Review Article

Inhibitory mechanism against oxidative stress of caffeic acid

Farhan Ahmed Khan a, Aneela Maalika b, Ghulam Murtazab,∗

a Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, Pakistan
b Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan

ARTICLE INFO

Article info:
Article history:
Received 17 December 2015
Received in revised form
27 April 2016
Accepted 3 May 2016
Available online 2 June 2016

Keywords:
anticancer
antioxidant
hydroxycinnamic acid
prooxidant
reactive oxygen species

ABSTRACT

The purpose of this article is to summarize the reported antioxidant activities of a naturally abundant bioactive phenolic acid, caffeic acid (CA, 3,4-dihydroxycinnamic acid), so that new avenues for future research involving CA can be explored. CA is abundantly found in coffee, fruits, vegetables, oils, and tea. CA is among the most potential and abundantly found in nature, hydroxycinnamic acids with the potential of antioxidant behavior. Reactive oxygen species produced as a result of endogenous processes can lead to pathophysiological disturbances in the human body. Foods containing phenolic substances are a potential source for free radical scavenging; these chemicals are known as antioxidants. This review is focused on CA’s structure, availability, and potential as an antioxidant along with its mode of action. A brief overview of the literature published about the prooxidant potential of caffeic acid as well as the future perspectives of caffeic acid research is described. CA can be effectively employed as a natural antioxidant in various food products such as oils.

Copyright © 2016, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Complex metabolic processes occurring in human body result in the production of reactive oxygen species (ROS) such as hydroxyl radicals [1]. These radicals are reported to have different biological functions such as antimicrobial activity [2]. Normally, ROS production in body is balanced by scavengers (antioxidants) but in pathological condition the equilibrium is disturbed due to over-production of ROS, which subsequently reacts with intra- and extracellular species and results in ailments such as aging, cancer and necrosis [1].

Phenolics are a class of compounds isolated from plants and are stated to have free radical scavenging potential due to their stable structure after trapping the free radical. Methoxy and hydroxyl groups can affect the antioxidant potential of the molecule [3]. Hydroxycinnamic acids are aromatic acids, and caffeic acid (CA) is a member of this class. CA (Figure 1) is a phenolic acid and a catechol derivative, isolated from various plants such as Ilex paraguariensis (15 mg/100 g), Melissa officinalis (39.3 mg/100 g), Baccharis genistelloides (8 mg/100 g), and Achyrocline satureioides (4 mg/100 g) [4].

CA and its derivatives including ethyl ester and phenyl ester (CAPE) are reported for various pharmacological
activities, e.g. anticancer, anti-AIDS and anti-inflammatory [5,6]. CA is described as an inhibitor for low-density lipo-protein oxidative modification which is thought to be involved in the pathogenesis of atherosclerosis [7]. Moreover, CA is also reported to react (scavenge) more efficiently with peroxyl radical as compared to the drug Trolox, which is used for oxidative stress; however, peroxyl radical involved in lipid peroxidation is a potential threat to cell membranes [8]. Increased antioxidant behavior is attributed to delocalization of the unpaired electrons in the extended conjugated side chain [9]; however, the structure stability of CA is further increased by additional hydrogen bond formation utilizing its ortho-dihydroxyl group after breaking the O-H bond [10]. Enhanced antioxidant activity of CA is also associated with the formation of o-quinone and regeneration of CA through semiquinone radical primarily generated by the reaction of antioxidant and free radical present in the medium [11].

CA derivatives have been studied and reported for their antioxidant potential: chlorogenic acid, CAPE, caffeic acid methyl ester, caffeic acid ethyl ester, caffeic acid butyl ester, caffeic acid benzyl ester, methyl caffeate (MC), and methyl dihydrocaffeate (MDC), octyl caffeate, and cichoric acid [11–13].

Recently, CA has been reported as an effective antioxidant in vitro assays such as total antioxidant activity by ferric thiocyanate process, lipid peroxidation analysis, reducing efficiency, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS·+) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, superoxide anion scavenging analysis, and metal chelating activity against standards such as butylated hydroxyanisole and butylated hydroxytoluene [14]. This review summarizes the recent data published on the antioxidant activity of CA, along with its structural aspects and possible mode of action as an antioxidant agent.

