convex bodies and
the diameter of their random��n�-dimensional sections. Using recent results of Gromov and
Vershynin, we obtain an “asymptotic formula” for the diameter of random proportional sections.
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1. Introduction

One of the most important recent developments in asymptotic convex geometry has
been the gradual recognition of the fact that lower-dimensional sections and projections
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of high-dimensional convex bodies exhibit an unexpectedly uniform structure. Several
questions regarding the asymptotic behaviour of convex bodies can be answered through
very precise estimates which depend only on a few “simple parameters” and are exact
for every sequence of convex bodies of increasing dimension. We call such exact
estimates “asymptotic formulas”.

The aim of this article is to provide such asymptotic formulas for the diameter of a
random��n�-dimensional central section of a symmetric convex bodyK in Rn, where
the proportion� ∈ (0, 1) is arbitrary but fixed and the dimensionn tends to infinity.
We continue a line of thought which was initiated by the first two authors in[4–6].

In order to give a precise formulation of the problems, we need to introduce some
notation. We work onRn which is equipped with a Euclidean structure and write| · |
for the corresponding Euclidean norm. The Euclidean unit ball and sphere are denoted
by Bn

2 and Sn−1, respectively. We write�n for the rotationally invariant probability
measure onSn−1 and �n for the Haar probability measure onO(n). The Grass-
mann manifoldGn,k of k-dimensional subspaces ofRn is equipped with the Haar
probability measure�n,k. Every symmetric convex bodyK in Rn induces the norm
‖x‖K = inf {t > 0 : x ∈ tK}. The polar body

{
y ∈ Rn : maxx∈K |〈y, x〉|�1

}
of K is

denoted byK◦. We define

M(K) =
∫

Sn−1
‖x‖K �n(dx) and M∗(K) =

∫
Sn−1

max
y∈K

|〈x, y〉| �n(dx). (1.1)

So, M = M(K) is the average of the norm ofK on the sphere andM∗ = M∗(K) is
the mean width ofK (in the classical terminology of convexity, the mean widthw(K)

of K is equal to 2M∗(K)). Note thatM∗ = M(K◦). We also definea and b as the
least positive constants for which(1/a)|x|�‖x‖K �b|x| holds true for everyx ∈ Rn.
Thus, a is the circumradius ofK—also denoted byD(K)—and 1/b is the inradius of
K—also denoted byd(K).

The approach of[4] was based on the second author’s “M∗-estimate” (see[8,9,16,2])
which compares the diameter of proportional sections of a symmetric convex bodyK
in Rn to its mean widthM∗(K). A precise quantitative form of this inequality can be
found in [2]: Let K be a symmetric convex body inRn and let�, ε ∈ (0, 1). Then,

D(K ∩ E)� M∗(K)

(1 − ε)
√

1 − �
(1.2)

for all E in a subsetAn,k of Gn,k of almost full measure, wherek = ��n� (the proof of
(1.2) is based on a more general result of Gordon which will be discussed in Section
2; see Lemma 2.7). A direct consequence of theM∗-estimate is the following (see[4]):

Theorem A (upper bound for the diameter). Let ε, � ∈ (0, 1). If K is a symmetric
convex body inRn, and if r1 is the solution of the equation

M∗(K ∩ rBn
2) = (1 − ε)

√
1 − �r, (1.3)
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then D(K ∩ E)�r1 for all subspaces E in a subsetA(�) of Gn,��n� with measure
�n,��n�(A(�))�1 − c1 exp(−c2ε2(1 − �)n), wherec1, c2 > 0 are absolute constants.

In other words, solving the equationM∗(K ∩ rBn
2) � √

1 − �r, we get an upper
bound for the diameter of a random��n�-dimensional section ofK. The main idea in
[4] was to see if an analogous (or even the same) equation can be used for a lower
bound as well.

The main new ingredient was a “conditionalM-estimate”: LetK be a symmetric

convex body inRn with Bn
2 ⊆ K and let � ∈ (0, 1). If M(K)�1 − c

1
1−� , then

there exists a subsetB(�) of Gn,k with �n,k(B(�))�1− ck, wherek = ��n�, such that

D(K ∩E)�C
�

1−� for all E ∈ B(�), where 0< c < 1 andC > 1 are absolute constants,
and n is large enough. In Section 2 we give two different arguments which provide
better estimates. The first argument uses theM∗-estimate and the second author’s
“distance lemma”; the second one is based on Gordon’s work (see Lemma 2.7) and
was kindly communicated to us by R. Vershynin.

Theorem B (low M -estimate). Let � ∈ (0, 1) and let K be a symmetric convex body
in Rn with Bn

2 ⊆ K. Assume that

M(K) >
√

� (1.4)

and set� = (M2 − �)/(1 − M2). Then, a ��n�-dimensional central sectionK ∩ E of
K satisfies

D(K ∩ E)� c
√

1 − �

M − √
�

(1.5)

with probability greater than1−c1 exp(−c2�
2(1−�)n), wherec, c1, c2 > 0 are absolute

constants.

This follows from Theorem 2.3, where the following estimates are proved for a
randomE ∈ Gn,��n�:

(i) If M2 < 1
2, then D(K ∩ E)� cM

M2−� .

(ii) If M2� 1
2, then D(K ∩ E)� c

√
1−�

M2−� .

