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Convolutamydine A, an oxindole that originated from amarine bryozoan, has several biological effects. In this
study, we aimed to investigate the antinociceptive effects of convolutamydine A and two new synthetic
analogues.
Convolutamydine A and the two analogues were given orally to assess their ability to induce antinociceptive
effects. Formalin-induced licking response, acetic acid-induced contortions, and hot plate models were used
to characterize the effects of convolutamydine A and its analogues.
Convolutamydine A (4,6-bromo-3-(2-oxopropyl)-3-hydroxy-2-oxindole), compound 1 (3-(2-oxopropyl)-3-
hydroxy-2-oxindole), and compound 2 (5-bromo-3-(2-oxopropyl)-3-hydroxy-2-oxindole) caused peripheral
antinociceptive and anti-inflammatory effects in the acetic acid-induced contortions and the formalin-
induced licking models. Supraspinal effects were also observed in the hot plate model and were similar to
those obtained with morphine. The peripheral effects were not mediated by the cholinergic or opioid systems.
The antinociceptive effects of convolutamydine A seem to bemediated by all three systems (cholinergic, opioid,
and nitric oxide systems), and the mechanism of action of compounds 1 and 2 involved cholinergic and nitric
oxide-mediated mechanisms. Convolutamydine A and its analogues (compounds 1 and 2) showed good
antinociceptive ability after systemic administration in acute pain models. The antinociceptive action mediated
by cholinergic, opioid, and nitric oxide systems could explain why convolutamydine A, compound 1, and com-
pound 2 retained their antinociceptive effects. The doses used were similar to the doses of morphine and were
much lower than that of acetylsalicylic acid, the classical analgesic and anti-inflammatory drug.
In conclusion, convolutamydine A and the two analogues demonstrated antinociceptive effects comparable
to morphine's effects.

© 2012 Elsevier Inc. Open access under the Elsevier OA license. 
1. Introduction

Pain is a warning condition of the organism against an injury and
is sometimes the only symptom of various diseases. Although pain
often has a protective function, in many cases, it is a condition that
limits productivity and reduces quality of life. Considerable efforts
have been made to discover new analgesic agents with increased
efficacy and improved side effect profiles. While many pain medica-
tions are currently available, there is some concern regarding their
safety and side effects, making their clinical use problematic (Jage,
2005; Whittle, 2003). Therefore, the search for new molecules with
greater analgesic potency and fewer side effects remains a goal of
researchers from universities and the pharmaceutical industry.
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Convolutamydine A (Fig. 1) is an oxindole alkaloid isolated in low
yields from the Floridian marine bryozoan species Amathia convoluta.
This compound reduces the differentiation of HL-60 human pro-
myelocytic leukemia cells (Kamano et al., 1995). The promising bio-
logical effects have led several research groups to work on the
synthesis of convolutamydine A (Cravotto et al., 2006; Garden et al.,
1997; Luppi et al., 2006; Malkov et al., 2007) in racemic and chiral
form.

Convolutamydine A is a derivative of isatins (Fig. 1), which are het-
erocyclic compounds with considerable synthetic versatility (Da Silva et
al., 2001; Shvekhgeimer, 1996; Silva et al., 2008, 2010, 2011). Isatin and
its derivatives have been found to have anticholinesterase, anticon-
vulsant, antihypertensive, anti-hypoxic, antimicrobial, antineoplastic,
antiulcer, antiviral and anti-inflammatory activities (Bhrigu et al., 2010;
Da Silva et al., 2001; Hall et al., 2009; Matheus et al., 2007; Peddibhotla,
2009; Silva et al., 2010; Vine et al., 2008; Zapata-Sudo et al., 2007).

Our group has been investigating the possible pharmacological
potential of convolutamydine A and synthetic analogues obtained
from isatins. The aim of the present study was to investigate the
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Fig. 1. Effects of convolutamydine A (4,6-dibromo-3-(2-oxopropyl)-3-hydroxy-2-oxindole),
compound 1 (3-(2-oxopropyl)-3-hydroxy-2-oxindole), and 2 (5-bromo-3-(2-oxopropyl)-
3-hydroxy-2-oxindole) on acetic acid-induced abdominal writhing in mice. Animals were
pre-treated with oral administration of different doses of convolutamydine A, compound 1,
2, acetylsalicylic acid (ASA, 200 mg/kg), morphine (5 mg/kg) or vehicle. The results are
presented as mean±S.D. (n=6–10) of contortions. Statistical significance was calculated
by ANOVA followed by Bonferroni's test. *Pb0.05 when compared to vehicle-treated mice.
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antinociceptive effects of two novel analogues of convolutamydine A
using chemical (acetic acid-induced contortions and formalin) and
thermal (hot plate) models of nociception in mice.