2. Literature search methodology

A rigorous literature search in English language was conducted, using different electronic databases including Science Direct, PLoS One, Medline, PubMed, Science Hub, and EMBASE from 1980 to 2015, using various keywords including caffeic acid and antioxidant jointly, followed by the use of caffeic acid with other keywords including inflammation, cancer, and molecular targets. The literature search was carried out to assess the bibliography of the selected articles to reveal the original research for the preparation of a comprehensive review article.

3. Results and discussion

3.1. Antioxidant activity of caffeic acid

Stability and shelf life are major issues in dietary products; these issues can be overcome by the addition of natural antioxidants such as phenolic acids [15]. CA is also among the hydroxycinnamic acids used to enhance the stability of dietary products [16,17]. However, the antioxidant potential of CA is affected by factors such as nature of oil, food processing, ingredients, and ratio of antioxidants and lipid components [17,18]. Novel dihydro-CA amides have been described for excellent free radical scavenging abilities assessed by the DPPH method, an excellent potential has been reported to protect polyunsaturated oils [11].

Addition of CA has been reported to enhance the stability of various oils by inhibition of lipid oxidation; the results are summarized in Table 1 [16,18–21].

UV radiation is responsible for biological changes such as photoaging and damages normal lymphocytes, resulting in their death. However, lymphocytes pretreated with an amount of CA (1 μg/mL, 5 μg/mL, and 10 μg/mL) for 30 minutes, when irradiated with UV-B (280–320 nm), a photoprotective effect of CA has been reported in terms of decreased lipid peroxidation and reduced DNA damage showing viability of lymphocytes [22]. The maximum protection against photoaging effect has been described with pretreatment using an amount of CA (10 μg/mL) in irradiated lymphocytes [22]. The photoprotective effect of CA may be due to glutathione metabolism, which exhibits free radical scavenging. CA has also been reported to protect phospholipidic membranes [23,24] and resist against vitamin C and vitamin E depletion through the membrane [25]. CA has also been found to have photoprotective activity against UV-B radiation in both in vitro and in vivo studies [26,27]. Furthermore, CA pretreatment leads to considerable decrease in γ radiation-provoked DNA damage in cultured human lymphocytes [26]. CAPE has also been reported to have photoprotective influence against UV-B induced DNA damage [28].

Ischemia/reperfusion (I/R) injury can be caused by ROS [29]. Reported models can be used to study protective effects of antioxidants administered prior to induction of I/R injury [30,31]. CA has been described to have protective effects on I/R injury in rat’s small intestine [29] and a successful protection

<table>
<thead>
<tr>
<th>Oils</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pork lard oil</td>
<td>[16]</td>
</tr>
<tr>
<td>Corn oil</td>
<td>[55]</td>
</tr>
<tr>
<td>Corn, grape seed, peanut, rapeseed, sesame, and soybean oils</td>
<td>[18,25]</td>
</tr>
<tr>
<td>Soybean oil</td>
<td>[17,21]</td>
</tr>
<tr>
<td>Sunflower oil</td>
<td>[19,56]</td>
</tr>
<tr>
<td>Avocado and coconut oils</td>
<td>[20]</td>
</tr>
<tr>
<td>Minced fish muscle</td>
<td>[19,57]</td>
</tr>
<tr>
<td>Minced chilled horse mackerel</td>
<td>[58]</td>
</tr>
<tr>
<td>Polyunsaturated oils</td>
<td>[11]</td>
</tr>
</tbody>
</table>
of mouse brain and liver mitochondria from oxidative stress, however, using CAPE and its related phenolic compounds during I/R injury showed more promising results [12]. Moreover, an excellent cytoprotective activity of CAPE and fluorinated CAPE derivatives has been published in a human umbilical vein endothelial cell model of oxidation stress [13].