By Dvoretzky’s theorem, there exists an absolute constantc ∈ (0, 1) such that if
Bn

2 ⊆ K then a random�cM2n�-dimensional sectionK ∩E of K satisfies 1
2M

Bn
2 ∩E ⊆

K ∩ E ⊆ 2
M

Bn
2 ∩ E. The Low M-estimate above provides an isomorphic version of

this fact for all dimensions up to the natural boundk∗ =: M2n. After this paper was
written, Litvak noted that, in fact, analogous estimates can be recovered from[2]. As
Remark 2.9 shows, under additional conditions, modifications of our first method of
proof may give information for dimensions greater thank∗.
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An interesting application is given in Section 3, where we improve substantially the
estimates from[5] on a question about the comparison of local to global parameters
of symmetric convex bodies.

Theorem C. Let � > 0, let t �2 be an integer and letn�2(t+1). For every symmetric
convex body K inRn, if there exist orthogonal transformationsu1, . . . , ut such that
u1(K) ∩ · · · ∩ ut (K) ⊆ �Bn

2 then a random� n
c1t

�-dimensional sectionK ∩ E of K

satisfiesD(K ∩ E)�c2
√

t�, wherec1, c2 > 0 are absolute constants.

A qualitative version of the results in[4] reads as follows: There exist two explicit
functions h1, h2 : (0, 1) → (0, 1) such that for every� ∈ ( 1

2, 1) and every symmetric
convex bodyK in Rn, the solutionsri of the equationsM∗(K∩rBn

2) = hi(�)r in r (i =
1, 2) determine a confidence interval for the diameter of a random��n�-dimensional
section ofK. The important point is that the functionsh1 andh2 are universal and that
the statement holds true for an arbitrary symmetric convex bodyK. Another advantage
of this statement is that it makes use of the global (hence computationally simple)
parameterM∗ of the body. The estimates in[4] are not tight and a main disadvantage of
the method is the use of Borsuk’s theorem, which forces one to study only proportions
� ∈ ( 1

2, 1). The method of[4] gives no information for small proportions.
In the last two sections we show that the upper estimates given by Theorem A can

be complemented by lower estimates for every proportion� ∈ (0, 1): the “equation”

M∗(K ∩ rBn
2) �

√
2(1−�)

2−� r is enough for a lower bound. The main new tool is a
recent isoperimetric theorem of Gromov[3]: Assume thatk < n are positive integers,
n is even andn − k = 2m − 1. For every� > 0, among all odd continuous functions
f : Sk−1 → Sn−1, the �-extension of the imagef (Sk−1) in Sn−1 has minimal measure
if f is the identity function. Using an application of this result by Vershynin[18],
together with precise concentration estimates of Artstein[1], we are able to prove the
following.

Theorem D (lower bound for the diameter). Suppose that� ∈ (0, 1) and ε > 0 satisfy

(1+ ε)

√
2(1−�)

2−� < 1 and let n�n0(�, ε) � 1
(1−�)ε2 . If K is a symmetric convex body in

Rn, and if r2 is the solution of the equation

M∗(K ∩ rBn
2) = (1 + ε)

√
2(1 − �)

2 − �
r, (1.6)

then

D(K ∩ E)� ε
√

1 − �
3

r2 (1.7)

for everyE ∈ Gn,��n�.

It should be emphasized that the conclusion of Theorem D holds for every (and not
for a random)E ∈ Gn,��n�. A striking application of this fact follows by comparison
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with Theorem A: roughly speaking, for every fixed proportion� ∈ (0, 1) and every
0 < s < 1/(2−�), the minimal diameter of��n�-dimensional sections and the random
diameter of�s�n�-dimensional sections are comparable up to a constant depending on
� and s. An analogous result is observed by Vershynin[19]. To state the theorem,
for every symmetric convex bodyK in Rn, let a(�, K) denote the minimal (and let
b(�, K) denote the “random”) circumradius of a��n�-dimensional section ofK (the
precise definitions are given in Section 5).

Theorem E. Let 0 < � < 1 and 0 < s < 1/(2 − �). There existsn0 = n0(�, s) such
that (

c�(1 − s(2 − �))

1 − s�

√
1 − �

)
b(s�, K)�a(�, K) (1.8)

for everyn�n0 and every symmetric convex body K inRn.

Quantitative statements showing that existence implies randomness are still rare in
the theory and should have interesting applications. The fact that the smallest and the
“random” number of rotations of a convex body whose intersection approximates the
Euclidean ball are of the same order (see[13,7]) is such an example. In the local theory,
a result of this type appears in[14]: In the language of Theorem E, Proposition 3.2 in
[14] states that if mosts�n-dimensional sections of some�n-dimensional projection of
a symmetric convex bodyK have diameter bounded by 1 then mostt�n-dimensional
sections of the whole body have diameter bounded byf (�, s, t), where t < s and
�, s, t ∈ (0, 1).

Note: It is not known whether Gromov’s theorem holds true for all positive integers
k < n. If so, then Theorems D and E would take an optimal form (the precise for-
mulations of the corresponding two conditional statements are given at the end of the
paper—see Remark 5.7).

We refer the reader to the books[12,15,17]for notation and background information
on asymptotic convex geometry; in particular, the lettersc, C, c1, c2 etc. denote absolute
positive constants which may change from line to line.

2. Low M-estimate

In this section, we give two arguments which prove Theorem B. The first one
uses theM∗-estimate and the second author’s “distance lemma” (a similar technique
was used in[6] in a different setting). The second one was communicated to us by
R. Vershynin and is reproduced here with his very kind permission.