2. Materials and methods

2.1. Animals

All experiments were performed with Swiss mice (20–25 g), from
both sexes, obtained from our own animal facility. The animals were
maintained in a room with controlled temperature (22±2 °C) and a
12 h light/dark cycle and were given free access to food and water.
The animals received only water for 12 h before each experiment to
avoid food interference with substance absorption. The experiments
were conducted in accordance with current ethical guidelines for the in-
vestigation of experimental pain in conscious animals (Zimmermann,
1983). The number of animals and the intensities of noxious stimuli
usedwere theminimumnecessary to demonstrate the consistent effects
of drug treatments. The animal care and research protocols (number
ICBDFBC-015) were conducted in accordance with the principles and
guidelines adopted by the Brazilian College of Animal Experimentation
(COBEA) and were approved by the Ethical Committee for Animal
Research (Biomedical Science Institute/UFRJ).
2.2. General

Acetylsalicylic acid (ASA), L-nitro arginine methyl ester (L-NAME),
and atropine were purchased from Sigma (St. Louis, MO, USA); acetic
acid and morphine hydrochloride were purchased from Merck Inc.
(Brazil); and naloxone was purchased from Cristália (São Paulo,
Brazil). All drugs were dissolved in phosphate buffer saline (PBS)
immediately prior to use.
2.3. Synthesis of convolutamydine analogues

A catalytic quantity of diethylamide was added to a suspension of
10 mmol of isatin, 5-bromoisatin or 4,6-dibromoisatin (Table 1) and
20 ml of acetone. The mixture was stirred at room temperature and
the reaction progress was followed by thin layer chromatography.
After 48 h, the resulting light yellow solid was filtered to produce
the product in high yields. Their structures were confirmed by spec-
troscopic techniques such as 1H NMR, 13C NMR and IR (Garden et
al., 1997).
2.4. Administration of drugs, convolutamydine A and analogues

Convolutamydine A, and compounds 1 and 2 were dissolved in
dimethyl sulphoxide (DMSO) to prepare a 200 mg/ml stock solution.
On the day of the experiments, diluted solutions were prepared from
each stock solution using sterile distilled water as the diluent. The
substances were administered by oral gavage at doses varying be-
tween 0.1 and 30 mg/kg in a final volume of 0.1 ml per animal.
Acetylsalicylic acid (ASA, 200 mg/kg) and morphine (5 mg/kg) were
used as reference drugs and were administered by oral gavage at
the intervals indicated in each protocol. The dose of ASA and mor-
phine was chosen based on previous experiments carried out by our
group (Pinheiro et al., 2010) and was that which caused a 50% reduc-
tion in each procedure (IC50). The control group was given vehicle
(DMSO/water).
2.5. Acetic acid-induced abdominal writhing

Mice were treated according to Matheus et al. (2005). Briefly, the
total number of writhings following intraperitoneal administration of
a 2% (v/v) acetic acid solution (AA) was recorded over a period of
20 min, starting 5 min after the AA injection. Mice were pre-treated
with convolutamydine A, the analogues, ASA, morphine, or vehicle
for 60 min before the administration of AA.
2.6. Formalin test

This procedure was similar to the method described by Gomes et al.
(2007). Mice received an injection of 20 μl of formalin (2.5% v/v) into
the dorsal surface of the left hind paw. The time that the animal spent
licking the injected paw was immediately recorded. The nociceptive
and inflammatory response consists of the following two phases: the
first phase lasts until 5 min after the formalin injection (first phase, neu-
rogenic pain response), and the second phase occurs 15–30 min after
the formalin injection (second phase, inflammatory pain response).
The animals were pre-treated with oral doses of convolutamydine A,
compound 1, compound 2, vehicle, ASA or morphine for 60 min before
the administration of formalin.



Table 1
Structures and yields of convolutamydine A and synthetic analogues obtained from isatins.