A comparative in vitro study conducted to assess the antioxidant potential of CA and its conjugate SMND-309 (Figure 2) reported 92.1% and 93.4% scavenging activity of CA and SMND-309, respectively, on DPPH radical at the concentration of 20 mg/mL; therefore, a higher antioxidant effect of SMND-309 than CA can be observed [1]. In another study, 61.9% superoxide anion radical scavenging activity at 10 mg/mL has been reported for CA [14].

3.2. Synergistic effect of caffeic acid

Synergistic studies are important in therapeutic strategies; synergism in the antioxidant activity of CA in the presence of other antioxidants such as cysteinyl thiol, histidine-containing dipeptides, bovine serum albumin (BSA) and chitosan (Ch) are summarized in Tables 2 and 3. In a recent study, the synergistic effect on the antioxidant activity of two caffeates, MC and MDC, in coexistence with cysteinyl thiol was reported [32]. Coexistence of monothiol adducts with MC and of mono- and di-thiol adducts with MDC exhibited synergistic antioxidant effect, which was reported to be due to the electronic features of sulfur components [33]. Recently, the enhanced antioxidant activity of CA conjugated to histidine-containing dipeptides has been described; the

Table 2 – In vitro studies on synergistic effect of caffeic acid.

<table>
<thead>
<tr>
<th>Synergistic agent</th>
<th>Objective of study</th>
<th>Background of study</th>
<th>Antioxidant technique</th>
<th>Important results</th>
<th>Conclusion</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cysteinyl thiol</td>
<td>To study effect of cysteinyl thiol on the antioxidant activity of MC and MDC</td>
<td>MC and MDC can afford various thiol adducts with a recovered catechol structure.</td>
<td>Lipid peroxidation assay</td>
<td>The dependence of synergism upon the length of induction period. The mono-thiol adduct of MC and the mono-and di-thiol adducts of MDC contribute to the synergism in the antioxidant activity of both esters.</td>
<td>Synergistic effect of coexisting thiol on the antioxidant activity of MC and MDC</td>
<td>[32]</td>
</tr>
<tr>
<td>Histidine-containing dipeptides</td>
<td>To compare the antioxidant activity of histidine and CA-histidine conjugate with that of CA- i-Ala-His-NH₂</td>
<td>Histidine naturally exists at high concentrations in mammalian muscle tissue and nervous system.</td>
<td>2,2-Diphenyl-1-picrylhydrazyl radical scavenging assay, Lipid peroxidation assay</td>
<td>The change in the antioxidative activity of CA by changing the position of histidine in CA-histidine conjugate.</td>
<td>The augmented antioxidative effect of conjugated histidine-containing dipeptides.</td>
<td>[34]</td>
</tr>
<tr>
<td>Bovine serum albumin (BSA)</td>
<td>To determine the influence of BSA on the total antioxidant activity of CA in model food emulsions</td>
<td>BSA is a minor whey protein (MW 66 kDa) with surfactant features employed for the stabilization of various food emulsions.</td>
<td>Total antioxidant activity</td>
<td>The synergistic increase in stability of the O/W and W/O emulsions containing BSA and CA by 102.9% and 50.4% respectively calculated as 2 × peroxide value + p-anisidine value, with greater synergy calculated if based on formation of headspace volatiles.</td>
<td>A synergistically reduced rate of development of rancidity and considerably reduced concentration of total volatiles, PV and PA for both emulsion types (O/W and W/O) by CA-BSA combination.</td>
<td>[35]</td>
</tr>
</tbody>
</table>