First approach (Distance lemma). The distance lemma shows that the geometric
distance from a symmetric convex body to the Euclidean ball can be estimated if the
parametersM and M∗ are comparable to 1/b and a, respectively.
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Lemma 2.1 (Milman [10] ). Let T be a symmetric convex body inRn with �Bn
2 ⊆ T ⊆

rBn
2 . Assume that

(M∗(T )/r)2 + (M(T )�)2 = 1 + � (2.1)

for some� > 0. Then,

r

�
� 1

�
. (2.2)

If in addition

(M∗(T )/r)2 + 	(M(T )�)2�1 (2.3)

for some constant	 ∈ (0, 1), then

r

�
�
√

1 − 	

1 −√
	

1√
�

. (2.4)

Combining with theM∗-estimate we get the following technical statement.

Proposition 2.2. Let � ∈ (0, 1) and let K be a symmetric convex body inRn. For every
� > 0 we define r to be the solution of the equation

M∗(K ∩ rBn
2) =

√
� + �
� + 1

r. (2.5)

Then, for a randomE ∈ Gn,��n� and an absolute constantc > 0 we have:

(i) If 0 < � < 1
2 and 0 < � < 1 − 2�, then

D(K◦ ∩ E)� c
√

� + �
�

1

r
. (2.6)

(ii) If 1 − 2���, then

D(K◦ ∩ E)� c√
1 − �

� + 1

�
1

r
. (2.7)

Proof. Let 0 < s < � be a constant depending on� which will be suitably chosen.
We define� > 0 by the equation

M∗ (K◦ ∩ �−1Bn
2

)
=
√

1 − �
s + 1

1

�
. (2.8)
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Theorem A shows that (with probability greater than 1− c1 exp(−c2s2(1 − �)n)) a
randomE ∈ Gn,��n� satisfies

D(K◦ ∩ E)�1/�. (2.9)

We may assume that� < r: if ��r then the result is an immediate consequence
of (2.9). We define the convex bodyT = co

(
(K ∩ rBn

2) ∪ �Bn
2

)
. Since � < r, we

have �Bn
2 ⊆ T ⊆ rBn

2 . Also, by the definition ofT we see thatT ⊇ K ∩ rBn
2 and

T ◦ ⊇ K◦ ∩ 1
�Bn

2 . Therefore,

(M∗(T )/r)2 + (M(T )�)2 �
(
M∗(K ∩ rBn

2)/r
)2 + (

M∗ (K◦ ∩ �−1Bn
2

)
�
)2

= � + �
� + 1

+ 1 − �
s + 1

= 1 + � − s

(� + 1)(s + 1)
(1 − �).

We treat the two cases as follows:

(i) We define
 = s+�
s+1

�+1
�+� . Sinces < �, we have 0< 
 < 1 and


(M∗(T )/r)2 + (M(T )�)2� s + �
s + 1

+ 1 − �
s + 1

= 1. (2.10)

Applying the distance lemma we get

1

�
� (

√
(� + 1)(s + �) +√

(s + 1)(� + �))
√

(� + 1)(s + 1)

(� − s)(1 − �)

1

r

� 2(� + 1)3/2
√

� + �
(� − s)(1 − �)

1

r
.

Choosings = �/2 we get (2.6).

(ii) We define	 = s+1
�+1. Sinces < � we have 0< 	 < 1 and

(M∗(T )/r)2 + 	(M(T )�)2� � + �
� + 1

+ s + 1

� + 1

1 − �
s + 1

= 1. (2.11)

We can then apply the distance lemma to get

1

�
� (

√
� + 1 + √

s + 1)
√

(� + 1)(s + 1)

(� − s)
√

1 − �

1

r
� 2(� + 1)

� − s

√
s + 1√
1 − �

1

r
. (2.12)
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We now distinguish two subcases: if� < 1 we chooses = �/2, and if ��1 we choose
s = 1/2. Then, (2.12) proves (2.7).�

Proposition 2.2 leads to the following lowM-estimate.

Theorem 2.3. Let � ∈ (0, 1) and let K be a symmetric convex body inRn with Bn
2 ⊆ K.

Assume that

M(K) >
√

�. (2.13)

Then, for a randomE ∈ Gn,��n� and an absolute constantc > 0 we have:

(i) If M2 < 1
2, then

D(K ∩ E)� cM

M2 − �
. (2.14)

(ii) If M2� 1
2, then

D(K ∩ E)� c
√

1 − �
M2 − �

. (2.15)

Proof. If M = 1 then K = Bn
2 and there is nothing to prove. So, we assume that

M < 1 and set� = M2−�
1−M2 . SinceBn

2 ⊆ K, we have

M∗(K◦ ∩ Bn
2) = M∗(K◦) =

√
� + �
� + 1

. (2.16)

Consider the following two cases:

(i) If M2 < 1
2 then � < 1 − 2� (and � < M2 < 1

2). Therefore, Proposition 2.2(i)
shows that

D(K ∩ E)� c
√

� + �
�

<
cM

√
1 − M2

M2 − �
(2.17)

for a randomE ∈ Gn,��n�. This proves (2.14).
(ii) If M2� 1

2 then 1− 2���. In this case, Proposition 2.2(ii) shows that

D(K ∩ E)� c√
1 − �

� + 1

�
(2.18)
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for a randomE ∈ Gn,��n�. Since

� + 1

�
= 1 − �

M2 − �
, (2.19)

this proves (2.15).