N
H

O

HO
O

R1

R3

R2

Compound Name Substituent (R) Yield (%)

Convolutamydine A 4,6-Dibromo-3-(2-oxopropyl)-3-hydroxy-2-oxindole R1=Br, R2=H, R3=Br 86
1 3-(2-Oxopropyl)-3-hydroxy-2-oxindole R1=R2=R3=H 80
2 5-Bromo-3-(2-oxopropyl)-3-hydroxy-2-oxindole R1=H, R2=Br, R3=H 81
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2.7. Hot plate test

Mice were tested according to the method described by Sahley
and Berntson (1979) and adapted by Matheus et al. (2005). Animals
were placed on a hot plate (Insight Equipment, Brazil) set at 55±
1 °C. At successive intervals of 30 min after oral administration of
convolutamydine A, compound 1, 2, vehicle or morphine, the reaction
time was recorded when the animals licked their fore- and hind-paws
and jumped. Baseline was considered the mean reaction time
obtained at 60 and 30 min before administration of the compounds,
vehicle, ormorphine andwas defined as the normal reaction of the an-
imal to the temperature. When animals were kept on the hot plate for
a period of time greater than three times the baseline (cut-off), they
were removed to avoid possible damage to the paws. Antinociception
was quantified as either the increase in baseline (%) calculated by the
formula (reaction time×100/baseline)−100 or the area under the
curve (AUC) of responses from 30 min after drug administration
until the end of the experiment. The following formula based on the
trapezoid rule was used to calculate the AUC: AUC=30×IB [(min
30)+(min 60)+…+(min 180)/2], where IB is the increase in base-
line (in %).

2.8. Assessment of some mechanisms involved in antinociceptive activity

To investigate the participation of the opioid system in the
antinociceptive effects of convolutamydine A, compound 1 and 2,
mice were pre-treated i.p. with naloxone (1 mg/kg), an opioid receptor
antagonist. After 30 min, the animals received oral administration of
convolutamydine A, compounds 1 or 2 (10 mg/kg) and were subjected
to the methods described above.

Atropine (1 mg/kg, i.p.), a cholinergic receptor antagonist, was
administered 30 min before the substances under study (10 mg/kg,
p.o.) to assess the possible participation of the cholinergic system in
the antinociceptive effects.

L-Nitro arginine methyl ester (L-NAME; 3 mg/kg, i.p.), an inhibitor of
nitric oxide synthase, was administered 30 min before convolutamydine
A or its analogues (10 mg/kg, p.o.) to evaluate the participation of the
nitric oxide system. The choice of the doses of the antagonists or inhibi-
tors and their treatment times were based on previous data described in
the literature (Otuki et al., 2005; Tabarelli et al., 2004) and experiments
conducted in our laboratory. Dose response curves of each antagonist
were previously performed and the dose that reduced to 50% the
response of the agonist was chosen for these assays (Pinheiro et al.,
2010).

2.9. Reduction of spontaneous activity

The spontaneous activity was evaluated as described in Barros et
al. (1991). Mice received oral administrations of convolutamydine
A, compound 1 or 2 (at 30 mg/kg, p.o.). Immediately, they were
placed individually in an observation chamber whose floor was
divided into 50 squares (5 cm×5 cm). Total numbers of squares by
which mouse walked during 5 min were counted.

The effect of compounds on locomotor performance was also test-
ed on the rotarod apparatus as described previously (Godoy et al.,
2004). Twenty-four hours before the experiments, all animals were
trained in the rotarod (3.7 cm in diameter, 8 r.p.m) until they could
remain in the apparatus for 60 s without falling. On the day of the
experiment, mice were treated with convolutamydine A, compound
1 or 2, (30 mg/kg, p.o.) and tested in the rotarod from 0.5 up to
3.5 h after their administration. The number of falls from the appara-
tus was recorded with a stopwatch for up to 240 s.
2.10. Acute toxicity

Acute toxicity was determined following the experimental model de-
scribed previously (Lorke, 1983). A single oral dose of convolutamydine
A, compound 1 or 2 (500 mg/kg) was administered to a group of ten
mice (five males and five females). Behavioral parameters observed
over a period of 14 days included convulsion, hyperactivity, food and
water intake, grooming, loss of righting reflex, increased or decreased
respiration, and sedation. After this period animals were killed by cervi-
cal dislocation, stomachs were removed and an incision along the great-
er curvature wasmade. The number of ulcers (single ormultiple erosion,
ulcer or perforation) and hyperemia were measured.
2.11. Statistical analysis