MC = methyl caffeate; MDC = methyl dihydrocaffeate; O = oil; W = water.
<table>
<thead>
<tr>
<th>Caffeic acid/derivative</th>
<th>Grafting agent/covalent connector</th>
<th>Cross-linker</th>
<th>Objective of study</th>
<th>Antioxidant technique</th>
<th>Important results</th>
<th>Conclusion</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-CA grafts</td>
<td>1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride</td>
<td>Not used</td>
<td>To investigate the antioxidant activities of different molecular weights (Mw) and grafting ratios of Ch-CA derivatives</td>
<td>DPPH radical scavenging assay</td>
<td>Maximum IC50 of radical-scavenging activity (0.064 mg/mL) at the highest CA containing derivative.</td>
<td>Excellent antioxidant activity of Ch-CA grafts</td>
<td>[37]</td>
</tr>
<tr>
<td>CA grafted Ch/CPTMS hybrid scaffolds</td>
<td>Potassium persulfate</td>
<td>CPTMS</td>
<td>To investigate the antioxidant activities of CA grafted Ch/CPTMS hybrid scaffolds</td>
<td>DPPH radical scavenging assay</td>
<td>Increase in the DPPH scavenging activity of CA with increase in CA contents in grafts. The reduction in the antioxidant activity of grafted CA by using potassium sulfate</td>
<td>Higher antioxidant property of biodegradable hybrid polymer (CA grafted Ch/CPTMS hybrid scaffolds)</td>
<td>[38]</td>
</tr>
<tr>
<td>Ch-CA-Ge films</td>
<td>Ammonium cerium (IV) nitrate</td>
<td>Ge</td>
<td>To graft CA to Ch for improved antioxidant activity</td>
<td>ABTS radical cation decolorization assay</td>
<td>The higher antioxidant activity of Ch-CA-Ge neutralized films than that of Ch-CA films and the Ch films.</td>
<td>Synergistic improvement in the antioxidant activity of Ch by making its graft with CA and then adding cross-linker, Ge.</td>
<td>[39]</td>
</tr>
<tr>
<td>CA-Ch films</td>
<td>Laccase</td>
<td>Not used</td>
<td>To produce synergistically active antioxidant CA-Ch films</td>
<td>ABTS radical cation decolorization Assay</td>
<td>The stronger inhibition of ABTS cation radicals by CA-Ch films as compared to the pure films of Ch. The highest radical scavenging effect of chitosan grafted to CA at pH 4.5</td>
<td>The possibility and feasibility of the preparation of chitosan based novel multifunctional appliances by modifying chitosan functionality with laccase.</td>
<td>[40]</td>
</tr>
</tbody>
</table>

ABTS = 2,2’-azinobis-(3-ethylbenzo-thiazoline-6-sulfonic acid); CPTMS = (3-chloro-propyl)tri-methoxy-silane; DPPH = 2,2-diphenyl-1-picrylhydrazyl; Ge = Genipin.
CA grafting with CSC1.0 (a Ch-based hybrid scaffold) resulted in biodegradable hybrid polymers with a higher antioxidant potential than the CSC1.0 alone [38]. Antioxidant activity has also been described for Ch, Ch cross-linked with genipin (Ch-Ge), Ch grafted with CA (Ch-CA), and Ch cross-linked with Ge and grafted with CA (Ch-CA-Ge) films [39]. The Ch-CA-Ge neutralized films exhibited 40% higher antioxidant activity than the Ch-CA films and 80% higher than the films made up of Ch alone. The improvement in antioxidant activity of Ch films made by grafting to CA, the activity was further synergistically increased by adding cross-linking agent, Ge [39]. Recently, CA-Ch films were reported to strongly inhibit the ABTS cation radicals compared to the films made up of Ch alone [40]. This improved radical scavenging effect could be due to the reproduced oxidizable hydroxyl groups in the polymeric compounds as well as their branched structure and improved stability of radicals owing to the elevated electron delocalization. The branched structure of the polymeric compounds offered the steric obstruction to the moving free radicals making their access difficult to the active sites; Ch was grafted to CA at different pH (4.5, 5.5, and 6.5) was given codes accordingly Ch4.5, Ch5.5, and Ch6.5; Ch5.5 was shown to have the highest radical scavenging effect. In Ch5.5 and Ch6.5 graft, covalent bond formation occurred between CA and Ch resulting in steric hindrance that reduced the accessibility of CA [40]. In vitro studies performed using Ch and CA grafts are summarized in Table 3.