Remark 2.4. From the proof of Proposition 2.2 one can check that the results in
Theorem 2.3 hold true for all subspacesE in a subsetA(�) of Gn,��n� with measure

�n,��n�(A(�))�1−c1 exp(−c2�
2(1−�)n), where� = M2−�

1−M2 andc1, c2 > 0 are absolute
constants.

Remark 2.5. The inequalityM >
√

� is a necessary condition if we want to have
such bounds for a random subspaceE ∈ Gn,��n�. This can be checked by analyzing
the example of the cylinder

C =
{
x ∈ Rn : x2

1 + · · · + x2
k �1

}
,

where k = ��n�. One should emphasize here the relation to Dvoretzky’s theorem:
for somec ∈ (0, 1) and for every symmetric convex body inRn with Bn

2 ⊆ K, a
random �cM2n�-dimensional sectionK ∩ E of K satisfies 1

2M
Bn

2 ∩ E ⊆ K ∩ E ⊆
2
M

Bn
2 ∩ E. Theorem 2.3 shows that an isomorphic version of this fact is possible“for

all” dimensions up to the natural boundk∗ =: M2n.

Theorem 2.3 may be also stated in the following way.

Theorem 2.6. Let � > 1 and let K be a symmetric convex body inRn with Bn
2 ⊆ K.

Assume thatM(K) = √
1 − ε for someε ∈ (0, 1) with �ε < 1. If ε < 1/2, then a

randomE ∈ Gn,�(1−�ε)n� satisfies

D(K ∩ E)� c
√

�
� − 1

1√
ε
, (2.20)

where c > 0 is an absolute constant. Ifε�1/2, then a randomE ∈ Gn,�(1−�ε)n�
satisfies

D(K ∩ E)� c
√

1 − ε

� − 1
, (2.21)

wherec > 0 is an absolute constant.

Second approach(Gaussian processes). Vershynin’s approach to the lowM-estimate
is based on Gordon’s proof of theM∗-estimate. For the precise statement, we need to
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introduce the sequence

ak = E

(
k∑

i=1

g2
i

)1/2

= √
2�
(

k + 1

2

)/
�
(

k

2

)
,

whereg1, . . . , gk are independent standard Gaussian random variables on some proba-
bility space. It is not hard to check thatk/

√
k + 1 < ak <

√
k (sincek will be always

assumed large, in what follows we can replaceak by
√

k for simplicity of the exposi-
tion; slight modifications would take care of the “error”). Theorem A is a consequence
of the following very precise result of Gordon (see[2]).

Lemma 2.7 (Gordon). Let S be a closed subset ofSn−1. If

w(S) =:
∫

Sn−1
max
y∈S

〈x, y〉�(dx) <
ak

an

, (2.22)

then

�n,n−k

(
E ∈ Gn,n−k : E ∩ S = ∅) �1 − 7

2
exp

(
− (ak − anw(S))2

18

)
. (2.23)

We will use this criterion to prove a lowM-estimate in the form of Theorem 2.3.

Proposition 2.8. Let K be a symmetric convex body inRn with Bn
2 ⊆ K. Assume that

0 < ε < M(K) and setN = M(K) − ε. Let 0 < � < N and defineS = �K ∩ Sn−1.
Then,

w(S) =:
∫

Sn−1
max
y∈S

〈x, y〉�(dx) < 
(�, N) + exp(−cε2n), (2.24)

where
(�, 	) = �	 +
√

(1 − �2)(1 − 	2) and c > 0 is an absolute constant.

Proof. Since‖ · ‖ is a 1-Lipschitz function onSn−1, concentration of measure on the
sphere (see[12]) shows that

�(x ∈ Sn−1 : ‖x‖ < N)� exp(−cε2n). (2.25)

We will prove the following claim:

Claim. If 0 < � < 	 < 1 and S = �K ∩ Sn−1, then for everyx ∈ Sn−1 with ‖x‖�	
we have

max
y∈S

〈x, y〉�
(�, 	) =: �	 +
√

(1 − �2)(1 − 	2). (2.26)
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After this is proved, we can write

w(S) =
∫

Sn−1
max
y∈S

〈x, y〉�(dx)

=
∫

{x∈Sn−1:‖x‖�N}

(�, N)�(dx) +

∫
{x∈Sn−1:‖x‖<N}

1�(dx)

< 
(�, N) + exp(−cε2n),

which is the assertion of Proposition 2.8.�

0 � 1

y

	y/ � 

y0

x0

x

	

Proof of the Claim. To this end, assume thatx ∈ Sn−1 \ 	K and lety ∈ S. We may
restrict ourselves to the two-dimensional planeE spanned byx and y. We know that
	K ∩ E ⊇ 	BE and ±(	/�)y ∈ 	K ∩ E. Therefore,x /∈ co{	BE, ±(	/�)y}. Consider
the tangent from(	/�)y to 	BE . Let x0 andy0 be the points where this tangent meets
SE and 	SE , respectively (see the picture above).

Then, the angle� =: x̂0y is greater than or equal to the angle�0 =: x̂00y. From the
picture it is clear that�0 = � − �, where� = ŷ00y and � = ŷ00x0. Since cos� = �
and cos� = 	, it follows that 〈x, y〉 = cos�� cos�0 = 
(�, 	). �

Proof of Theorem 2.3 (Continued). As in the first proof of the theorem, we define
� > 0 by the equationM2 = �+�

�+1. We distinguish three cases.