Each experimental group consisted of 6–10 mice. The results are
presented as mean±S.D. The area under the curve (AUC) was calcu-
lated using Prism Software 5.0 (GraphPad Software, La Jolla, CA, USA).
Statistical significance between groups was determined using the ap-
plication of an analyses of variance (ANOVA) followed by Bonferroni's
test. P values less than 0.05 were considered to be significant.
3. Results

3.1. Evaluation of the antinociceptive effects of convolutamydine A and
analogues in the acetic acid-induced contortions model

The intraperitoneal injection of acetic acid led to 48.3±3.0 con-
tortions in an interval of 20 min. After pre-treatment of animals
with oral doses ranging from 0.1 to 10 mg/kg of convolutamydine
A, compound 1 or 2 a significant reduction in the number of contor-
tions induced by the acetic acid was observed (Fig. 2). In comparison,
the nonsteroidal anti-inflammatory drug acetylsalicylic acid (ASA)
was used in a dose that, in our model, caused 50% inhibition,
200 mg/kg. In the same way, the opioid agonist morphine was used
and reduced the nociceptive response by 50%.

Unlabelled image


Fig. 2. Effects of convolutamydine A (4,6-dibromo-3-(2-oxopropyl)-3-hydroxy-2-
oxindole), compound 1 (3-(2-oxopropyl)-3-hydroxy-2-oxindole), and 2 (5-bromo-3-(2-
oxopropyl)-3-hydroxy-2-oxindole) on formalin-induced licking response in mice. Animals
were pre-treated with oral administration of different doses of convolutamydine A, com-
pound 1, 2, acetylsalicylic acid (ASA, 200 mg/kg), morphine (5 mg/kg) or vehicle. The
results are presented as mean±S.D. (n=6–10) of the time that the animal spent licking
the formalin-injected paw. Statistical significance was calculated by ANOVA followed by
Bonferroni's test. *Pb0.05 when compared to vehicle-treated mice.
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3.2. Evaluation of the antinociceptive effects of convolutamydine A and
its analogues in the formalin model

To confirm the antinociceptive effects of convolutamydine A and
its analogues, we evaluated these substances using the formalin
model. The injection of formalin (2.5%) leads to a biphasic licking re-
sponse of the injected paw. The first phase lasts until 5 min after
injection, and the second phase occurs between 15 and 30 min after
formalin injection. As shown in Fig. 3, none of the three substances
(convolutamydine A, compound 1 or 2) significantly reduced the time
that the animal spent licking the formalin-injected paw during the
first phase. In contrast, pre-treatment of animals with any of the three
compounds inhibited the second phase of the response to formalin.
More pronounced effects were observed with convolutamydine A and
compound 1. Even at the lowest dose of 0.1 mg/kg, convolutamydine
A and compound 1 reduced the total licking time by 53.1% and 59.9%,
respectively (276.0±46.0 s in the control group versus 113.3±12.9 s
and 129.4±16.4 s in the groups treated with convolutamydine A or
compound 1, respectively). In the second phase of the formalin model,
a dose of 200 mg/kg of ASA reduced the total licking time by 52.9%
(276.0±46.0 s in the control group versus 132.5±6.9 s in the
ASA-treated group). Comparing the results with convolutamydine A,
compound 1, and compound 2 with the ED50 calculated to ASA
(200 mg/kg) we can observe that convolutamydine A and the
compound 1 and 2 were 2000, 1667, and 15 times more potent than
the ED50 dose of ASA, respectively.

3.3. Evaluation of the antinociceptive effects of convolutamydine A and
analogues in the hot plate model

We used the hot plate model to evaluate the supraspinal
antinociceptive effects of the substances. As can be observed in Fig. 4
(left graphs), at the lowest dose of 1 mg/kg, any of the three substances
significantly increased the baseline. On the basis of these results, we
decided to increase the doses to 30 mg/kg. To compare the results
obtained with morphine (at it ED50) and the substances, we plotted
the results as a graph of area under the curve. Compounds 1 and 2 (at
a dose of 10 mg/kg) reached area under the curve (AUC) values similar
to those obtained with morphine (5 mg/kg). Surprisingly, at this same
dose, convolutamydine A showed an effect that was almost 1.5 times
higher than the effect observed with the dose of morphine correspond-
ing to its ED50 (Fig. 4, right graphs). As we expected, ASA did not
present any antinociceptive effect and was not used for comparisons
with our compounds (data not shown).