3.3. Antioxidant and prooxidant activity of caffeic acid

Antioxidant and prooxidant effects of CA and its derivatives have been reported through a combination of mechanisms:

<table>
<thead>
<tr>
<th>CA/derivative</th>
<th>Objective of study</th>
<th>Background of study</th>
<th>Antioxidant technique</th>
<th>Important results</th>
<th>Conclusion</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>To explore the possible mechanisms involved in the antioxidant and prooxidant activities of CA</td>
<td>Concentration-dependent antioxidant or prooxidant effects of some dietary components</td>
<td>DPPH radical scavenging assay, Lipid peroxidation assay</td>
<td>CA exhibits: 1. ROS-scavenging after 2. 2,2-azobis-amidinopropane dihydrochloride-induced damage in splenic lymphocytes and the inhibition of lipid peroxidation in mouse liver microsomes.</td>
<td>Concentration-dependent antioxidant and prooxidant effects of CA</td>
<td>[43]</td>
</tr>
<tr>
<td>Decomposition products of CA</td>
<td>To study the CA products obtained through thermal decomposition for possible antioxidant potential</td>
<td>Enhanced oxidative reactions due to the presence of prooxidant molecules</td>
<td>DPPH radical scavenging assay</td>
<td>On low heating at the start of CA decomposition, an enhanced prooxidant capacity due to the development of prooxidants. On higher heating, a reduction in the prooxidant components.</td>
<td>Prooxidant behavior of thermal decomposition products of CA</td>
<td>[44]</td>
</tr>
</tbody>
</table>

DPPH = 2,2-diphenyl-1-picrylhydrazyl; ROS = reactive oxygen species.
i.e. radical scavenging activity, inhibition of lipid peroxidation and shielding against LDL oxidation [41,42]. However, CAPE was described to inhibit autoxidation of pyrogallol more efficiently than the CA and efficiently scavenge O_2^* in both nonenzymatic and enzymatic reactions [42]. To evaluate antioxidant and prooxidant potential of CA in a concentration-dependent bleaching of ABTS $^\cdot+$, ferulic acid (a derivative of CA) was designated to show better results for ABTS $^\cdot+$ scavenging than CA; however, in hydroxyl radical scavenging, CA is described to act as antioxidant up to dose of 5μM; after that it behaves as prooxidant [43]. CA shows a change in oxidative properties under thermal conditions; thermally decomposed products of CA are reported to act as prooxidant [44]. Studies performed to establish the antioxidant and prooxidant activity of caffeic acid are summarized in Table 4.

3.4. In vivo antioxidant activity of caffeic acid against chemical-induced toxicity

Toxic metals such as nickel are environmental pollutants and potential threats for humans. In a study, performed on rat liver with induced toxicity by intraperitoneally administrated Ni for 20 days (20 mg/kg body weight), CA has been reported to reduce the oxidative stress caused by Ni toxicity [45]. However, literature reveals that not only CA but also its derivatives such as CAPE can be effective against carbon tetrachloride-, cisplatin-, and cadmium-induced toxicity of liver and kidney in various animals such as mice, rabbit, and rats [46–53]. In a recently published study, CA was found effective at a dose level 250 mg/kg body weight in rats previously treated with cisplatin, which causes oxidative stress and alters activity of many antioxidant enzymes present in the small intestine of rat [54]. Furthermore, in vivo studies performed using CA and CAPE found them to be effective against various chemically induced toxicities (Table 5).

4. Conclusion

CA-Ch grafts exhibit synergism in their antioxidant effect. Newer grafting agents/covalent connectors and cross-linkers should be explored to exponentially increase the antioxidant action of grafts. The antioxidant activity of CA and its derivatives should also be investigated against various toxicities induced by other metals such as arsenic, chromium, and lead. Some antioxidants such as cysteynil thiol, histidine-containing dipeptides, bovine serum albumin and chitosan have been described to synergistically improve the antioxidant activity of CA; similarly, the antioxidant activity of CA can also be synergistically enhanced by other antioxidants. The use of antioxidants can also show signs of concentration-dependent prooxidative effect, which may lead to oxidative damage of cells, considerable health implications should be designed and adopted where CA is being consumed. CA can be effectively employed as a natural antioxidant in various food products such as oils.

Conflict of interests

There is no conflict of interests among authors over the contents of this article.

REFERENCES