(a) Assume first that 1− 2��� < 1 (this corresponds to the case1
2 �M2 < 1+�

2 ).

Let ε = s(1 − �) and � = � = s

√
1−�
�+1 where s ∈ (0, 1) will be chosen. We define

S = �K ∩ Sn−1. If n�n0(s, �) then exp(−cε2n) < �, and Proposition 2.8 gives

w(S) =:
∫

Sn−1
max
y∈S

〈x, y〉�(dx) < 
(�, N) + � < � +
√

1 − N2 + �, (2.27)
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whereN = M − ε. Since

1 − N2 = 1 − M2 + ε(2M − ε)�1 − � + �
� + 1

+ 2s(1 − �) = 1 − �
� + 1

+ 2s(1 − �), (2.28)

we get

1 − N2 <
1 − �

(�/2) + 1
(2.29)

if we chooses � �. Then,

w(S) + � < (1 + 3s)

√
1 − �

(�/2) + 1
<
√

1 − � (2.30)

provided (again) thats � �. With this choice ofs we have
√

1 − � − w(S)��, and
Lemma 2.7 shows that (with probability greater than 1− c1 exp(−c2�2n)) a random
E ∈ Gn,��n� satisfies

E ∩ �K ∩ Sn−1 = ∅. (2.31)

This implies easily that

D(K ∩ E)� 1

�
� 1

�
√

1 − �
. (2.32)

(b) Next, assume that��1 (in this case we haveM2� 1+�
2 ). We setε = s(1 − �),

� = � = s
√

1 − � and defineS = �K ∩ Sn−1. Then, we repeat the argument in (a).
Observe that ifs is small enough, we have

N2 > M2 − 2ε� 1 + �
2

− 2s(1 − �) >
1 + 2�

3
. (2.33)

Therefore,

w(S) + � < � +
√

1 − N2 + 2� < 3s
√

1 − � +
√

2
3(1 − �) <

√
1 − � (2.34)

if s is small enough. This shows that

D(K ∩ E)� 1

�
� 1√

1 − �
(2.35)

for a randomE ∈ Gn,��n�.
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By the definition of�, the upper bounds in (2.32) and (2.35) are both of the order
of

√
1 − �/(M2 − �). Thus, cases (a) and (b) prove Theorem 2.3(ii).

(c) Finally, assume that� < 1− 2� (note that� < 1/2 in this case). We now choose

ε = s(1 − �), � = s

√
�+1
�+� = s/M and � = s. If s�c� where c > 0 is an absolute

constant, using (2.29) we get

w(S) + � < �M +
√

1 − N2 + 2� <

√
1 − �

(�/2) + 1
+ 3

√
2s
√

1 − � <
√

1 − �. (2.36)

It follows that

D(K ∩ E)� 1

�
� c1

√
� + �
�

. (2.37)

Taking into account the definition of� we see that case (c) proves Theorem 2.3(i).�

Remark 2.9. The second proof of Theorem 2.3 is based on Gordon’s approach to
Dvoretzky’s theorem and to theM∗-estimate. In fact, after this paper was submitted,
A. Litvak noted that the estimates of Theorem 2.3 may be also recovered from the
methods developed in[2] for all � < M2. However, our first proof of Theorem 2.3
is based on purely geometric tools and could be useful in situations where one needs
to consider� > M2. This can be done with a suitable choice of the parameters
in Proposition 2.2. For example, assume thatBn

2 ⊆ K and M(K) is small. Choose
� = � = �M2 ∈ (0, 1) where� � 1. If � > 0 satisfies the equation

M(co(K ∪ �Bn
2)) =

√
2�M√
� + 1

1

�
, (2.38)

then Proposition 2.2 implies that

D(K ∩ E)� c�√
�

� �√
�M

(2.39)

for a randomE ∈ Gn,��M2n�. In cases where the solution� of (2.38) can be estimated,
one has information on the diameter of proportional sections beyond�0 =: M2.

3. Diameter of random sections and circumradius of random intersections

Let K be a symmetric convex body inRn and lett, k�2 be two integers. We define
the minimal circumradius of an intersection oft rotations ofK by

rt (K) = min{� > 0 : u1(K) ∩ · · · ∩ ut (K) ⊆ �Bn
2 for someu1, . . . , ut ∈ O(n)} (3.1)
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and the “upper radius” of a random�n/k�-dimensional central section ofK by

Rk(K) = min

{
R > 0 : �n,�n/k�(E : K ∩ E ⊆ R(Bn

2 ∩ E))�1 − 1

k + 1

}
(3.2)

(where�x� denotes the least integer which is greater than or equal tox). In [11] it is
proved that

r2k(K)�
√

kRk(K). (3.3)

In [5] the following general reverse inequality was proved for fixed integer values
of t (starting with t = 2): For every symmetric convex bodyK in Rn, where n is
large enough depending ont, a randomctn–dimensional sectionK ∩ E of K satisfies
D(K ∩ E)�20Ctrt (K), where 0< c < 1 andC > 1 are absolute constants.

Using Proposition 2.2 we are able to obtain sharper estimates in this direction.

Theorem 3.1. Let t �2 be an integer and letn�2(t + 1). For every symmetric convex
body K in Rn, a random� n

c1t
�-dimensional sectionK ∩ E of K satisfies

D(K ∩ E)�c2
√

trt (K), (3.4)

wherec1, c2 > 0 are absolute constants.