3.4. Evaluation of the mechanism of action of convolutamydine A and its
analogues

As all substances demonstrated an antinociceptive effect in the an-
algesia models, next we tried to elucidate the mechanism by which
convolutamydine A and its analogues exert out their activities. We de-
cided to evaluate the involvement of the opioid, cholinergic, and nitric
oxide systems on the antinociceptive effects by pre-treating mice with
inhibitors of each system and evaluating the antinociceptive effects of
each compound in all three models.

It could be observed that none of the antagonists (atropine and
naloxone) and nitric oxide synthase inhibitor (L-NAME) demonstrated
any antinociceptive effects per se in all models used. Neither atropine
(muscarinic antagonist, 1 mg/kg) nor naloxone (opioid antagonist,
1 mg/kg) given 30 min beforehand was able to significantly reverse
the antinociception caused by any of the three substances in the acetic
acid-induced contortions and formalin-induced licking models. When
L-NAME (3 mg/kg) was administered 30 min prior to the substances,
it reversed the convolutamydine A activity in both models (Figs. 4
and 5). Atropine and L-NAME reversed the antinociceptive effect of
convolutamydine A, compound 1, and compound 2 in the hot plate
model, while naloxone reversed only the antinociceptive effect of
convolutamydine A (Fig. 6).

3.5. Assessment of side effects and acute toxicity

Neither convolutamydine A nor its analogues (30 mg/kg, p.o.) had
any significant effect on motor performance or spontaneous activity
(Table 2); at 0.5, 2 or 3.5 h after administration in mice. When
animals were administered convolutamydine A, compound 1 or 2 at
doses of 500 mg/kg, p.o., the death rates were 6.3%, 5.4%, and 3.1%, re-
spectively. Also, none of the compounds evaluated (convolutamydine
A, compound 1 and 2) altered any of the parameters observed during
the toxicity assays. There were no alterations in normal activity, such
as food andwater intake, grooming, and loss of righting reflex. We did
not observe alterations on righting reflex or respiration and no ulcers
were observed in stomachs after 14 days (data not shown).

4. Discussion

The antinociceptive effects of convolutamydine A and two analogues
(compounds 1 and 2) have been demonstrated for the first time. The
oral administration of the three substances produced a marked
antinociception in several models of pain.



Fig. 3. Effects convolutamydine A (4,6-dibromo-3-(2-oxopropyl)-3-hydroxy-2-oxindole), compound 1 (3-(2-oxopropyl)-3-hydroxy-2-oxindole), and 2 (5-bromo-3-(2-oxopropyl)-3-
hydroxy-2-oxindole) in the hot plate model. Animals were pre-treated with oral administration of different doses of convolutamydine A, compound 1, 2, morphine (5 mg/kg) or vehicle.
The results are presented as mean±S.D. (n=6–10) of the increase in baseline levels (left graphs) or area under the curve (right graphs) calculated by Prism Software 5.0. Statistical signif-
icance was calculated by ANOVA followed by Bonferroni's test. * indicates pb0.05 when comparing treated mice to the vehicle-treated group; # indicates pb0.05 when comparing treated
mice with the morphine-treated group.
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The acetic acid-induced contortion is a model of visceral inflamma-
tory nociception that is used for the evaluation of analgesic and/or
anti-inflammatory drugs (Tjølsen et al., 1991, 1992). The injection of
acetic acid induces an inflammatory process that leads to the release
of inflammatory mediators in the abdominal cavity with subsequent
activation of nociceptors (Collier et al., 1968). Local tissue injury
prompts the release of chemical mediators (potassium, hydrogen
ions, ATP, and bradykinin) and inflammatory mediators (for example,
PGE2) from inflammatory cells. These substances directly activate
nerve endings and trigger the release of algesic mediators (for exam-
ple, histamine, serotonin (5-HT), nerve growth factor (NGF), and
prostanoids) from other cells and afferent nerves (Kennedy and Leff,
1995; Purcell and Atterwill, 1995; Tracey and Walker, 1995). This
sensitizes the endings of afferent nerve terminals resulting in an in-
creased response to painful stimuli (Bueno and Fioramonti, 2002). Our
results demonstrated that convolutamydine A and its two analogues,
compounds 1 and 2, significantly reduced the number of contortions.
These results may be a result of a reduction in the production of inflam-
matory mediators that were liberated in the peritoneal cavity or a
blockage in the pain transmission through pain fibers. Using this test,
it is not possible to ascertain whether the effects of convolutamydine
A, compound 1 or 2 were due to anti-inflammatory or central effects.

In an attempt to determine the possible effects of convolutamydine
A and its analogues, we decide to test their effects on the formalin-
induced licking response. This model is commonly employed as a
model of acute and tonic peripheral pains. The intraplantar injection
of formalin induces a peripheral pain response and is used to test for
neurogenic and inflammatory pain. Traditionally, the first phase (or
neurogenic phase) corresponds to acute neurogenic pain due to direct
stimulation of nociceptors by formalin. Phase 2 corresponds to inflam-
matory pain mediated by a combination of peripheral input and spinal
cord sensitization and that can be inhibited by nonsteroidal anti-
inflammatory drugs (Hunskaar and Hole, 1987; Tjølsen et al., 1991).
Drugs that act primarily as central analgesics inhibit both phases while
peripherally acting drugs inhibit only the second phase (Rosland et al.,
1990; Shibata et al., 1989). It is also known that the first phase of the
formalin-induced licking response is due to the activation of the
nociceptors by bradykinin, serotonin, and histamine (Chapman and

image of Fig.�3


Fig. 4. Effects of different antagonists on the antinociceptive activity of convolutamydine A
(4,6-dibromo-3-(2-oxopropyl)-3-hydroxy-2-oxindole), compound 1 (3-(2-oxopropyl)-3-
hydroxy-2-oxindole), and 2 (5-bromo-3-(2-oxopropyl)-3-hydroxy-2-oxindole) in the
acetic acid-induced contortion model. Animals were pre-treated with naloxone (1 mg/kg,
i.p.), atropine (1 mg/kg, i.p.) or L-NAME (3 mg/kg, i.p.) 30 min prior to oral administration
of convolutamydine A, compound 1, or 2 (10 mg/kg). The results are presented as mean±
S.D. (n=6–10) of contortions. Statistical significancewas calculated by ANOVA followed by
Bonferroni's test. * indicates pb0.05 when comparing compound-treated mice to the
vehicle-treated group; # indicates pb0.05 when comparing antagonist pre-treated mice
with the compound-treated group.

Fig. 5. Effects of different antagonists on the antinociceptive activity of convolutamydine A
(4,6-dibromo-3-(2-oxopropyl)-3-hydroxy-2-oxindole), compound 1 (3-(2-oxopropyl)-3-
hydroxy-2-oxindole), and 2 (5-bromo-3-(2- oxopropyl)-3-hydroxy-2-oxindole) in the
formalin-induced licking response. Animals were pre-treated with naloxone (1 mg/kg,
i.p.), atropine (1 mg/kg, i.p.), or L-NAME (3 mg/kg, i.p.) 30 min prior to oral administration
of convolutamydine A, compound 1, or 2 (10 mg/kg). Results are presented as mean±S.D.
(n=6-10) of time that the animal spent licking the formalin-injected paw. * indicates
pb0.05 when comparing compound-treatedmice to the vehicle-treated group; # indicates
pb0.05 when comparing antagonist pre-treated mice with the compound-treated group.
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Dickenson, 1992; De Campos et al., 1996; Parada et al., 2001). The ab-
sence of inhibitory effects from convolutamydine A, compound 1, and 2
in this phase could be explained by the hypothesis that these compounds
did not directly interact with the nociceptors but only with the inflam-
matory receptors. Similar to non-opiate analgesics, we have found that
the compounds under study decreased the inflammatory phase. This
observation suggests a possible inhibition of inflammatorymediators re-
leased in themouse paw and also corroborates with the inhibitory effect
of the compounds on the acetic acid-inducedwrithing response. The fact
that compound2 (at 1 mg/kg) did not reduce the secondphase of forma-
lin response but demonstrated a significant effect on acetic acid-induced
contortionsmight be explained by the compound having easier access to
the peritoneal cavity. It could be possible that a 1 mg/kg dose has a small
amount of substance in such a way that only a minimal quantity of the
compound can affect the paw tissue and thus not inhibiting the formalin
response.