Proof. Assume that for some bodyK in Rn and for some� > 0 there exist rotations
u1, . . . , ut ∈ O(n) for which

u1(K) ∩ · · · ∩ ut (K) ⊆ �Bn
2 .

Let k be the least integer for which� = k
n

> t
t+1. There existsr > 0 satisfy-

ing M∗(uj (K) ∩ rBn
2) = √

(3n + k)/4nr for every j = 1, . . . , t . We can then apply
Proposition 2.2(ii) to find subsetsLj of Gn,k with almost full measure (greater than
1 − c1 exp(−c2(n − k))) such that

[uj (K)]◦ ∩ E ⊆ c1

r

√
n

n − k
(Bn

2 ∩ E) (3.5)

for all E ∈ Lj . Therefore, we can findL ⊆ Gn,k with �n,k(L) > 0 so that (3.5) holds
for all j � t and E ∈ L. If E ∈ L, passing to polar bodies we get

PE(uj (K)) ⊇
√

n − k

n
c2r(Bn

2 ∩ E) , j = 1, . . . , t. (3.6)
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Without loss of generality we may assume thatK is strictly convex. We then de-
fine a mapT : S(E) → Rt (n−k) as follows: Given� ∈ S(E) we find xj = aj� ∈
bd(PE(uj (K))), j = 1, . . . , t . Then, we havexj = PE(yj ) for a unique pointyj ∈
bd(uj (K)). We define

T (�) = (y1 − x1, . . . , yt − xt ),

where we identify(E⊥)t with Rt (n−k). It is easy to check thatT is an odd continuous
function on S(E). From the choice ofk, we havet (n − k) < k. We can then apply
Borsuk’s antipodal theorem to find� ∈ S(E) with T (�) = 0. Consider an indexj0� t

for which aj0 = |xj0| is minimal. Sincexj0 = yj0, we havexj0 ∈ uj0(K) ∩ E, and
sinceaj0 = minj � t aj we see thatxj0 ∈ u1(K) ∩ · · · ∩ ut (K) ∩ E.

On the other hand,xj0 is also on the boundary ofPE(uj0(K)), which gives

c2r

√
n − k

n
� |xj0|�D(u1(K) ∩ · · · ∩ ut (K) ∩ E)��. (3.7)

This gives an upper bound forr in terms of� and t:

r �c3

√
n

n − k
�. (3.8)

Let s be the least integer for which(n−s)/n�√
(3n + k)/4n. We defineε ∈ R (which

is easily checked to be in(0, 1)) so that

M∗(K ∩ rBn
2) = (1 − ε)

√
(n − s)/nr = √

(3n + k)/(4n)r. (3.9)

Theorem A implies that there is a subsetL′ of Gn,s with almost full measure, such
that

D(K ∩ E)�r �c3

√
n

n − k
� (3.10)

for all E ∈ L′. It remains to estimates andn/(n−k) in terms oft. We hadk�nt/(t +
1) + 1, which gives

n

n − k
�2(t + 1) (3.11)

if we assumen�2(t + 1). Also, since(n − s)/n�√
(3n + k)/4n, we have

s = n
(n − k)/4n

1 + √
(3n + k)/4n

� n

16(t + 1)
. (3.12)

This completes the proof of the theorem.�
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By the definition ofrt (K) and Rk(K) we may rephrase Theorem 3.1 as follows.

Theorem 3.2. There existc1, c2 > 0 such that for every integert �2 and every
n�2(t + 1), the inequality

Rc1t (K)�c2
√

trt (K) (3.13)

holds true for every symmetric convex body K inRn. �

4. New tools

We considerSn−1 as a metric probability space, with the geodesic distance� and the
probability measure�n. If � > 0 andA is a Borel subset ofSn−1, then the�-extension
of A is the setA� = {x ∈ Sn−1 : �(x, A)��}. The following isoperimetric theorem of
Gromov (see[3]) will be crucial for the results of Section 5.

Theorem 4.1 (Gromov). Assume thatk < n are positive integers, n is even andn−k =
2m−1 for some positive integer m. For every odd continuous functionf : Sk−1 → Sn−1

and every� > 0,

�n

([
f (Sk−1)

]
�

)
��n,k(�), (4.1)

where�n,k(�) is the measure of the�-extension ofSk−1 in Sn−1.

Vershynin (see[19]) offers a relaxed version of Gromov’s theorem for allk and n.
This is done by embedding into a higher-dimensional sphere so that Theorem 4.1 can
be applied. The embedding is possible because, as shown in[19], for every � > 0,
for every symmetric Borel setA ⊆ Sn−1 and everym�n, one has�n(A�)��m(A�),
where on the right hand sideA is viewed as a subset ofSm−1 via the natural embedding
of Sn−1 into Sm−1.

Proposition 4.2. Assume thatk < n are positive integers. For every odd continuous
function f : Sk−1 → Sn−1 and every� > 0,

�n

([
f (Sk−1)

]
�

)
��2n−k,k−2(�), (4.2)

where�m,k(�) is the measure of the�-extension ofSk−1 in Sm−1.

The following lemma of Vershynin (see[18]) makes essential use of Proposition 4.2.
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Lemma 4.3. Let K be a symmetric convex body inRn and assume that for some
a < 1 < b and someE ∈ Gn,k, k > 2 we have

aBn
2 ⊆ K and b(Bn

2 ∩ E) ⊆ PE(K). (4.3)

Then,

�n(K ∩ Sn−1)��2n−k,k−2(�), (4.4)

where� = arcsin(a) − arcsin(a/b).

Proof. [Sketch; Vershynin]. Sinceb(Bn
2 ∩E) ⊆ PE(K), there exists an odd continuous

function g : bS(E) → K. Consider the functionf : S(E) → Sn−1 defined byf (x) =
g(bx)/|g(bx)|. We may clearly identifyS(E) with Sk−1, and hence, Proposition 4.2
shows that�n

(
Y�
)
��2n−k,k−2(�) for every� > 0, whereY = f (S(E)). To complete

the proof, we observe that

K ⊇ co{±g(bx), aBn
2 } ⊇ B(f (x), �) (4.5)

for every x ∈ S(E), where� = arcsin(a) − arcsin(a/b). Here, we only need the fact
that |g(bx)|�b > 1 > a and simple trigonometry. �

Remark 4.4. Assume that Gromov’s Theorem 4.1 holds true for every pair of positive
integersk < n. Then, Lemma 4.3 takes a stronger form: under the same hypotheses
we have

�n(K ∩ Sn−1)��n,k(�), (4.6)

where � = arcsin(a) − arcsin(a/b). In the end of the next section we discuss the
consequences of this statement.

The asymptotic behaviour of�n,k(�) has been determined by Artstein[1] (see also
[19]): Let � ∈ (0, 1). Then, the following estimates hold asn → ∞.

(1) If sin2 � > 1 − �, then

�n,k(�) � 1 − 1√
n�

√
�(1 − �)

sin2 � − (1 − �)
e

n
2 u(�,�).

(2) If sin2 � < 1 − �, then

�n,k(�) � 1√
n�

√
�(1 − �)

(1 − �) − sin2 �
e

n
2 u(�,�),
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where

u(�, �) = (1 − �) ln
(1 − �)

sin2 �
+ � ln

�
cos2 �

. (4.7)

In particular, there exists a critical value�(�) such that: ifk��n and � > �(�) then
�n,k(�) → 1 as n → ∞. What we really need is the fact that�(�) = arcsin(

√
1 − �).

This already follows by a simple argument: in[1], it is observed that�n,k(�) =
Prob(Yn � sin2 �), where Yn is a random variable with distribution Beta

(
(1−�)n

2 , �n
2

)
.

Since

E(Yn) = 1 − � and Var(Yn) = 2�(1 − �)

n + 2
, (4.8)

a simple application of Chebyshev’s inequality shows that

Prob(Yn > (1 − �) + t)� Var(Yn)

t2 � 2�(1 − �)

(n + 2)t2 (4.9)

for every t > 0. Choosingt = �(1 − �) we get the next lemma.

Lemma 4.5. Let � > 0 and let k = �n for some positive integerk < n. If n� 4�
(1−�)�2

and

sin2 � > (1 + �)(1 − �), (4.10)

then �n,k(�) > 1/2.

5. Diameter of proportional sections

In this section, we obtain lower bounds for the diameter of proportional sections of
a symmetric convex bodyK in Rn. As a first step, we will use Lemma 4.3 to show
the following: if K containsBn

2 , then a condition of the formM(K) > g(�) implies
an upper bound for the inradius ofevery��n�-dimensional projectionPE(K) of K.

Proposition 5.1. Let � ∈ (0, 1) and let K be a symmetric convex body inRn such that
Bn

2 ⊆ K. If

M > 	(�) =:
√

2(1 − �)

2 − �
(5.1)

and n�C(M − 	)−2, then

d(PE(K))� 3

M − 	
(5.2)

for everyE ∈ Gn,��n�.
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Proof. Let k = ��n� and let m be the Lévy mean of‖ · ‖ on Sn−1. This is the
unique m > 0 for which �n(‖x‖�m) ≥ 1/2 and �n(‖x‖�m)�1/2. Equivalently,
m = max{t > 0 : �n(tK ∩ Sn−1)�1/2}. Since ‖ · ‖ is a 1-Lipschitz function, one
can check that|M − m|��n where �n �c1/

√
n for some absolute constantc1 > 0

(see[12]).
ConsiderE ∈ Gn,k for which � =: d(PE(K)) is maximal. If (M − �n)��1 then

there is nothing to prove: observe that�n �(2M +	)/3 if n�C(M −	)−2. Otherwise,
since(M − �n)K ⊇ (M − �n)Bn

2 we can apply Lemma 4.3 to the body(M − �n)K. It
follows that

�n((M − �n)K ∩ Sn−1)��2n−k,k−2(�),

where� = arcsin(M − �n) − arcsin(1/�). On the other hand,

�n((M − �n)K ∩ Sn−1)��n(mK ∩ Sn−1)�1/2. (5.3)

We set�0 = k−2
2n−k

and�0 = M−	
	 . From Lemma 4.5 it follows that (forn�n0(�0, �0) �

(M − 	)−2) we must have

sin��
√

(1 + �0)
2(n − k − 1)

2n − k
<
√

1 + �0	. (5.4)

Observe that

sin� = (M − �n)

�

√
�2 − 1 − 1

�

√
1 − (M − �n)2

= M − �n

�

(√
�2 − 1 −

√
(M − �n)−2 − 1

)

� M − �n

�
�2 − (M − �n)−2

� + (M − �n)−1

= (M − �n) − 1

�
.