We also investigated the effects of convolutamydine A and it ana-
logues in the hot plate test. The paws of mice and rats are very sensi-
tive to heat at temperatures which are not damaging the skin. The
responses are jumping, withdrawal of the paws and licking of the
paws (Eddy and Leimbach, 1953). The time until these responses
occur is prolonged after administration of supraspinal acting analgesics,
whereas peripheral analgesics of the acetylsalicylic acid or phenyl-
acetic acid type do not generally affect these responses. The hot plate
test has been used by many investigators and has been found to be

image of Fig.�4
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Fig. 6. Effects of different antagonists on the antinociceptive activity of convolutamydine A
(4,6-dibromo-3-(2-oxopropyl)-3-hydroxy-2-oxindole), compound 1 (3-(2-oxopropyl)-3-
hydroxy-2-oxindole), and 2 (5-bromo-3-(2- oxopropyl)-3-hydroxy-2-oxindole) in the hot
plate model. Animals were pre-treated with naloxone (1 mg/kg, i.p.), atropine (1 mg/kg,
i.p.) or L-NAME (3 mg/kg, i.p.) 30 min prior to oral administration of convolutamydine A,
compound 1, or 2 (10 mg/kg). The results are presented as mean±S.D. (n=6–10) of the
area under the curve calculated by Prism Software 5.0. Statistical significancewas calculated
by ANOVA followed by Bonferroni's test. * indicates pb0.05 when comparing compound-
treated mice to the vehicle-treated group; # indicates pb0.05 when comparing antagonist
pre-treated mice with the compound-treated group.

Table 2
Effects of convolutamydine A, compound 1 and 2 on spontaneous activity and motor
performance of mice.

Spontaneous activity Hour after treatment

0.5 1 2 3.5

Vehicle 55±6.8 62.4±7.1 59.1±6.7 53.9±6.4
Convolutamydine A 60.8±9.7 65.7±9.9 52.4±6.9 56.7±8.1
Compound 1 51.9±7.7 58.3±8.6 55.4±10.1 60.3±7.2
Compound 2 66.1±11.6 61.7±9.3 54.6±7.8 49.8±8.1

Locomotor performance 0.5 1 2 3.5

Vehicle 12±1.3 15.4±3.3 14.7±2.8 19.7±2.6
Convolutamydine A 8.9±3.1 12.7±3.1 13.9±4.2 15.3±4.8
Compound 1 9.9±1.8 14.7±2.1 16.7±2.9 17.6±2.7
Compound 2 11.4±3.1 16.7±1.9 15.5±2.4 16.8±1.9

437G.S.M. Figueiredo et al. / Pharmacology, Biochemistry and Behavior 103 (2013) 431–439
suitable for evaluation of centrally but not of peripherally acting analge-
sics (Tjølsen et al., 1991; Zimer et al., 1986).

The present study clearly demonstrates that all three substances in-
duced antinociceptive effects in the hot plate model. Characteristic
differences occurred in the time course and maximal effects of the
antinociceptive action of convolutamydine A and it analogues. A rapid
onset with an early maximum effect is characteristic of the time course
of action of opioid agonists (e.g., morphine), which mediate analgesia
via opioid receptors under both normal and inflammatory conditions
(Aceto et al., 1997). The administration of convolutamydine A, com-
pound 1 or compound 2 produced a time course of action in the hot
plate test that was similar to morphine. One possible explanation for
the rapid onset of action might be the solubility of the substances,
which allows them to rapidly reach the brain.

Pain sensation can be divided into four components: transduction,
transmission, modulation and perception. Several studies have shown
that systems of neurotransmitters such as oxidonitrergic, opioid, cho-
linergic, adrenergic, and others may act in different ways during the
pain transmission process, interfering with one of its components
and making them a very interesting and complex phenomenon (Xie
et al., 2009). A natural or synthetic substance with analgesic proper-
ties can then interfere with one of these components to produce
analgesia. Its mechanism of action may involve neurotransmitter
systems such as those listed above. In this regard, we decided to evalu-
ate the antinociceptivemechanisms of action of convolutamydine A, and
compounds 1, and 2, pre-treating animalswith some drugs that interfere
with those systems. Our results showed that the L-arginine–nitric oxide
pathway is involved in the antinociception caused by convolutamydine
A but does not participate in the effects caused by compounds 1 and 2.
These results are consistent with other studies that show participation
of the L-arginine–nitric oxide–cGMP system in the antinociceptive effects
produced by several drugs during peripheral inflammation (Brito et al.,
2006; Lorenzetti and Ferreira, 1996; Pol, 2007) and in several models
of nociception (Riedel and Neeck, 2001).

Among the neurotransmitter systems involved in pain, the opioid
system is one of the most important. In the four components of pain,
this system participates in both the perception and modulation of the
process (Bruehl et al., 2009). Moreover an analgesic agent whose
therapeutic effect is the same as that of morphine, but does not
have the same side effects has not been found. To evaluate the partic-
ipation of the opioid system, mice were pre-treated with naloxone, an
opioid antagonist. Our data demonstrated that the activation of the
opioid pathway is probably not involved in the antinociceptive effect
of convolutamydine A, or compounds 1 and 2 because naloxone sig-
nificantly reversed morphine, but not convolutamydine A, compound
1 and 2 antinociception.

Several pieces of evidence demonstrate that the cholinergic sys-
tem has therapeutic potential for some clinical pain states. Moreover,
acetylcholine mediates its analgesic effects through the nicotinic and
muscarinic receptors (Jones and Dunlop, 2007). Cholinergic neurons
in the spinal cord have been reported to produce an antinociceptive
effect (Hood et al., 1995; Iwamoto and Marion, 1993; Schechtmann
et al., 2008; Tanabe et al., 2005; Yaksh et al., 1985). For instance, the
muscarinic M3 receptor is involved in formalin-induced nociception
(Honda et al., 2000), and the muscarinic M1 receptor is involved in
the antinociceptive effect caused by the intrathecal injection of cloni-
dine in mice (Honda et al., 2002). Muscarinic acetylcholine receptors
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(mAChRs) have been widely reported as pharmacologic targets for
pain treatment. Most of them focused on central nervous system
mAChR (Schechtmann et al., 2008). Recent evidence suggests that
activation of mAChRs present on peripheral nociceptors can also sup-
press the transmission of pain impulses (Bernardini et al., 2001a,
2001b). Our results show that the antinociception of convolutamydine
A and the compounds 1, and 2was blocked by atropine in the hot plate
model, making a possible connection between the antinociceptive
effect of convolutamydine A, compound 1 and 2 and mAChR. As we
know, nicotinic and muscarinic receptor agonists are associated with
typical acetylcholine-like effects, such as reduced motor activity,
hypothermia, tremor, incoordination, polysialia, and bradycardia
(Barocelli et al., 2001; Decker et al., 1994). Consequently, we assessed
the effect of convolutamydine A, compound 1 and 2 on motor coordi-
nation and spontaneous activity in animals. The results show that nei-
ther substance affected their behavior, nor did it change animals' gross
behavior in acute toxicity tests. This indicates that the antinociceptive
effect of convolutamydine A and its analogues (compounds 1 and 2)
being due to any degree ofmotor impairment or sedation is improbable.

Our results demonstrated that convolutamydine A and its analogues
(compounds 1 and 2) develop significant antinociceptive activity in all
three models of antinociception. Some differences occurred between
the models and the compounds. It seems that the presence of two bro-
mide radicals (in positions 4 and 6 of convolutamydine A) confers a bet-
ter antinociceptive effect. The absence of this radical (in compound 1) or
the presence of one bromide in another position (in compound 2)
seems to reduce the biological effect, but without a significant difference
between both compounds. One hypothesis could be that the presence of
two bromide radicals could confer to the convolutamydine structure
more spatial stability, preventing its rotation and maybe the reduction
on activity.

5. Conclusion

To the best of our knowledge it is the first work describing the
antinociceptive effect of convolutamydine A and two new analogues.
All substances were able to produce an oral antinociceptive effect in
acute pain models in mice. Further investigations are necessary to
clarify the exact mechanism of action of these substances. Neverthe-
less, the results of the present study suggest that these bioactive
compounds could be of some interest as a prototype for new the
synthesis of new analgesic drugs.
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