Then, (5.4) gives

�
(
(M − �n) −

√
1 + �0	

)
�1. (5.5)

Finally, under the assumptionn�C(M −	)−2, it is easily checked that�n +√
1 + �0	

�
(

1 + 2�0
3

)
	. This proves the result.�

The dual statement is now immediate.
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Proposition 5.2. Let � ∈ (0, 1) and let K be a symmetric convex body inRn such that
K ⊆ Bn

2 . If

M∗ > 	(�) =:
√

2(1 − �)

2 − �
(5.6)

and n�C(M∗ − 	)−2, then

D(K ∩ E)� 1
3(M∗ − 	) (5.7)

for everyE ∈ Gn,��n�.

An equivalent formulation is the following.

Theorem 5.3. Let � ∈ (0, 1) and � > 0 satisfy(1+�)

√
2(1−�)

2−� < 1, and letn�n1(�, �)

� 1
(1−�)�2 . If K is a symmetric convex body inRn, and if r2 is the solution of the

equation

M∗(K ∩ rBn
2) = (1 + �)

√
2(1 − �)

2 − �
r, (5.8)

then

D(K ∩ E)� 1
3�
√

1 − �r2 (5.9)

for everyE ∈ Gn,��n�.

Remark 5.4. We emphasize the fact that the lower bound for the diameter, in both
Proposition 5.2 and Theorem 5.3, holds true for every��n�-dimensional section ofK.
Note also that Eq. (5.8) is “comparable” with Eq. (1.3) which implies an upper bound
for the diameter of a random��n�-dimensional section ofK. These observations lead
to the next definition.

Definition 5.5. Let K be a symmetric convex body inRn. For every� ∈ (0, 1) define

a(�, K) = min
{
D(K ∩ E) : E ∈ Gn,��n�

}
(5.10)

and

b(�, K) = min
{
r > 0 : D(K ∩ E)�r : with probability �1/2 in Gn,��n�

}
. (5.11)

It is clear thata(�, K)�b(�, K) for all � and K. Combining Proposition 5.2 with
Theorem A we see thata(�, K) and b(�, K) are comparable in the following sense:
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Theorem 5.6. Let 0 < � < 1 and 0 < s < 1/(2 − �). There existsn0 = n0(�, s) such
that (

c�(1 − s(2 − �))

1 − s�

√
1 − �

)
b(s�, K)�a(�, K) (5.12)

for everyn�n0 and every symmetric convex body K inRn.

Proof. Let ε ∈ (0, 1) be a constant (depending on� and s) which will be suitably
chosen. LetK be a symmetric convex body inRn and let r1 be the solution of the
equation

M∗(K ∩ rBn
2) = (1 − ε)

√
1 − s�r. (5.13)

If n is large enough, then from Theorem A we have

b(s�, K)�r1. (5.14)

We choose

ε = �(1 − s(2 − �))

4(2 − �)(1 − s�)
. (5.15)

Then, one can check that

(1 − ε)
√

1 − s��(1 + ε)

√
2(1 − �)

2 − �
. (5.16)

It follows that if r2 is the solution of the equation

M∗(K ∩ rBn
2) = (1 + ε)

√
2(1 − �)

2 − �
r, (5.17)

then r1�r2. Now, Theorem 5.3 shows that

cε
√

1 − �r2�a(�, K). (5.18)

Combining with (5.14) we complete the proof of (5.12).�
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Remark 5.7. Assume that Gromov’s Theorem 4.1 holds without any restrictions onn
and k. Then, using Remark 4.4 and following the arguments of this Section one would
be able to prove the next two statements:

Fact A (conditional). Let � ∈ (0, 1) and ε > 0 satisfy (1 + ε)
√

1 − � < 1, and let
n�n1(�, ε) � 1

(1−�)ε2 . If K is a symmetric convex body inRn, and if r2 is the solution
of the equation

M∗(K ∩ rBn
2) = (1 + ε)

√
1 − �r, (5.19)

then

D(K ∩ E)� 1
2ε
√

1 − �r2 (5.20)

for everyE ∈ Gn,��n�.

Combined with Theorem A this would give a very precise “asymptotic formula” for
the diameter of random��n�-dimensional sections ofn-dimensional bodies. Solving
the single “asymptotic equation”M∗(K ∩ rBn

2) � √
1 − �r we would have an upper

and a lower bound (up to a constant depending on�) for the circumradius of a random
K ∩ E, E ∈ Gn,��n�. This would also lead to an improvement of Theorem 5.6.

Fact B (conditional).Let �, s ∈ (0, 1). There existsn0 = n0(�, s) such that

b(s�, K)� c(1 − s�)

(1 − s)�
√

1 − �
a(�, K) (5.21)

for everyn�n0 and every symmetric convex body K inRn.

This would show in a very exact way that (with a very small “loss in proportion”)
minimal and random diameter of�n-dimensional sections are comparable up to a
constant depending on� for every fixed proportion� ∈ (0, 1).

Remark 5.8. It is an interesting question to check whetherisometric results comple-
menting Theorem 2.3 are possible if we assume thatBn

2 ⊆ K and M is very close to
1. From Proposition 5.2 we can easily see that if 0< ε < ε0 and if the symmetric
convex bodyK ⊆ Bn

2 satisfiesM∗ > 1−ε, thenD(K ∩E)�1−cε for everyE ∈ Gn,k

wheren − k < εn.
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